
19COMP3231 04s1

Implementation of Processes
• A processes’ information is

stored in a process control block
(PCB)

• The PCBs form a process table
– Sometimes the kernel stack for

each process is in the PCB
– Sometimes some process info is

on the kernel stack
• E.g. registers in the trapframe in

OS/161
P0
P1
P2
P3
P4
P5
P6
P7

20COMP3231 04s1

Implementation of Processes

Example fields of a process table entry

21COMP3231 04s1

Threads
The Thread Model

(a) Three processes each with one thread
(b) One process with three threads

22COMP3231 04s1

The Thread Model

• Items shared by all threads in a process
• Items private to each thread

23COMP3231 04s1

The Thread Model

Each thread has its own stack

24COMP3231 04s1

Thread Model
• Local variables are per thread

– Allocated on the stack
• Global variables are shared between all threads

– Allocated in data section
– Concurrency control is an issue

• Dynamically allocated memory (malloc) can be
global or local
– Program defined

25COMP3231 04s1

Thread Usage

A word processor with three threads

26COMP3231 04s1

Thread Usage

A multithreaded Web server

27COMP3231 04s1

Thread Usage

• Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

28COMP3231 04s1

Thread Usage

Three ways to construct a server

29COMP3231 04s1

Summarising “Why Threads?”
• Simpler to program than a state machine
• Less resources are associated with them than a

complete process
– Cheaper to create and destroy
– Shares resources (especially memory) between them

• Performance: Threads waiting for I/O can be overlapped
with computing threads
– Note if all threads are compute bound, then there is no

performance improvement (on a uniprocessor)
• Threads can take advantage of the parallelism available

on machines with more than one CPU (multiprocessor)

30COMP3231 04s1

Implementing Threads in User
Space

A user-level threads package

31COMP3231 04s1

User-level Threads
• Implementation at user-level

– User-level Thread Control Block (TCB), ready
queue, blocked queue, and dispatcher

– Kernel has no knowledge of the threads (it
only sees a single process)

– If a thread blocks waiting for a resource held
by another thread, its state is save and the
dispatcher switches to another ready thread

– Thread management (create, exit, yield, wait)
are implemented in a runtime support library

32COMP3231 04s1

User-Level Threads
• Pros

– Thread management and switching at user level is
much faster than doing it in kernel level

• No need to trap into kernel and back to switch
– Dispatcher algorithm can be tuned to the application

• E.g. use priorities
– Can be implemented on any OS (thread or non-

thread aware)
– Can easily support massive numbers of threads on a

per-application basis
• Use normal application virtual memory
• Kernel memory more contrained. Difficult to efficiently

support wildly differing numbers of threads for different
applications.

33COMP3231 04s1

User-level Threads
• Cons

– Threads have to yield() manually (no timer
interrupt delivery to user-level)

• Co-operative multithreading
– A single poorly design/implemented thread can

monopolise the available CPU time
• There are work-arounds (e.g. a timer signal per

second to enable pre-emptive multithreading), they
are course grain and kludgey.

– Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)

34COMP3231 04s1

User-Level Threads
• Cons

– If a thread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks

• Can’t overlap I/O with computation
• Can use wrappers as a work around

– Example: wrap the read() call
– Use select() to test if read system call would block

» select() then read()
» Only call read() if it won’t block
» Otherwise schedule another thread

– Wrapper requires 2 system calls instead of one
» Wrappers are needed for environments doing lots of blocking

system calls?
• Can change to kernel to support non-blocking system call

– Lose “on any system” advantage, page faults still a problem.

35COMP3231 04s1

Implementing Threads in the Kernel

A threads package managed by the kernel

36COMP3231 04s1

Kernel Threads

• Threads are implemented in the kernel
– TCBs are stored in the kernel

• A subset of information in a traditional PCB
– The subset related to execution context

• TCBs have a PCB associated with them
– Resources associated with the group of threads (the

process)

– Thread management calls are implemented
as system calls

• E.g. create, wait, exit

37COMP3231 04s1

Kernel Threads
• Cons

– Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.

• More expensive than user-level equivalent

• Pros
– Preemptive multithreading
– Parallelism

• Can overlap blocking I/O with computation
• Can take advantage of a multiprocessor

38COMP3231 04s1

Hybrid Schemes

39COMP3231 04s1

Multiprogramming Implementation

Skeleton of what lowest level of OS does when an
interrupt occurs – a thread/context switch

40COMP3231 04s1

Thread Switch
• A switch between threads can happen any time

the OS is invoked
– On a system call

• Mandatory if system call blocks or on exit();
– On an exception

• Mandatory if offender is killed
– On an interrupt

• Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements

41COMP3231 04s1

Context Switch
• Thread switch must be transparent for threads

– When dispatched again, thread should not notice that
something else was running in the meantime (except
for elapsed time)

⇒OS must save all state that affects the thread
• This state is called the thread context
• Switching between threads consequently results

in a context switch.

42COMP3231 04s1

Simplified
Explicit

Thread Switch
thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b

43COMP3231 04s1

Example Context Switch
• Running in user mode, SP points to user-

level activation stack

Kernel SP
Representation of

Kernel Stack
(Memory)

44COMP3231 04s1

Example Context Switch
• Take an exception, syscall, or interrupt,

and we switch to the kernel stack

Kernel SP

45COMP3231 04s1

Example Context Switch
• We push a trapframe on the stack

– Also called exception frame, user-level context….
– Includes the user-level PC and SP

Kernel SP

trapframe

46COMP3231 04s1

Example Context Switch

• Call ‘C’ code to process syscall, exception,
or interrupt
– Results in a ‘C’ activation stack building up

Kernel SP

trapframe‘C’ activation stack

47COMP3231 04s1

Example Context Switch
• The kernel decides to perform a context switch

– It chooses a target thread (or process)
– It pushes remaining kernel context onto the stack

Kernel SP

trapframe‘C’ activation stackKernel State

48COMP3231 04s1

Example Context Switch
• Any other existing thread must

– be in kernel mode (on a uni processor),
– and have a similar stack layout to the stack we are

currently using

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel
stacks of

other
threads

49COMP3231 04s1

Example Context Switch
• We save the current SP in the PCB (or TCB),

and load the SP of the target thread.
– Thus we have switched contexts

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

50COMP3231 04s1

Example Context Switch

• Load the target thread’s previous context,
and return to C

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack
trapframe‘C’ activation stackKernel State

51COMP3231 04s1

Example Context Switch

• The C continues and (in this example)
returns to user mode.

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe
trapframe‘C’ activation stackKernel State

52COMP3231 04s1

Example Context Switch

• The user-level context is restored

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

53COMP3231 04s1

Example Context Switch

• The user-level SP is restored

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

54COMP3231 04s1

The Interesting Part of a Thread
Switch

• What does the “push kernel state” part
do???

Kernel SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

55COMP3231 04s1

OS/161 md_switch
md_switch(struct pcb *old, struct pcb *nu)
{

if (old==nu) {
return;

}
/*
* Note: we don't need to switch curspl, because splhigh()
* should always be in effect when we get here and when we
* leave here.
*/

old->pcb_kstack = curkstack;
old->pcb_ininterrupt = in_interrupt;

curkstack = nu->pcb_kstack;
in_interrupt = nu->pcb_ininterrupt;

mips_switch(old, nu);

}

56COMP3231 04s1

OS/161 mips_switch
mips_switch:

/*
* a0 contains a pointer to the old thread's struct pcb.
* a1 contains a pointer to the new thread's struct pcb.
*
* The only thing we touch in the pcb is the first word, which
* we save the stack pointer in. The other registers get saved
* on the stack, namely:
*
* s0-s8
* gp, ra
*
* The order must match arch/mips/include/switchframe.h.
*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */
addi sp, sp, -44

57COMP3231 04s1

OS/161 mips_switch
/* Save the registers */

sw ra, 40(sp)
sw gp, 36(sp)
sw s8, 32(sp)
sw s7, 28(sp)
sw s6, 24(sp)
sw s5, 20(sp)
sw s4, 16(sp)
sw s3, 12(sp)
sw s2, 8(sp)
sw s1, 4(sp)
sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */
sw sp, 0(a0)

Save the registers
that the ‘C’

procedure calling
convention

expects preserved

58COMP3231 04s1

OS/161 mips_switch
/* Get the new stack pointer from the new pcb */

lw sp, 0(a1)
nop /* delay slot for load */

/* Now, restore the registers */
lw s0, 0(sp)
lw s1, 4(sp)
lw s2, 8(sp)
lw s3, 12(sp)
lw s4, 16(sp)
lw s5, 20(sp)
lw s6, 24(sp)
lw s7, 28(sp)
lw s8, 32(sp)
lw gp, 36(sp)
lw ra, 40(sp)
nop /* delay slot for load */

/* and return. */
j ra
addi sp, sp, 44 /* in delay slot */
.end mips_switch

59COMP3231 04s1

Revisiting
Thread Switchmips_switch(a,b)

{

mips_switch(a,b)

{

mips_switch(b,a)

{

}

}

}

Thread a Thread b

