
Slide 1

Week 11

COMP3231 Operating Systems

2005 S2
➜ Today: Real-time systems, wrap up
➜ Today: File Systems (Chapter 6, Tanenbaum)

- User’s view
- File System Implementation

➜ Tutorial this week: device driver
➜ Week 12:

- Assignment 2 Solution (fork)
- Case Studies

➜ Week 13: Operating System Design
➜ Week 14: Overview

Slide 2

LINUX 2.4 SCHEDULING — SOFT REAL-TIME SUPPORT
➜ User assigns static priority to real time processes (1-99), never

changed by scheduler
➜ Conventional processes have dynamic priority, always lower

than real time processes
- sum of base priority and
- number of clock ticks left of quantum for current epoch

➜ Scheduling classes
• SCHED FIFO: First-in-first-out real-time threads
• SCHED RR: Round-robin real-time threads
• SCHED OTHER: Other, non-real-time threads

➜ Within each class multiple priorities may be used
➜ Deadlines cannot be specified, no guarantees given
➜ Due to non-preemptive kernel, latency can be too high for

real-time systems

L INUX 2.4 SCHEDULING — SOFT REAL-TIME SUPPORT 1

Slide 3

LINUX 2.4 SCHEDULING — SOFT REAL-TIME SUPPORT
➜ Virtual Memory:

- no VM for real-time apps
- mlock() and mlockall() to switch off paging (which other

applications might need to do this?)
➜ Timer: resolution: 10ms, too coarse grained for real-time apps

Slide 4

Linux scheduling:

maximum

(a) Relative thread priorities (b) Flow with FIFO scheduling

D

D B C A
middleC

middleB

minimumA

(c) Flow with RR scheduling

D B C B C A

IMPROVEMENTS IN 2.6 KERNEL 2

Slide 5

IMPROVEMENTS IN 2.6 KERNEL
➜ Kernel Preemption

• kernel code laced with preemption points
• calling process can block and thereby yield CPU to

higher-priority process
➜ Kernel can be built without VM
➜ Improved scheduler
➜ Timer resolution: 1ms

Slide 6

SCHEDULING IN 2.4 AND 2.6: COMPARISON

2.4:
➜ CPU time divided into epochs
➜ Each process has a (poss. different) time quantum it is allowed

to run in every epoch
➜ Epoch ends when all runnable processes have exhausted their

quantum
➜ Time quantum for each process recomputed after every epoch
➜ To find the next process which should be scheduled, the

complete ready-queue has to be scanned
➜ SMP: only single ready-queue
➜ O(n) algorithm: overhead grows linearly with number of

processes
➜ Ready queue access bottle neck for SMP

SCHEDULING IN 2.4 AND 2.6: COMPARISON 3

Slide 7

2.6:
➜ Queue for each priority
➜ Thread can be in active (quantum not yet expired) or expired

(quantum already used up) queue.
➜ Priority is re-calculated after quantum is expired
➜ Interactive processes inserted back into active-queue
➜ SMP: One set of queues per processor, idle processors steal work

from other processors
➜ O(1) algorithm: time required for scheduling decision does not

depend on number of processes
➜ Ready queue access not a bottle neck for SMP
➜ Better locality

Slide 8

HARD REAL TIME OS
We look at examples of two types of systems:
➜ hard real-time variants of general purpose OSs

• try to alleviate shortcomings of OS with respect to real time
apps

➜ configurable hard real time systems
• system designed as real time OS from the start

RTL INUX 4

Slide 9

RTLINUX
➜ abstract machine layer between actual hardware and Linux

kernel
➜ takes control of

- hardware interrupts
- timer hardware
- interrupt disable mechanism

➜ real time scheduler runs with no interference fron Linux kernel
➜ programmer must utilise RTLinux API for real time applications

Slide 10

QNX
➜ Microkernel based architecture
➜ POSIX standard API
➜ Modular — can be costumised for very small size (eg,

embedded systems) or large systems
➜ Memory protection for user applications and os components

QNX 5

Slide 11

Scheduling:
➜ FIFO scheduling
➜ Round-robin
➜ Adaptive scheduling

- thread consumes its timeslice, its priority is reduced by one
- thread blocks, it immediately comes back to its base priority

➜ POSIX sporadic scheduling

Slide 12

Kernel Services:
➜ Thread services: provides the POSIX thread creation primitives.
➜ Signal services: provides the POSIX signal primitives.
➜ Message passing services: handles the routing of all messages

between all threads through the whole system.
➜ Synchronization services: provides the POSIX thread

synchronization primitives.
➜ Scheduling services: schedules threads using the various POSIX

realtime scheduling algorithms.
➜ Timers services: provides the set of POSIX timer.

QNX 6

Slide 13

Process Manager:

The process manager is capable of creating multiple POSIX
processes (each of which may contain multiples POSIX
threads).

Its main areas of responsability include:
➜ Process management: manages process creation, destruction,

and process attributes such us user ID and group ID.
➜ Memory management: manages memory protection, shared

libraries, and POSIX shared memory primitives.
➜ Pathname management: manages the pathname space

(mountpoints).

Slide 14

WINDOWS CE 5.0
Componentised OS designed for embedded systems with
hard real-time support
➜ handles nested interrupts
➜ handles priority inversion based on priority inheritance

Offers
➜ guaranteed upper bound on high priority thread scheduling
➜ guaranteed upper bound on delay for interrupt service routines

F ILE SYSTEMS 7

Slide 15

FILE SYSTEMS

Long-term information storage:
➀ Must support storage of lager amount of data
➁ Information must survive termination of process creating the

information
➂ Multiple processes must be able to access information

concurrently

Slide 16

Information is stored in files
➜ on disk or other external media
➜ processes can read, write, and create new files
➜ a file should only disappear when explicitely removed by owner

The OS component which manages files is called the file
system

Concrete file system determines:
➜ structure
➜ implementation
➜ usage
➜ protection

F ILE SYSTEMS 8

Slide 17

Why is the file system part of the operating system?
➜ Manages trusted, shared resource
➜ Provides abstraction layer:

- hides low-level disk organisation
- presents it to the user as a collection or stream of records

Included set of tools outside of kernel:
➜ formatting
➜ recovery
➜ defragmentation
➜ back up

Slide 18

OBJECTIVES
➜ Provide convenient user interface
➜ Provide uniform I/O support for a variety of storage devices
➜ Optimise performance
➜ Provide security and safety

F ILE NAMING 9

Slide 19

FILE NAMING

File system must provide a convenient naming scheme:
➜ textual names
➜ namespace may be restricted

- exclude certain characters
- limited length
- only certain format (DOS 8+3)

➜ names may obey conventions
- interpreted by tools (UNIX)
- interpreted by operating system (Windows)

Slide 20

� �

Extension Meaning� �

file.bak Backup file� �

file.c C source program� �

file.gif Compuserve Graphical Interchange Format image� �

file.hlp Help file� �

file.html World Wide Web HyperText Markup Language document� �

file.jpg Still picture encoded with the JPEG standard� �

file.mp3 Music encoded in MPEG layer 3 audio format� �

file.mpg Movie encoded with the MPEG standard� �

file.o Object file (compiler output, not yet linked)� �

file.pdf Portable Document Format file� �

file.ps PostScript file� �

file.tex Input for the TEX formatting program� �

file.txt General text file� �

file.zip Compressed archive� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

F ILE STRUCTURE 10

Slide 21

FILE STRUCTURE

File as Byte Sequence:
➜ operating system does not know about the contents of the file
➜ meaning imposed by user-level program
➜ approach used by Windows, Unix
➜ provides maximum flexibility

Slide 22

(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

F ILE STRUCTURE 11

Slide 23

File as Collection of Fixed-length Records:
➜ each record has internal structure
➜ read and write operations record oriented
➜ was used in many mainframe operating system
➜ not used in any current general purpose operating system

Slide 24

(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

F ILE STRUCTURE 12

Slide 25

File as Tree of Records:
➜ not necessarily of the same size
➜ access record through key
➜ os, not user level program places new records
➜ used for large scale data processing on some main frame

systems

Slide 26

(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

F ILE TYPES 13

Slide 27

FILE TYPES
➜ Regular files

- ASCII text files
- binary files

➜ Directories
➜ Device files

- character devices (stream of bytes)
- block devices

All system recognize their own executable format (often
identified by magic number)

Slide 28

FILE STRUCTURE

(a) (b)

Header

Header

Header

Magic number

Text size

Data size

BSS size

Symbol table size

Entry point

Flags

Text

Data

Relocation
bits

Symbol
table

Object
module

Object
module

Object
module

Module
name

Date

Owner

Protection

Size

�� �

H
ea

de
r

F ILE ACCESS 14

Slide 29

FILE ACCESS
➜ Sequential Access

- read all data from the beginning
- can’t move back, only rewind
- convenient for magnetic tape

➜ Random Access

- read data in any order
- essential for applications which use large files (data base

etc)
- start position can be either set by each call to read, or set by

special seek instruction

Slide 30

FILE ATTRIBUTES
➜ in addition to name and data, file attributes are stored
➜ set of attributes associated with a file depends on OS
➜ categories:

- protection
- time stamps
- type of file

F ILE ATTRIBUTES 15

Slide 31

FILE ATTRIBUTES

� �

Attribute Meaning� �

Protection Who can access the file and in what way� �

Password Password needed to access the file� �

Creator ID of the person who created the file� �

Owner Current owner� �

Read-only flag 0 for read/write; 1 for read only� �

Hidden flag 0 for normal; 1 for do not display in listings� �

System flag 0 for normal files; 1 for system file� �

Archive flag 0 for has been backed up; 1 for needs to be backed up� �

ASCII/binary flag 0 for ASCII file; 1 for binary file� �

Random access flag 0 for sequential access only; 1 for random access� �

Temporary flag 0 for normal; 1 for delete file on process exit� �

Lock flags 0 for unlocked; nonzero for locked� �

Record length Number of bytes in a record� �

Key position Offset of the key within each record� �

Key length Number of bytes in the key field� �

Creation time Date and time the file was created� �

Time of last access Date and time the file was last accessed� �

Time of last change Date and time the file has last changed� �

Current size Number of bytes in the file� �

Maximum size Number of bytes the file may grow to� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Slide 32

FILE OPERATIONS
➜ Create / Delete
➜ Open / Close
➜ Read /Write
➜ Seek
➜ Get / Set attributes
➜ Append
➜ Rename

F ILE OPERATIONS 16

Slide 33

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */

#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])
{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF_SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */
if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {

rd_count = read(in_fd, buffer, BUF_SIZE); /* read a block of data */
if (rd_count <= 0) break; /* if end of file or error, exit loop */

wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */
close(in_fd);
close(out_fd);
if (rd_count == 0) /* no error on last read */

exit(0);
else

exit(5); /* error on last read */
}

Slide 34

/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */

#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])
{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF_SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */
if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {

rd_count = read(in_fd, buffer, BUF_SIZE); /* read a block of data */
if (rd_count <= 0) break; /* if end of file or error, exit loop */

wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */
close(in_fd);
close(out_fd);
if (rd_count == 0) /* no error on last read */

exit(0);
else

exit(5); /* error on last read */
}

MEMORY-MAPPED F ILES 17

Slide 35

MEMORY-MAPPED FILES

This style of accessing files is inconvenient
➜ unmap

➜ map

➜ virtual address region backed by file
➜ easy to realise if system supports segmentation

Data

(a)

Program
text

Program
text abc

xyzData

(b)

Slide 36
Potential Problems:
➜ consistency, if multiple processes access file
➜ file may be too large to fit in address space

D IRECTORIES 18

Slide 37

DIRECTORIES
➜ Contain information about files

• attributes
• location
• ownership

➜ directory itself is file owned by os
➜ provides mapping between filenames and actual files

Slide 38

SINGLE-LEVEL DIRECTORY SYSTEM

Root directory

A A B C

➜ used on early personal computers, first supercomputer
(CDC6600)

➜ no filename can be used twice
➜ problematic for multiuser systems
➜ no help for organising files
➜ sufficient for small embedded systems etc

TWO-LEVEL D IRECTORY 19

Slide 39

TWO-LEVEL DIRECTORY
➜ master directory contains one entry per user (access control

information)
➜ user directory simple list of files owned by the user
➜ still no support for file organisation
➜ need for system directory containing shared executables

Files

User
directory

A A

A B

B

C

CC C

Root directory

Slide 40

HIERARCHICAL DIRECTORY SYSTEMS
➜ master directory with user directories underneath
➜ each user directory may have subdirectories and/or files as

entries
➜ files can be located by following a path from the root (or

master) directory down (absolute path name)
➜ files with the same name possible, as long as the path name

differs

H IERARCHICAL D IRECTORY SYSTEMS 20

Slide 41

User
directory

User subdirectories
C C

C

C C

C

B

B

A

A

B

B

C C

C

B

Root directory

User file

Slide 42

WORKING DIRECTORY
➜ the absolute pathname is in general quite long: too tedious to

work with
➜ introduce the concept of a working directory

• files can be referenced relative to working directory
• each process has its own working directory

➜ Example: if current working directory /home/keller, then
.profile references the same files as /home/keller/.profile

PATH NAMES 21

Slide 43

PATH NAMES
➜ different syntax in different os’s

- Windows: \usr\ast\mailbox
- Unix: /usr/ast/mailbox
- Windows: >usr>ast>mailbox

➜ in most hierachical directory systems two special entries:

• current directory: . in Unix
• parent directory: .. in Unix

Slide 44

Root directory

bin etc lib usr

ast

jim

tmp

jim

bin

etc

lib

usr

tmp

/

ast
/usr/jim

lib

lib

dict.

D IRECTORY OPERATIONS 22

Slide 45

DIRECTORY OPERATIONS

Contents of directory files may not be manipulated by user
directly

Unix directory operations:
➜ create/delete
➜ open/close
➜ read directory
➜ link/unlink

Slide 46

FILE SHARING
➜ Multi user systems allow files to be shared among users
➜ How are the access rights handled?
➜ How is simultaneous access managed?

ACCESS R IGHTS 23

Slide 47

ACCESS RIGHTS
➜ None:

- user may not know of existence of the file
- not allowed to read directory which includes file

➜ Knowledge
- user can only determine that file exists and who the owner is

➜ Execution
- user can load and execute, but cannot copy it

➜ Reading

- user can read the file for any purpose, including copying
and execution

Slide 48

ACCESS RIGHT
➜ Appending

- user can add data at the end of the file, but cannot alter or
delete the file’s previous content

➜ Updating

• user can modify, delete, and add to file’s data
➜ Changing protection

- user can change access rights granted to other users
➜ Delete

- user can delete file

ACCESS R IGHTS 24

Slide 49

ACCESS RIGHTS

Owner
➜ has all rights previously listed
➜ May grant rights to others using the following classes of users

- Specific user
- User group
- All for public files

Slide 50

CASE STUDY
UNIX ACCESS PERMISSIONS

total 1704

drwxr-x--- 2 keller keller 4096 Oct 8 18:34 .

drwxr-x--- 15 keller keller 4096 Oct 8 18:33 ..

drwxr-x--- 1 keller keller 4096 Oct 8 18:33 backup

-rw-r----- 1 keller keller 423444 Oct 8 18:34 bar.txt

-rw-r----- 1 keller keller 12332 Oct 8 18:34 foo.jpg

➜ First letter: file type
- d: directory
- -: regular file

➜ Three user categories:
- user
- group
- other

UNIX ACCESS PERMISSIONS 25

Slide 51

UNIX ACCESS PERMISSIONS

total 1704

drwxr-x--- 2 keller keller 4096 Oct 8 18:34 .

drwxr-x--- 15 keller keller 4096 Oct 8 18:33 ..

drwxr-x--- 1 keller keller 4096 Oct 8 18:33 backup

-rw-r----- 1 keller keller 423444 Oct 8 18:34 bar.txt

-rw-r----- 1 keller keller 12332 Oct 8 18:34 foo.jpg

Three access rights per category
➜ read
➜ write
➜ execute

drwxrwxrwx

user other

group

Slide 52

UNIX ACCESS PERMISSIONS

total 1704

drwxr-x--- 2 keller keller 4096 Oct 8 18:34 .

drwxr-x--- 15 keller keller 4096 Oct 8 18:33 ..

drwxr-x--- 1 keller keller 4096 Oct 8 18:33 backup

-rw-r----- 1 keller keller 423444 Oct 8 18:34 bar.txt

-rw-r----- 1 keller keller 12332 Oct 8 18:34 foo.jpg

➜ execute permission for directory?
• permissions to access files in the directory

➜ to list a directory requires read permission
➜ What about drwxr-x--x?

UNIX ACCESS PERMISSIONS 26

Slide 53

UNIX ACCESS PERMISSIONS
➜ Shortcoming

- three user categories rather coarse
➜ Example:

- Joe owns file foo.bar

- wished to keep file private, not accessible to general public
- wants Bill to be able to read and write
- wants Peter to be able to read only

Slide 54

ACCESS CONTROL LISTS

Available in most commercial Unix systems, Windows XP
professional, SELinux, Linux 2.6:
➜ data structure (usually table) containing that specifies access

rights of individual users or groups
➜ different implementations in different OS
➜ POSIX standard for ACLs

ACCESS CONTROL L ISTS 27

Slide 55

Example: using file ACLs in Linux
➜ getfacl

➜ setfacl

urmel keller 1006 (~): getfacl R3000.pdf

file: R3000.pdf

owner: keller

group: keller

user::rw-

group::r--

other::r--

Slide 56

urmel keller 1007 (~): setfacl -m u:chak:rw- R3000.pdf

urmel keller 1007 (~): getfacl R3000.pdf

file: R3000

owner: keller

group: keller

user::rw-

group::r--

user:chak:rw-

other::r--

S IMULTANEUS ACCESS 28

Slide 57

SIMULTANEUS ACCESS
➜ most OSes provide mechanism for users to manage concurrent

access to files

- Example: lockf, flock system calls
➜ user may lock entire file or part of file when it is updated
➜ mutual exclusion and deadlock are issues for shared access

Slide 58

FILE SYSTEM IMPLEMENTATION

How can we map a file to the available space on a hard
disk?

Contiguous Allocation:
➜ each file stored as contiguous sequence of disk blocks

…

File A
(4 blocks)

File C
(6 blocks)

File B
(3 blocks)

File D
(5 blocks)

File F
(6 blocks)

File E
(12 blocks)

File G
(3 blocks)

(a)

…

(File A)

(File C)

File B 5 Free blocks 6 Free blocks

(File E)

(File G)

(b)

F ILE SYSTEM IMPLEMENTATION 29

Slide 59

✔ simple to implement
- only necessary to remember start block and no of blocks in

file
✔ excellen read performance

- only single seek necessary
✖ over time, fragmentation becomes a problem
✖ what happens if a file grows in size??
✔ good for write-once media (CD-ROM etc)

Slide 60

Linked List Allocation:

Each file is kept as linked list of disk blocks

File A

Physical
block

Physical
block

4

0

7 2 10 12

File
block

0

File
block

1

File
block

2

File
block

3

File
block

4

File B

0

6 3 11 14

File
block

0

File
block

1

File
block

2

File
block

3

F ILE SYSTEM IMPLEMENTATION 30

Slide 61

✔ still relatively simple to implement
- only necessary to remember start block

✔ (almost) no fragmentation
✔ reading file straight forward (but slower than for contiguous

allocation)
✖ extremely poor random access performance
✖ effective block size is not 2n bytes anymore, as pointer takes up

storage

Slide 62

Linked List with Table in Memory:
Using a separate table stored in main memory eliminates
both disadvantages:

Physical
block

File A starts here

File B starts here

Unused block

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

10

11

7

3

2

12

14

-1

-1

F ILE SYSTEM IMPLEMENTATION 31

Slide 63

✔ File Allocation Table FATa
✔ entire block available for data
✔ random access is much faster and easier
✔ directory entry still only needs to store first block of file
✖ entire table must be in memory
✖ millions of table entries, huge memory consumption

Slide 64

Index nodes (I-nodes):

I-node avoids those disadvantages
➜ each file is associated with an i-node
➜ i-node has to be in memory only if file is open
➜ each i-node contains

• the attributes of the file
• disk addresses of the file’s blocks
• straight forward i-node structure only able to store a fixed

number of block addresses. What happens if file grows
beyond this limit?

F ILE SYSTEM IMPLEMENTATION 32

Slide 65

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers

Disk block
containing
additional

disk addresses

Slide 66

IMPLEMENTING DIRECTORIES

Main function of directory is to map the ASCII name of the
file to the information necessary to locate data
➜ Contiguous allocation: disk address of file
➜ Linked lists: number of first block
➜ I-nodes: number of i-node

Attributes:
➜ can be stored in the directory itself, or
➜ in i-nodes

IMPLEMENTING D IRECTORIES 33

Slide 67

(a)

games

mail

news

work

attributes

attributes

attributes

attributes

Data structure
containing the
attributes

(b)

games

mail

news

work

Slide 68

Managing File Names:
➜ old OSes often support only short file names:

- MS-DOS: 8+3 characters
- Unix, Version 7: 14 characters

➜ conceptually easy to increase the limit, but wasteful

IMPLEMENTING D IRECTORIES 34

Slide 69

Variable Length File Names:

Two main approaches:
➜ In-line storage
➜ Heap storage

Slide 70

File 1 entry length

File 1 attributes

Pointer to file 1's name

File 1 attributes

Pointer to file 2's name

File 2 attributes

Pointer to file 3's name
File 2 entry length

File 2 attributes

File 3 entry length

File 3 attributes

p

e

b

e

r

c

u

t

o

t

d

j

-

g

p

e

b
e

r

c

u
t

o

t

d

j

-

g
p

e r s o

n n e l

f o o

p

o

l

e

n

r

n

f o o

s

e

Entry
for one

file

Heap

Entry
for one

file

(a) (b)

File 3 attributes

IMPLEMENTING D IRECTORIES 35

Slide 71

➜ In-line storage

- fragmentation
➜ Heap storage

- no fragmentation
- no need for names to start at word boundaries

Slide 72

SHARED FILES

Root directory

B

B B C

C C

CA

B C

B

? C C C

A

Shared file

SHARED F ILES 36

Slide 73

SHARED FILES
➜ file tree becomes a directed acyclic graph (DAG)
➜ if directory contains disk addresses, copy has to be made

- what happens if the file size changes?
➜ hard link:

• copy points to the same i-node
• need to maintain a counter for each file

➜ symbolic link:
• link is new file type
• Unix: just the file name
• removing the file can lead to stale links
• deleting the link has no effect on the file

Slide 74

C's directory B's directory B's directoryC's directory

Owner = C
Count = 1

Owner = C
Count = 2

Owner = C
Count = 1

(a) (b) (c)

D ISK SPACE MANAGEMENT 37

Slide 75

DISK SPACE MANAGEMENT

We discussed to ways to organise disk memory:
➜ allocation of contiguous area on disk
➜ split files into blocks

Similar problem as in RAM management
(segmentation/paging)

Almost all file systems divide files into fixed equal sized blocks

Slide 76

Optimal Block Size:

What are the trade offs when choosing the block size?
➜ too small:

- files consist of too many blocks
- overhead
- extra seeks and rotational delays: reading a file will become

slow
➜ too big:

- internal fragmentation
- wasteful

D ISK SPACE MANAGEMENT 38

Slide 77

File size statistics (large Unix system, Tanenbaum)
➜ mean: 10,845 bytes
➜ median: 1680 bytes

Observations on similar type of Windows system lead to
comparable results

Disk Utilisation and Data Rate:
1000

800

600

400

200

0

0

1000

80

60

40

20

128

0

0

256

512

1K

2K

4K

8K

16K

D
is

k
sp

ac
e

ut
ili

za
tio

n
(p

er
ce

nt
)

D
at

a
ra

te
 (

K
B

/s
ec

)

Disk space utilization

Data rate

Block size (bytes)

Slide 78

FREE BLOCK MANAGEMENT

Two widely used methods

Linked list of Blocks:
➜ use a linked list of blocks
➜ each block contains disk block numbers of free blocks (number

depends on block size)
➜ last entry is pointer to next block
➜ use free blocks to store the information
➜ example: 16GB disk needs 16,794 blocks to hold all numbers
➜ only one block needs to be kept in main memory

Bitmap:
➜ disk with n blocks requires disk map with n bits
➜ 16GB disk needs 2048 blocks to store bitmap

FREE BLOCK MANAGEMENT 39

Slide 79

(a) (b)

Free disk blocks: 16, 17, 18

A bitmapA 1-KB disk block can hold 256
32-bit disk block numbers

86

234

897

422

140

223

223

160

126

142

141

1001101101101100

0110110111110111

1010110110110110

0110110110111011

1110111011101111

1101101010001111

0000111011010111

1011101101101111

1100100011101111

0111011101110111

1101111101110111

230

162

612

342

214

160

664

216

320

180

482

42

136

210

97

41

63

21

48

262

310

516

Slide 80

Linked list of Blocks:
✖ needs more space than bitmap when disk is empty
✔ needs less space when disk is almost full
✖ can lead to unnecessary disk I/O

(a)

Disk
Main

memory

(b) (c)

FREE BLOCK MANAGEMENT 40

Slide 81
Bitmaps:

✖ search through bitmap when few blocks are free
✔ easier to allocate contiguous blocks for file

FREE BLOCK MANAGEMENT 41

