
Slide 1

Computer System Overview

Operating Systems

2005/S2

Slide 2

What are the objectives of an Operating System?

➜ convenience & abstraction

• the OS should facilitate the task of application and system
programmer

• hardware details should be hidden, uniform interface for
different I/O devices provided

➜ efficiency

should take up few resources, make good use of resources, and
be fast

➜ protection

fairness, security, safety

LAYERS OF A COMPUTER SYSTEM 1

Slide 3

LAYERS OF A COMPUTER SYSTEM

End
User

Programmer

Operating-
System

Designer

Application Programs

Utilities

Operating System

Computer Hardware

Slide 4

BASIC ELEMENTS

Simplified view:
➜ Processor

➜ Main Memory

• referred to as real memory or primary memory
• volatile

➜ I/O modules

• secondary memory devices
• communications equipment
• terminals

➜ System bus

• communication among processors, memory, and I/O
modules

TOP-LEVEL COMPONENTS 2

Slide 5

TOP-LEVEL COMPONENTS

Monitor

Keyboard Floppy

disk drive

Hard

disk drive

Hard

disk

controller

Floppy

disk

controller

Keyboard

controller

Video

controllerMemoryCPU

Bus

Slide 6

EXAMPLE: LARGE PENTIUM SYSTEM

ISA

bridge

Modem

Mouse

PCI

bridgeCPU

Main

memory

SCSI USB

Local bus

Sound

card Printer Available

ISA slot

ISA bus

IDE

disk

Available

PCI slot

Key-

board

Mon-

itor

Graphics

adaptor

Level 2

cache

Cache bus Memory bus

PCI bus

PROCESSOR 3

Slide 7

PROCESSOR

➜ Fetches intructions from memory, decodes and executes them

➜ Set of instructions is processor specific

➜ Instructions include:

✱ load value from memory into register
✱ combine operands from registers or memory
✱ branch

➜ All CPU’s have registers to store

✱ key variables and temporary results
✱ information related to control program execution

Slide 8

PROCESSOR REGISTERS

➜ Data and address registers

• Hold operands of most native machine instructions
• Enable programmer to minimize main-memory references by

optimizing register use
• user-visible

➜ Control and status registers

• Used by processor to control operating of the processor
• Used by operating-system routines to control the execution

of programs
• Sometimes not accessible by user (architecture dependent)

USER-V ISIBLE REGISTERS 4

Slide 9

USER-VISIBLE REGISTERS

➜ May be referenced by machine language instructions

➜ Available to all programs - application programs and system
programs

➜ Types of registers

• Data
• Address

– Index
– Segment pointer
– Stack pointer

• Many architectures do not distinguish different types

Slide 10

CONTROL AND STATUS REGISTERS

➜ Program Counter (PC)

• Contains the address of an instruction to be fetched

➜ Instruction Register (IR)

• Contains the instruction most recently fetched

➜ Processor Status Word (PSW)

• condition codes
• interrupt enable/disable
• supervisor/user mode

CONTROL AND STATUS REGISTERS 5

Slide 11

CONTROL AND STATUS REGISTERS

➜ Condition Codes or Flags

• Bits set by the processor hardware as a result of operations
• Can be accessed by a program but not altered
• Examples

– positive/negative result
– zero
– overflow

Slide 12

INSTRUCTION FETCH AND EXECUTE

➜ Program counter (PC) holds address of the instruction to be
fetched next

➜ The processor fetches the instruction from memory

➜ Program counter is incremented after each fetch

➜ Overlapped on modern architectures (pipelining)

START HALT
Fetch Next
Instruction

Fetch Cycle Execute Cycle

Execute
Instruction

INSTRUCTION REGISTER 6

Slide 13

INSTRUCTION REGISTER

➜ Fetched instruction is placed in the instruction register

➜ Types of instructions

• Processor-memory

– transfer data between processor and memory
• Processor-I/O

– data transferred to or from a peripheral device
• Data processing

– arithmetic or logic operation on data
• Control

– alter sequence of execution

Slide 14

INTERACTION BETWEEN PROCESSOR AND I/O DEVICES

➜ CPU much faster than I/O devices

- waiting for I/O operation to finish is inefficient
- not feasible for mouse, keyboard

➜ I/O module sends an interrupt to CPU to signal completion

➜ Interrupts normal sequence of execution

➜ Interrupts are also used to signal other events

CLASSES OF INTERRUPTS 7

Slide 15

CLASSES OF INTERRUPTS

➜ Asynchronous (external) events

• I/O
• Timer
• Hardware failure

➜ Synchronous interrupts or program exceptions
caused by program execution:

• arithmetic overflow
• division by zero
• execute illegal instruction
• reference outside user’s memory space

Slide 16

INTERRUPT CYCLE

➀ Fetch next instruction

➁ Execute instruction

➂ Check for interrupt

➃ If no interrupts, fetch the next instruction

➄ If an interrupt is pending, divert to the interrupt handler

START

HALT

Fetch Next
Instruction

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Interrupts
Enabled

Execute
Instruction

Check for
Interrupt;

Process Interrupt

INTERRUPT HANDLER 8

Slide 17

INTERRUPT HANDLER

➜ A program that determines nature of the interrupt and performs
whatever actions are needed

➜ Control is transferred to this program by the hardware

➜ Generally part of the operating system

Slide 18

CONTROL FLOW WITH AND WITHOUT INTERRUPTS

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

END

1

2

3

2

3

4

5

(a) No interrupts

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1

2a

2b

3a

3b

4

5

(b) Interrupts; short I/O wait

*

*

User
Program

WRITE

WRITE

WRITE

I/O
Program

I/O
Command

Interrupt
Handler

END

1 4

5

(c) Interrupts; long I/O wait

MULTIPLE INTERRUPTS 9

Slide 19

MULTIPLE INTERRUPTS

➜ Interrupt X occurs
➜ CPU disables all interrupts (only

those with lower priority)
➜ Interrupt handler may enable

interrupts
➜ Interrupt Y occurs
➜ Sequential or nested interrupt

handling

User Program
Interrupt
Handler X

Interrupt
Handler Y

(a) Sequential interrupt processing

User Program
Interrupt
Handler X

Interrupt
Handler Y

(b) Nested interrupt processing

Slide 20

MULTIPLE INTERRUPTS

Sequential Order:

➜ Disable interrupts so processor can complete task

➜ Interrupts remain pending until the processor enables interrupts

➜ After interrupt handler routine completes, the processor checks
for additional interrupts

MULTIPLE INTERRUPTS 10

Slide 21

MULTIPLE INTERRUPTS

Priorities:
➜ Higher priority interrupts cause lower-priority interrupts to wait

➜ Causes a lower-priority interrupt handler to be interrupted

➜ Example: when input arrives from communication line, it needs
to be absorbed quickly to make room for more input

Slide 22

MEMORY

Sould be

➜ fast

➜ abundant

➜ cheap

Unfortunately, that’s not the reality...

Solution:

• combination of fast & expensive and slow & cheap
memory

MEMORY H IERARCHY 11

Slide 23

MEMORY HIERARCHY

Registers

Cache

Main memory

Magnetic tape

Magnetic disk

 1 nsec

 2 nsec

 10 nsec

 10 msec

100 sec

<1 KB

 1 MB

 64-512 MB

 5-50 GB

 20-100 GB

Typical capacityTypical access time

Slide 24

GOING DOWN THE HIERARCHY

➜ Decreasing cost per bit

➜ Increasing capacity

➜ Increasing access time

➜ Decreasing frequency of access of the memory by the
processor

Locality of reference is essential!

D ISK CACHE 12

Slide 25

DISK CACHE

➜ A portion of main memory used as a buffer to temporarily to
hold data for the disk

➜ Disk writes are clustered

➜ Some data written out may be referenced again. The data are
retrieved rapidly from the software cache instead of slowly from
disk

➜ Mostly transparent to operating system

Slide 26

CACHE MEMORY

CPU

Word Transfer
Block Transfer

Cache Main Memory

➜ Contains a portion of main memory

➜ Processor first checks cache

➜ If not found in cache, the block of memory containing the
needed information is moved to the cache
replacing some other data

CACHE/MAIN MEMORY SYSTEM 13

Slide 27

CACHE/MAIN MEMORY SYSTEM

Memory
address

0
1
2

0
1
2

C — 1

3

2n — 1

Word
Length

Block Length
(K Words)

Block
(K words)

Block

Line
Number Tag Block

(b) Main memory

(a) Cache

¥
¥
¥

¥
¥
¥

Slide 28

CACHE DESIGN

➜ Cache size

• small caches have a significant impact on performance

➜ Line size (block size)

• the unit of data exchanged between cache and main
memory

• hit means the information was found in the cache
• larger line size ⇒ higher hit rate

until probability of using newly fetched data becomes less
than the probability of reusing data that has been moved
out of cache

CACHE DESIGN 14

Slide 29

CACHE DESIGN

➜ Mapping function

• determines which cache location the data will occupy

➜ Replacement algorithm

• determines which line to replace
• Least-Recently-Used (LRU) algorithm

➜ Write policy

• When the memory write operation takes place
• Can occur every time line is updated (write-through policy)
• Can occur only when line is replaced (write-back policy)

– Minimizes memory operations
– Leaves memory in an obsolete state

Slide 30

INTERACTION BETWEEN I/O DEVICES AND PROCESSOR

➜ Controller (chip or set of chips) provides a simple interface to OS

- often, embedded OS running on the controller

➜ Software that communicates with controller is called device
driver

➜ Most drivers run in kernel mode

➜ To put new driver into kernel, system may have to
- be relinked
- be rebooted
- dynamically load new driver

PROGRAMMED I/O (POLLING) 15

Slide 31

PROGRAMMED I/O (POLLING)

➜ I/O module performs the action, not the
processor

➜ Sets appropriate bits in the I/O status
register

➜ No interrupts occur
➜ Processor checks status until operation is

complete

• Wastes CPU cycles

Issue Read
command to
I/O module

Read status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(a) Programmed I/O

CPU → I/O

CPU → memory

I/O → CPU

I/O → CPU

Error
condition

Ready Ready

Yes Yes

No

Not
ready

Issue Read
command to
I/O module

Do something
else

InterruptRead status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(b) Interrupt-driven I/O

CPU → I/O

CPU → memory

I/O → CPU

Do something
else

Interrupt

CPU → DMA

DMA → CPU

I/O → CPU

Error
condition

No

Issue Read
block command
to I/O module

Read status
of DMA
module

Next instruction

(c) Direct memory access

Slide 32

INTERRUPT-DRIVEN I/O

➜ Processor is interrupted when I/O
module ready to exchange data

➜ Processor is free to do other work
➜ No needless waiting
➜ Consumes a lot of processor time

because every word read or written
passes through the processor

Issue Read
command to
I/O module

Read status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(a) Programmed I/O

CPU → I/O

CPU → memory

I/O → CPU

I/O → CPU

Error
condition

Ready Ready

Yes Yes

No

Not
ready

Issue Read
command to
I/O module

Do something
else

InterruptRead status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(b) Interrupt-driven I/O

CPU → I/O

CPU → memory

I/O → CPU

Do something
else

Interrupt

CPU → DMA

DMA → CPU

I/O → CPU

Error
condition

No

Issue Read
block command
to I/O module

Read status
of DMA
module

Next instruction

(c) Direct memory access

D IRECT MEMORY ACCESS 16

Slide 33

DIRECT MEMORY ACCESS

➜ Transfers a block of data
directly to or from memory

➜ An interrupt is sent when the
task is complete

➜ The processor is only involved
at the beginning and end of
the transfer

Issue Read
command to
I/O module

Read status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(a) Programmed I/O

CPU → I/O

CPU → memory

I/O → CPU

I/O → CPU

Error
condition

Ready Ready

Yes Yes

No

Not
ready

Issue Read
command to
I/O module

Do something
else

InterruptRead status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(b) Interrupt-driven I/O

CPU → I/O

CPU → memory

I/O → CPU

Do something
else

Interrupt

CPU → DMA

DMA → CPU

I/O → CPU

Error
condition

No

Issue Read
block command
to I/O module

Read status
of DMA
module

Next instruction

(c) Direct memory access

D IRECT MEMORY ACCESS 17

