Synchronisation and
Concurrency Il

E THE UISIVERSITY O COMP3231 04s1 1
MEW SOUTH WALES

Summarising Semaphores

» Semaphores can be used to solve a
variety of concurrency problems

* However, programming with then can be
error-prone

— E.g. must signal for every wait for mutexes

* Too many, or too few signals or waits, or signals
and waits in the wrong order, can have
catastrophic results

E THE UISIVERSITY O COMP3231 04s1 2
MEW SOUTH WALES

Monitors

» To ease concurrent programming, Hoare (1974)
proposed monitors.
— A higher level synchronisation primitive
— Programming language construct
* |dea
— A set of procedures, variables, data types are
grouped in a special kind of module, a monitor.
» Variables and data types only accessed from within the
monitor
— Only one process/thread can be in the monitor at any
one time

» Mutual exclusion is implemented by the compiler (which
should be less error prone)

E THE UISIVERSITY O COMP3231 04s1 3
MEW SOUTH WALES

Monitor

When a thread
calls a monitor
procedure that
has a thread
already inside, it
is queued and it
sleeps until the

current thread
exits the monitor. .
R

operations

Initialization
code

THE UMIVERSITY O
MEW SOUTH WALES

Monitors

maonitor example
inte; i
condition «;

procedure producer();

end;

procedure consumer();

end;
end monitor;

Example of a monitor
E THE UNIVERSITY 1o S vev v 5
NEW SOUTH WALES

Simple example

monitor counter {

Note: “paper” language
» Compiler guarantees
only one thread can
be active in the

procedure dec() { monitor at any one
count = count -1; time
} + Easy to see this
} provides mutual
exclusion

— No race condition on
count.

int count;
procedure inc() {
count = count + 1;

}

E THE URNIVERSITY (3 COMP3231 04s1 6
MEW SOUTH WALES

How do we block waiting for an
event?
* We need a mechanism to block waiting for
an event (in addition to ensuring mutual
exclusion)

—e.g., for producer consumer problem when
buffer is empty or full

* Condition Variables

-E THE UISIVERSITY O COMP3231 04s1 7
MEW SOUTH WALES

Condition Variable

« To allow a process to wait within the monitor, a condition
variable must be declared, as
condition x, y;
« Condition variable can only be used with the operations
wait and signal.
— The operation
x.wait();

means that the process invoking this operation is suspended until
another process invokes

x.signal();

— The x.signal operation resumes exactly one suspended process. If
no process is suspended, then the signal operation has no effect.

-E THE UISIVERSITY O COMP3231 04s1 8
MEW SOUTH WALES

Condition Variables

lqueues associated with
x. y conditions

-E THE UISIVERSITY O COMP3231 04s1 9
MEW SOUTH WALES

Monitors

monitor ProducerConsimer
condition full. empry;
inleger cownr;

procedure producer:
begin
procedure insertifem: integer); “hi.hr Lk
Degin begin
i conpnr = N then waitifill);
insers_itemfitem);

frem = produce _item;
ProducerConsiuner.insert{item)

ouni 1= count + 1 e
COuRE 1= cou :
o H end;
il couens = | then signall empry) .
procedure consmmer;
end: e
. hegin
Tunction remove: integer; .
begin while jrue do
i =
ot = 0 then waltfevmpr begin
i conns = 0 then waitf enprv); .
Lempiy) item = ProducerConsimer.remove;
EMOVE = remove _iten; .
consume _itenitent)
count := couni = 1;
o > " end
il couns = N = 1 then signal(full) end:
end; B
count =10,
end monitor;

» Outline of producer-consumer problem with monitors
— only one monitor procedure active at one time

. — buffer has N slots

0S/161 Provided Synchronisation
Primitives

* Locks

» Semaphores

» Condition Variables

-E THE URNIVERSITY (3 COMP3231 04s1 1
MEW SOUTH WALES

Locks

+ Functions to create and destroy locks

struct lock *lock_create(const char *name);
void lock_destroy(struct lock *);

+ Functions to acquire and release them

void lock_acquire(struct lock *);
void lock_release (struct lock *);

-E THE URNIVERSITY (3 COMP3231 04s1 12
MEW SOUTH WALES

Example use of locks

int count; procedure inc() {
struct lock *count_ lock lock_acquire(count_ lock) ;
count = count + 1;

main() { lock_release (count_lock) ;

count = 0; }

count_lock = procedure dec() {
lock_create (“count lock_acquire (count_ lock) ;

lock”) ; count = count -1;

if (count lock == NULL) lock_release (count_lock) ;
panic(“I’'m dead”); }

stuff();

-E THE UISIVERSITY O COMP3231 04s1 13
MEW SOUTH WALES

Semaphores

struct semaphore *sem_create(const char *name, int
initial_count) ;

void sem_destroy (struct semaphore *);
void P(struct semaphore *);
void V(struct semaphore *);

-E THE UISIVERSITY O COMP3231 04s1 14
MEW SOUTH WALES

Example use of Semaphores

int count; procedure inc() {

struct semaphore P(count_mutex) ;
*count_mutex; count = count + 1;

V(count_mutex) ;

main() { }

count = 0; procedure dec() {

count_mutex = P(count_mutex) ;
sem_create (“count”, count = count -1;

1);

V(count_mutex) ;
if (count mutex == NULL)

panic(“I'm dead”);
stuff();

-E THE UISIVERSITY O COMP3231 04s1 15
MEW SOUTH WALES

Condition Variables

struct cv *cv_create (const char *name) ;
void cv_destroy (struct cv *);

void cv_wait(struct cv *cv, struct lock *lock);
— Releases the lock and blocks
— Upon resumption, it re-acquires the lock
« Note: we must recheck the condition we slept on

void cv_signal (struct cv *cv, struct lock *lock) ;
void cv_broadcast (struct cv *cv, struct lock *lock);

— Wakes one/all, does not release the lock

— First “waiter” scheduled after signaller releases the lock will re-
acquire the lock

Note: All three variants must hold the lock passed in.

Condition Variables and Bounded
Buffers

Non-solution Solution
lock_acquire (c_lock) lock_acquire (c_lock)
if (count == 0) while (count == 0)

1 0 cv_wait(c_cv, c_lock);
sleep () remove_item();

remove_item() ; count--;
count--; lock_release (c_lock) ;

lock_release(c_lock) ;

-E THE USNIVERSITY OF COMP3231 04s1 17
NEW SOUTH WALES

-E THE UISIVERSITY O COMP3231 04s1 16
MEW SOUTH WALES

A Producer-Consumer Solution
Using OS/161 CVs

int count = 0;
#define N 4 /* buf size */
prod() { con() {
while (TRUE) { while (TRUE) {
item = produce () lock_acquire (1)
lock_aquire (1) while (count == 0)
while (count == N) cv_wait(e,l);
cv_wait(£,1); item = remove_item();
insert_item(item) ; count--;
count++; if (count N-1)
if (count == 1) cv_signal(f,1);
cv_signal(e,1); lock_release(l);
lock_release() consume (item) ;

-E THE URNIVERSITY (3 COMP3231 04s1 18
MEW SOUTH WALES

Interprocess Communication

« Shared Memory Process 1 Process 2

— Region of memory
appears in each
process

— Communication via
modifications to
shared region

— Requires concurrency
control (semaphores,
mutexes, monitors...

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1 19

Interprocess Communication

+ Message Passing Process 1 Process 2

— “real” IPC
* Requires two facilities

— send(message)

. Me_ssage_ may be fixed or -
variable in size

— receive(message)

» OS ships the data from
the sender to the receiver

COMP3231 04s1 21

THE UMIVERSITY O
MEW SOUTH WALES

IPC design issues

* |s the communication synchronous or asynchronous?
* How are links established?
* Can alink be associated with more than two processes?

* How many links can there be between every pair of
communicating processes?

* What is the capacity of a link?

+ |s the size of a message that the link can accommodate
fixed or variable?

+ s the message format fixed or variable?
* Is alink unidirectional or bi-directional?

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1 23

THE UMIVERSITY O
MEW SOUTH WALES

Interprocess Communication

Process 1 Process 2

« Shared files

— Cumbersome

N/

- 2

COMP3231 04s1

THE UMIVERSITY O
MEW SOUTH WALES

Interprocess Communication
(IPC)

» Mechanism for processes to communicate and
to synchronize their actions.

* Message system — processes communicate with
each other without resorting to shared variables.

 If Pand Q wish to communicate, they need to:
— establish a communication link between them
— exchange messages via send/receive

COMP3231 04s1 22

¥

Blocking vs. Non-blocking

* Send

— Operation blocks until
partner is ready to
receive

« Rendezvous model

« Send and receiver
execute their systemat « Receive
the same time
(synchronously)

* Receive

— Operation blocks until
message is available
« synchronous

» Send

— Kernel receives
message and delivers
when receiver is ready

« Asynchronous

— System call returns
immediately if no
message is available

« Asynchronous (polling)

THE URNIVERSITY (3 COMP3231 04s1 24
MEW SOUTH WALES

Blocking vs. Non-blocking

» Non-blocking IPC
— Requires buffering of messages in the kernel
* May fail due to buffer full
» Overhead (copying, allocation)
— Higher level of concurrency
— Requires a separate synchronisation primitive
* Blocking IPC
— May lead to threads blocked indefinitely
» Can use timeouts prevent this
 Zero-timeout = non-blocking receive

THE UMIVERSITY O
MEW SOUTH WALES

COMP3231 04s1 25

Indirect Communication
* Messages are directed to and received from
mailboxes (also referred to as ports).
— Each mailbox has a unique id.
— Processes can communicate only if they share a mailbox.
- E.g. Mach
» Properties of communication link
— Link established only if processes share a common mailbox
« OS mechanism required to establish mailbox sharing
— Alink may be associated with many processes.

— Each pair of processes may share several communication
links.

— Link may be unidirectional or bi-directional.

COMP3231 04s1 27

THE UMIVERSITY O
MEW SOUTH WALES

Indirect Communication

» Mailbox sharing
— P,, P, and P, share mailbox A.
— P4, sends; P, and P, receive.
— Who gets the message?

+ Solutions

— Allow a link to be associated with at most two
processes.

— Allow only one process at a time to execute a receive
operation (Mach).

— Allow the system to select arbitrarily the receiver.
— First come, first served.

E THE URNIVERSITY (3 COMP3231 04s1 29
MEW SOUTH WALES

Direct Communication

» Processes (or threads) must name each other explicitly
using their unique process (or thread) ID:
— send (P, message) — send a message to process P
— receive(Q, message) — receive a message from process Q
* Properties of communication link
— Links are established automatically (implicitly).

— Alink is associated with exactly one pair of communicating
processes.

— Between each pair there exists exactly one link.
— The link may be unidirectional, but is usually bi-directional.

E THE UISIVERSITY O COMP3231 04s1 26
MEW SOUTH WALES

THE UMIVERSITY O
MEW SOUTH WALES

Indirect Communication

» Operations
— create a new mailbox
— send and receive messages through mailbox
— destroy a mailbox
* Primitives are defined as:
send(A, message) — send a message to
mailbox A

receive(A, message) — receive a
message from mailbox A

COMP3231 04s1 28

e

Message Passing

#doting N 100 = rusmiber of siots in the Dutfer =
e peaducer|vok)
[

int item
message m, = message butlor +

while: (TRUE) |

* ganerate something to put in buffer =)
* wal bor &N emply 10 e

* CONSINACE & MESSA0e 10 sand

= sand dem 10 Consumer *.

., B
busld_enessage(Sm, dem)
sand{consumer, &mj;

1
1

woid consumear|woid)
1
int item, i
message m;

Bor (i = 0§ < M; i++) Sendiproducer, &m); /+ send N emphies =

while: (TRUE) |
receve{producer, Sm),
item = exiract_ibeen{&m);
send{producer, &m);
Consume _ Bem{tem),

1

1

* et mesEage containing em «
= extract ibem froen message «

= send back empty reply »

= do seenething with the Bem +

The producer-consumer problem with N messages

NEW SOUTH Wi F%

Dining Philosophers

+ Philosophers eat/think

+ Eating needs 2 forks

* Pick one fork at a time

* How to prevent deadlock

i THE UISIVERSITY O COMP3231 04s1 31
NEW SOUTH WALES

Dining Philosophers

#define N /* number of philosophers =/
#define LEFT {i+MN-1)26N /= number of i's left neighbor */
#define RIGHT (i+1)%N J* number of i's right neighbor */
#define THINKING 0 /* philosopher is thinking =/
#define HUNGRY 1 /* philosopher is trying to get forks =/
#define EATING 2 /* philosopher is eating =/
typedef int semaphore; I+ semaphores are a special kind of int */
int state[N]; /= array to keep track of everyone's state =/
semaphore mutex = 1; /= mutual exclusion for critical regions =/
semaphore s[NJ; /* one semaphore per philosopher =/
void philosopher(int i) /* i: philosopher number, from 0 to N-1 */
while (TRUE) { /= repeat forever */

think(}; /* philosopher is thinking =/

take _forks(i); I+ acquire two forks or block =/

eat(); /= yum-yum, spaghetti */

put_forks(i); /* put both forks back on table =/
1

_E- Solution to dining philosophers problem (part 1)

Dining Philosophers

#define N 5 /* number of philosophers */
void philosopher(int i) /* i philosopher number, from 0 to 4 =/
while (TRUE) {
think(); /* philosopher is thinking =/
take _fork(i); /* take left fork */
take_fork((i+1) % NJ; /* take right fork; % is modulo operator */
eat(); /* yum-yum, spaghetti */
put_fork(i); /* put left fork back on the table »/
put_fork{{i+1) % N); /* put right fork back on the table =/
}
}

A nonsolution to the dining philosophers problem

i THE UISIVERSITY O COMP3231 04s1 32
NEW SOUTH WALES

Dining Philosophers

woid take_forks(int i) I+ |: philosopher number, from 010 N-1 =/
{
down{&mutex); /= enter critical region */
state(] = HUNGRY; I+ recond fact that philosopher i & hungry =/
test{i); /= try to acquire 2 forks »/
up{&mutex); 1= gt critical region =/
chawn{&s{i]) I+ bilock if forks were ol aciuined =/
1
woid put_forks{i) I i philosopher number, from 0 to N-1 +/
1
dhowni|&mutex); = enfer critical region =/
statefi] = THINKING; /= philosopher has finished eating =/
testiLEFT); = gea if laft neighbor can now eat =/
1eslRIGHT); /= gee il nght nesghbor can now eal =/
up{&mutex); {= enit critical region =/
1
void testii) /= i philosopher number, from 0 fo N-1 =/

it (statefi] == HUNGRY && state[LEFT] t= EATING &3 state[RIGHT] '= EATING) §
state(i] « EATING;
up(&s[i]);

The Readers and Writers Problem

* Models access to a database
« E.g. airline reservation system
— Can have more than one concurrent reader
* To check schedules and reservations
— Writers must have exclusive access
» To book a ticket or update a schedule

i THE URNIVERSITY (3 COMP3231 04s1 35
NEW SOUTH WALES

1
i Solution to dining philosophers problem (part 2)

The Readers and Writers Problem

typesced int samaphose. * e your magination =
semaphon mules = 1 * cOntols acomss 1o T
semaphon o = 1 » controls sccuss 1o e database »
e 0, * .0l prociuses madng of waring ¥+
e readerivod)
whde (TAUE} | - repeat formees =
down(Amuex); + ot enchesan B0Cess 1o c°
LELTEE « one e =
{0 == 1) coweiSail; i f this is the St reades
it » pelesase BNCAISHE SC0RSE 10 TC %
mead_data_based |: » access the data »
down(Amutex); * ol eochasint BOCRSS 10 '
a1 L i
¥ ipe =) upiAdh » i thes. ks the last reader . =
i mute) » pelease exCAISHE C0ESS 10 TC *
use_data_read k. + rancritcal regicn »
1
I
o e voud)
whls (TAUE) | « copaat formes =
tk_up_datal) » rncrial region =
down(Bab) + gt enckusan aCCess +
wite_data_base() pdate the data
e * release xcAUSh A00ESE

E A solution to the readers and writers problem

The Sleeping Barber Problem

o chaies for wating customans =

The Sleeping Barber Problem

Eypeded int semaphore; 1+ bt your ieagnaton +f
naph =0 T g for service =/

semaphons baters = 0 o ol Exirbers wabing lor customens |
aph % or -

it wating = 0 * Cusiomans ane wating (R0t being cut) +/

1o g to skeep § 8 of customers & O
= poouinn aceass 1 waling

1+ GaCHTHIRE Cound o wilieg CASI0TeeS +f
i+ o Barber i now ready 19 cut hair +/

’ witing’

w

o barbess i 0 o1
wrvicad o

AL
£+ gt sk 4 0 of
1+ b ppatet and be

f+ shop s . g0 ot wast =/

_E THE LraveRsr 37 _E T U WALEE Solution to sleeping barber problem. %

