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Implementation of Processes 
• A processes’ information is 

stored in a process control block 
(PCB)

• The PCBs form a process table
– Sometimes the kernel stack for 

each process is in the PCB
– Sometimes some process info is 

on the kernel stack
• E.g. registers in the trapframe in 

OS/161 
P0
P1
P2
P3
P4
P5
P6
P7
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Implementation of Processes

Example fields of a process table entry
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Threads
The Thread Model

(a) Three processes each with one thread
(b) One process with three threads
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The Thread Model

• Items shared by all threads in a process
• Items private to each thread
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The Thread Model

Each thread has its own stack
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Thread Model
• Local variables are per thread

– Allocated on the stack
• Global variables are shared between all threads

– Allocated in data section
– Concurrency control is an issue

• Dynamically allocated memory (malloc) can be 
global or local
– Program defined
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Thread Usage

A word processor with three threads
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Thread Usage

A multithreaded Web server
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Thread Usage

• Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread
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Thread Usage 

Three ways to construct a server
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Summarising “Why Threads?”
• Simpler to program than a state machine
• Less resources are associated with them than a 

complete process
– Cheaper to create and destroy
– Shares resources (especially memory) between them

• Performance: Threads waiting for I/O can be overlapped 
with computing threads
– Note if all threads are compute bound, then there is no 

performance improvement (on a uniprocessor)
• Threads can take advantage of the parallelism available 

on machines with more than one CPU (multiprocessor)
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Implementing Threads in User 
Space

A user-level threads package
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User-level Threads
• Implementation at user-level

– User-level Thread Control Block (TCB), ready 
queue, blocked queue, and dispatcher

– Kernel has no knowledge of the threads (it 
only sees a single process)

– If a thread blocks waiting for a resource held 
by another thread, its state is save and the 
dispatcher switches to another ready thread

– Thread management  (create, exit, yield, wait) 
are implemented in a runtime support library



32COMP3231 04s1

User-Level Threads
• Pros

– Thread management and switching at user level is 
much faster than doing it in kernel level

• No need to trap into kernel and back to switch
– Dispatcher algorithm can be tuned to the application

• E.g. use priorities
– Can be implemented on any OS (thread or non-

thread aware)
– Can easily support massive numbers of threads on a 

per-application basis
• Use normal application virtual memory
• Kernel memory more contrained. Difficult to efficiently 

support wildly differing numbers of threads for different 
applications.
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User-level Threads
• Cons

– Threads have to yield() manually (no timer 
interrupt delivery to user-level)

• Co-operative multithreading
– A single poorly design/implemented thread can 

monopolise the available CPU time
• There are work-arounds (e.g. a timer signal per 

second to enable pre-emptive multithreading), they 
are course grain and kludgey.

– Does not take advantage of multiple CPUs (in 
reality, we still have a single threaded process 
as far as the kernel is concerned)
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User-Level Threads
• Cons

– If a thread makes a blocking  system call (or takes a page fault), 
the process (and all the internal threads) blocks

• Can’t overlap I/O with computation
• Can use wrappers as a work around 

– Example: wrap the read() call
– Use select() to test if read system call would block

» select() then read()
» Only call read() if it won’t block
» Otherwise schedule another thread

– Wrapper requires 2 system calls instead of one
» Wrappers are needed for environments doing lots of blocking 

system calls?
• Can change to kernel to support non-blocking system call

– Lose “on any system” advantage, page faults still a problem.
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Implementing Threads in the Kernel

A threads package managed by the kernel



36COMP3231 04s1

Kernel Threads

• Threads are implemented in the kernel
– TCBs are stored in the kernel

• A subset of information in a traditional PCB
– The subset related to execution context

• TCBs have a PCB associated with them
– Resources associated with the group of threads (the 

process)

– Thread management calls are implemented 
as system calls

• E.g. create, wait, exit
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Kernel Threads
• Cons

– Thread creation and destruction, and blocking 
and unblocking threads requires kernel entry 
and exit.

• More expensive than user-level equivalent

• Pros
– Preemptive multithreading
– Parallelism

• Can overlap blocking I/O with computation
• Can take advantage of a multiprocessor 
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Hybrid Schemes
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Multiprogramming Implementation

Skeleton of what lowest level of OS does when an 
interrupt occurs – a thread/context switch
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Thread Switch
• A switch between threads can happen any time 

the OS is invoked
– On a system call

• Mandatory if system call blocks or on exit();
– On an exception

• Mandatory if offender is killed
– On an interrupt

• Triggering a dispatch is the main purpose of the timer 
interrupt

A thread switch can happen between any two 
instructions

Note instructions do not equal program statements
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Context Switch
• Thread switch must be transparent for threads

– When dispatched again, thread should not notice that 
something else was running in the meantime (except 
for elapsed time)

⇒OS must save all state that affects the thread
• This state is called the thread context
• Switching between threads consequently results 

in a context switch.
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Simplified 
Explicit

Thread Switch
thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b
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Example Context Switch
• Running in user mode, SP points to user-

level activation stack

Kernel SP
Representation of 

Kernel Stack 
(Memory)
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Example Context Switch
• Take an exception, syscall, or interrupt, 

and we switch to the kernel stack

Kernel SP
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Example Context Switch
• We push a trapframe on the stack

– Also called exception frame, user-level context….
– Includes the user-level PC and SP

Kernel SP

trapframe
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Example Context Switch

• Call ‘C’ code to process syscall, exception, 
or interrupt
– Results in a ‘C’ activation stack building up 

Kernel SP

trapframe‘C’ activation stack
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Example Context Switch
• The kernel decides to perform a context switch

– It chooses a target thread (or process)
– It pushes remaining kernel context onto the stack

Kernel SP

trapframe‘C’ activation stackKernel State
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Example Context Switch
• Any other existing thread must

– be in kernel mode (on a uni processor),
– and have a similar stack layout to the stack we are 

currently using

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel 
stacks of 

other 
threads
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Example Context Switch
• We save the current SP in the PCB (or TCB), 

and load the SP of the target thread.
– Thus we have switched contexts

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
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Example Context Switch

• Load the target thread’s previous context, 
and return to C

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack
trapframe‘C’ activation stackKernel State



51COMP3231 04s1

Example Context Switch

• The C continues and (in this example) 
returns to user mode.

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe
trapframe‘C’ activation stackKernel State
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Example Context Switch

• The user-level context is restored

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
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Example Context Switch

• The user-level SP is restored

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
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The Interesting Part of a Thread 
Switch

• What does the “push kernel state” part 
do???

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
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OS/161 md_switch
md_switch(struct pcb *old, struct pcb *nu)
{

if (old==nu) {
return;

}
/*
* Note: we don't need to switch curspl, because splhigh()
* should always be in effect when we get here and when we
* leave here.
*/

old->pcb_kstack = curkstack;
old->pcb_ininterrupt = in_interrupt;

curkstack = nu->pcb_kstack;
in_interrupt = nu->pcb_ininterrupt;

mips_switch(old, nu);

}
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OS/161 mips_switch
mips_switch:

/*
* a0 contains a pointer to the old thread's struct pcb.
* a1 contains a pointer to the new thread's struct pcb.
*
* The only thing we touch in the pcb is the first word, which
* we save the stack pointer in. The other registers get saved
* on the stack, namely:
*
*      s0-s8
*      gp, ra
*
* The order must match arch/mips/include/switchframe.h.
*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */
addi sp, sp, -44
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OS/161 mips_switch
/* Save the registers */

sw ra, 40(sp)
sw gp, 36(sp)
sw s8, 32(sp)
sw s7, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */
sw sp, 0(a0)

Save the registers 
that the ‘C’

procedure calling 
convention 

expects preserved
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OS/161 mips_switch
/* Get the new stack pointer from the new pcb */

lw sp, 0(a1)
nop /* delay slot for load */

/* Now, restore the registers */
lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s7, 28(sp)
lw s8, 32(sp)
lw gp, 36(sp)
lw ra, 40(sp)
nop /* delay slot for load */

/* and return. */
j ra
addi sp, sp, 44 /* in delay slot */
.end mips_switch
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Revisiting
Thread Switchmips_switch(a,b)

{

mips_switch(a,b)

{

mips_switch(b,a)

{

}

}

}

Thread a Thread b


