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What are the objectives of an Operating System?

➜ convenience & abstraction

• the OS should facilitate the task of application and system
programmer

• hardware details should be hidden, uniform interface for
different I/O devices provided

➜ efficiency

should take up few resources, make good use of resources, and
be fast

➜ protection

fairness, security, safety

LAYERS OF A COMPUTER SYSTEM 1
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LAYERS OF A COMPUTER SYSTEM
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BASIC ELEMENTS

Simplified view:
➜ Processor

➜ Main Memory

• referred to as real memory or primary memory
• volatile

➜ I/O modules

• secondary memory devices
• communications equipment
• terminals

➜ System bus

• communication among processors, memory, and I/O
modules

TOP-LEVEL COMPONENTS 2
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TOP-LEVEL COMPONENTS
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PROCESSOR

➜ Fetches intructions from memory, decodes and executes them

➜ Set of instructions is processor specific

➜ Instructions include:

✱ load value from memory into register
✱ combine operands from registers or memory
✱ branch

➜ All CPU’s have registers to store

✱ key variables and temporary results
✱ information related to control program execution

Slide 8

PROCESSOR REGISTERS

➜ Data and address registers

• Hold operands of most native machine instructions
• Enable programmer to minimize main-memory references by

optimizing register use
• user-visible

➜ Control and status registers

• Used by processor to control operating of the processor
• Used by operating-system routines to control the execution

of programs
• Sometimes not accessible by user (architecture dependent)

USER-V ISIBLE REGISTERS 4
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USER-VISIBLE REGISTERS

➜ May be referenced by machine language instructions

➜ Available to all programs - application programs and system
programs

➜ Types of registers

• Data
• Address

– Index
– Segment pointer
– Stack pointer

• Many architectures do not distinguish different types
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CONTROL AND STATUS REGISTERS

➜ Program Counter (PC)

• Contains the address of an instruction to be fetched

➜ Instruction Register (IR)

• Contains the instruction most recently fetched

➜ Processor Status Word (PSW)

• condition codes
• interrupt enable/disable
• supervisor/user mode

CONTROL AND STATUS REGISTERS 5
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CONTROL AND STATUS REGISTERS

➜ Condition Codes or Flags

• Bits set by the processor hardware as a result of operations
• Can be accessed by a program but not altered
• Examples

– positive/negative result
– zero
– overflow
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INSTRUCTION FETCH AND EXECUTE

➜ Program counter (PC) holds address of the instruction to be
fetched next

➜ The processor fetches the instruction from memory

➜ Program counter is incremented after each fetch

➜ Overlapped on modern architectures (pipelining)

START HALT
Fetch Next
Instruction

Fetch Cycle Execute Cycle

Execute
Instruction

INSTRUCTION REGISTER 6
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INSTRUCTION REGISTER

➜ Fetched instruction is placed in the instruction register

➜ Types of instructions

• Processor-memory

– transfer data between processor and memory
• Processor-I/O

– data transferred to or from a peripheral device
• Data processing

– arithmetic or logic operation on data
• Control

– alter sequence of execution
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INTERACTION BETWEEN PROCESSOR AND I/O DEVICES

➜ CPU much faster than I/O devices

- waiting for I/O operation to finish is inefficient
- not feasible for mouse, keyboard

➜ I/O module sends an interrupt to CPU to signal completion

➜ Interrupts normal sequence of execution

➜ Interrupts are also used to signal other events

CLASSES OF INTERRUPTS 7
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CLASSES OF INTERRUPTS

➜ Asynchronous (external) events

• I/O
• Timer
• Hardware failure

➜ Synchronous interrupts or program exceptions
caused by program execution:

• arithmetic overflow
• division by zero
• execute illegal instruction
• reference outside user’s memory space
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INTERRUPT CYCLE

➀ Fetch next instruction

➁ Execute instruction

➂ Check for interrupt

➃ If no interrupts, fetch the next instruction

➄ If an interrupt is pending, divert to the interrupt handler

START

HALT

Fetch Next
Instruction

Fetch Cycle Execute Cycle Interrupt Cycle

Interrupts
Disabled

Interrupts
Enabled

Execute
Instruction

Check for
Interrupt;

Process Interrupt

INTERRUPT HANDLER 8
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INTERRUPT HANDLER

➜ A program that determines nature of the interrupt and performs
whatever actions are needed

➜ Control is transferred to this program by the hardware

➜ Generally part of the operating system
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CONTROL FLOW WITH AND WITHOUT INTERRUPTS
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(b) Interrupts; short I/O wait
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(c) Interrupts; long I/O wait

MULTIPLE INTERRUPTS 9
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MULTIPLE INTERRUPTS

➜ Interrupt X occurs
➜ CPU disables all interrupts (only

those with lower priority)
➜ Interrupt handler may enable

interrupts
➜ Interrupt Y occurs
➜ Sequential or nested interrupt

handling

User Program
Interrupt
Handler X

Interrupt
Handler Y

(a) Sequential interrupt processing

User Program
Interrupt
Handler X

Interrupt
Handler Y

(b) Nested interrupt processing
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MULTIPLE INTERRUPTS

Sequential Order:

➜ Disable interrupts so processor can complete task

➜ Interrupts remain pending until the processor enables interrupts

➜ After interrupt handler routine completes, the processor checks
for additional interrupts

MULTIPLE INTERRUPTS 10
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MULTIPLE INTERRUPTS

Priorities:
➜ Higher priority interrupts cause lower-priority interrupts to wait

➜ Causes a lower-priority interrupt handler to be interrupted

➜ Example: when input arrives from communication line, it needs
to be absorbed quickly to make room for more input
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MEMORY

Sould be

➜ fast

➜ abundant

➜ cheap

Unfortunately, that’s not the reality...

Solution:

• combination of fast & expensive and slow & cheap
memory

MEMORY H IERARCHY 11
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MEMORY HIERARCHY
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GOING DOWN THE HIERARCHY

➜ Decreasing cost per bit

➜ Increasing capacity

➜ Increasing access time

➜ Decreasing frequency of access of the memory by the
processor

Locality of reference is essential!

D ISK CACHE 12
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DISK CACHE

➜ A portion of main memory used as a buffer to temporarily to
hold data for the disk

➜ Disk writes are clustered

➜ Some data written out may be referenced again. The data are
retrieved rapidly from the software cache instead of slowly from
disk

➜ Mostly transparent to operating system
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CACHE MEMORY

CPU

Word Transfer
Block Transfer

Cache Main Memory

➜ Contains a portion of main memory

➜ Processor first checks cache

➜ If not found in cache, the block of memory containing the
needed information is moved to the cache
replacing some other data

CACHE/MAIN MEMORY SYSTEM 13
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CACHE/MAIN MEMORY SYSTEM
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CACHE DESIGN

➜ Cache size

• small caches have a significant impact on performance

➜ Line size (block size)

• the unit of data exchanged between cache and main
memory

• hit means the information was found in the cache
• larger line size ⇒ higher hit rate

until probability of using newly fetched data becomes less
than the probability of reusing data that has been moved
out of cache

CACHE DESIGN 14
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CACHE DESIGN

➜ Mapping function

• determines which cache location the data will occupy

➜ Replacement algorithm

• determines which line to replace
• Least-Recently-Used (LRU) algorithm

➜ Write policy

• When the memory write operation takes place
• Can occur every time line is updated (write-through policy)
• Can occur only when line is replaced (write-back policy)

– Minimizes memory operations
– Leaves memory in an obsolete state
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INTERACTION BETWEEN I/O DEVICES AND PROCESSOR

➜ Controller (chip or set of chips) provides a simple interface to OS

- often, embedded OS running on the controller

➜ Software that communicates with controller is called device
driver

➜ Most drivers run in kernel mode

➜ To put new driver into kernel, system may have to
- be relinked
- be rebooted
- dynamically load new driver

PROGRAMMED I/O (POLLING) 15
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PROGRAMMED I/O (POLLING)

➜ I/O module performs the action, not the
processor

➜ Sets appropriate bits in the I/O status
register

➜ No interrupts occur
➜ Processor checks status until operation is

complete

• Wastes CPU cycles

Issue Read
command to
I/O module

Read status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(a) Programmed I/O

CPU → I/O

CPU → memory

I/O → CPU

I/O → CPU

Error
condition

Ready Ready

Yes Yes

No

Not
ready

Issue Read
command to
I/O module

Do something
else

InterruptRead status
of I/O
module

Check
status

Read word
from I/O
Module

Write word
into memory

Done?

Next instruction
(b) Interrupt-driven I/O

CPU → I/O

CPU → memory

I/O → CPU

Do something
else

Interrupt

CPU → DMA

DMA → CPU

I/O → CPU

Error
condition

No

Issue Read
block command
to I/O module

Read status
of DMA
module

Next instruction

(c) Direct memory access
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INTERRUPT-DRIVEN I/O

➜ Processor is interrupted when I/O
module ready to exchange data

➜ Processor is free to do other work
➜ No needless waiting
➜ Consumes a lot of processor time

because every word read or written
passes through the processor

Issue Read
command to
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of I/O
module

Check
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Module

Write word
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Done?
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Error
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Not
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Do something
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Done?

Next instruction
(b) Interrupt-driven I/O

CPU → I/O

CPU → memory

I/O → CPU

Do something
else

Interrupt

CPU → DMA

DMA → CPU

I/O → CPU

Error
condition

No

Issue Read
block command
to I/O module

Read status
of DMA
module

Next instruction

(c) Direct memory access

D IRECT MEMORY ACCESS 16
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DIRECT MEMORY ACCESS

➜ Transfers a block of data
directly to or from memory

➜ An interrupt is sent when the
task is complete

➜ The processor is only involved
at the beginning and end of
the transfer
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(c) Direct memory access
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