Processes and Threads

!I.-.n_ THE UNIVERSITY OF COMP3231 04s1
G8| NEW SOUTH WALES

Major Requirements of an
Operating System

* Interleave the execution of several
processes to maximize processor
utilization while providing reasonable
response time

* Allocate resources to processes

* Support interprocess communication and
user creation of processes

!==_ THE UNIVERSITY OF COMP3231 04s1
=il NEW SOUTH WALES

Processes and Threads

* Processes:
— Also called a task or job
— Execution of an individual program
— “Owner” of resources allocated for program execution
— Encompasses one or more threads

e Threads:

— Unit of execution

— Can be traced
« list the sequence of instructions that execute

— Belongs to a process

THE UNIVERSITY OF COMP3231 04s1 3
Gl NEW SOUTH WALES

Address Main Memory Program Count

0
- | 5000 Y
Dispatcher
5000
Execution snapshot Process A
of three single-
SN
threaded processes i
(NO Vll’tual Process B
Memory) -
Process C

Figure 3.1 Snapshot of Example Execution (Figure 3
at Instruction Cycle 13

Logical Execution Trace

5000 8000 12000
5001 a001 12001
5002 8002 12002
5003 a003 12003
5004 12004
5005 12005
5006 120006
S007 12007
5008 12008
5009 12009
5010 12010
5011 12011
(a) Trace of Process A (h) Trace of Process B (c) Trace of Process C

2000 = Starting address of program of Process A
000 = Starting address of program of Process B
12000 = Starting address of program of Process C

Figure 3.2 'Traces of Processes of Figure 3.1

Combined Traces

(Actual CPU
Instructions)

What are the
shaded sections?

1 s000 27 12004
2 5001 2212003
3 s002
4 5003 20100
3 004 30 101
& 5005 31 102
Time out 32 103
7 100 33 104
g 101 34 103
0 102 35 3006
10 103 36 3007
11 104 37 3008
12 103 32 3009
13 2000 30 3010
14 2001 40 5011
15 2002
16 2003 41 100
__________________ /0 request 42 101
17 100 43 102
12101 44 103
19 102 45 104
20 103 46 103
21 104 47 12006
22103 42 12007
23 12000 49 12008
24 12001 300 12009
25 12002 51 12010
26 12003 520 12011

100 = Statmg address of dispatcher program

shaded areas mdicate execution of dispatcher process,
first and third cobumns court mstmction cyeles,

second and fonrth colimns showr address of instructionbeing exemted

Titme out

Titme out

Time out

Figure 33 Combined Trace of Processes of Figure 3.1

One program counter
N— Four program counters

Summary: The Process Model

A Process
q switch
B

C Ai B Y c# DY

Process

> W O O
I
I

D Time ——

J T[T

(a) (b) (c)

Multiprogramming of four programs

Conceptual model of 4 independent, sequential
processes (with a single thread each)

Only one program active at any instant

One Process
omne thread

Oone process
multiple threads

multiple processes
one thread per process

multiple processes
multiple threads per process

s = Instruction trace

Figure 4.1 Threads and Processes [ANDE97]

Process and thread models of
selected OSes

Single process, single thread
— MSDOS

Single process, multiple threads
— 0S/161 as distributed

Multiple processes, single thread
— Traditional unix

Multiple processes, multiple threads
— Modern Unix (Linux, Solaris), Windows 2000

Note: Literature (incl. Textbooks) often do not
cleanly distinguish between processes and
threads (for historical reasons)

= THE UNIVERSITY OF COMP3231 04s1 9
il NEW SOUTH WALES

Process Creation

Principal events that cause process creation

1. System initialization
 Foreground processes (interactive programs)

 Background processes
Email server, web server, print server, etc.
Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a
running process
* New login shell for an incoming telnet connection

3. User request to create a new process
4. |Initiation of a batch job

Note: Technically, all these cases use the same
system mechanism to create new processes.

COMP3231 04s1 10

Process Termination

Conditions which terminate processes

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary)

4. Killed by another process (involuntary)

!==_ THE UNIVERSITY OF COMP3231 04s1
el NEW SOUTH WALES

11

Process/Thread States

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

* Possible process/thread states

— running
— blocked
— ready
: * Transitions between states shown
THE UNIVERSITY OF COMP3231 04s1 12

Some Transition Causing

Events

Running >Ready
— Voluntary Yield ()

— End of timeslice

Running >Blocked
— Waiting for input
* File, network,

— Waiting for a timer (alarm signal)
— Waiting for a resource to become available

'-?l'-"--“:___‘ THE UNIVERSITY OF COMP3231 04s1 13
Gl NEW SOUTH WALES

Dispatcher

« Sometimes also called the scheduler
— The literature is also a little inconsistent on
this point
* Has to choose a Ready process to run
— How??

— It is inefficient to search through all
processes

= THE UNIVERSITY OF COMP3231 04s1 14
il NEW SOUTH WALES

Enter

The Ready Queue

Queue

A

Dispatch
~ [[TTTT]

Pause

Processor

Exii

(b) Queulng dlagram

COMP3231 04s1

15

What about blocked processes?

* When an unblocking event occurs, we also
wish to avoid scanning all processes to
select one to make Ready

= THE UNIVERSITY OF COMP3231 04s1 16
¥ NEW SOUTH WALES

Using Two Queues

Ready Queue Release
Admit Dispatch
‘ i | Processor
Timeout
EBlocked Queue
S Event Walt
Occurs

B THE UNIVERSITY OF
B NEW SOUTH WALES

(a) Single blocked queue

COMP3231 04s1

17

Ready Queue —1 Release
Admit Dispatch .
‘ - Processor

Timeout

Event 1 Queune

Event 1 - Event 1 Wallt
occurs

Event 2 Queune

Event 2 e Event 2 Walt
occurs

¥
¥
¥

Event n Queune

Event n Event n Walt
-—
occurs

() Multiple blocked queues

