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Week 11

COMP3231 Operating Systems

2005 S2
➜ Today: Real-time systems, wrap up
➜ Today: File Systems (Chapter 6, Tanenbaum)

- User’s view
- File System Implementation

➜ Tutorial this week: device driver
➜ Week 12:

- Assignment 2 Solution (fork)
- Case Studies

➜ Week 13: Operating System Design
➜ Week 14: Overview
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LINUX 2.4 SCHEDULING — SOFT REAL-TIME SUPPORT
➜ User assigns static priority to real time processes (1-99), never

changed by scheduler
➜ Conventional processes have dynamic priority, always lower

than real time processes
- sum of base priority and
- number of clock ticks left of quantum for current epoch

➜ Scheduling classes
• SCHED FIFO: First-in-first-out real-time threads
• SCHED RR: Round-robin real-time threads
• SCHED OTHER: Other, non-real-time threads

➜ Within each class multiple priorities may be used
➜ Deadlines cannot be specified, no guarantees given
➜ Due to non-preemptive kernel, latency can be too high for

real-time systems
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LINUX 2.4 SCHEDULING — SOFT REAL-TIME SUPPORT
➜ Virtual Memory:

- no VM for real-time apps
- mlock() and mlockall() to switch off paging (which other

applications might need to do this?)
➜ Timer: resolution: 10ms, too coarse grained for real-time apps
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Linux scheduling:

maximum

(a) Relative thread priorities (b) Flow with FIFO scheduling
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IMPROVEMENTS IN 2.6 KERNEL
➜ Kernel Preemption

• kernel code laced with preemption points
• calling process can block and thereby yield CPU to

higher-priority process
➜ Kernel can be built without VM
➜ Improved scheduler
➜ Timer resolution: 1ms
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SCHEDULING IN 2.4 AND 2.6: COMPARISON

2.4:
➜ CPU time divided into epochs
➜ Each process has a (poss. different) time quantum it is allowed

to run in every epoch
➜ Epoch ends when all runnable processes have exhausted their

quantum
➜ Time quantum for each process recomputed after every epoch
➜ To find the next process which should be scheduled, the

complete ready-queue has to be scanned
➜ SMP: only single ready-queue
➜ O(n) algorithm: overhead grows linearly with number of

processes
➜ Ready queue access bottle neck for SMP
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2.6:
➜ Queue for each priority
➜ Thread can be in active (quantum not yet expired) or expired

(quantum already used up) queue.
➜ Priority is re-calculated after quantum is expired
➜ Interactive processes inserted back into active-queue
➜ SMP: One set of queues per processor, idle processors steal work

from other processors
➜ O(1) algorithm: time required for scheduling decision does not

depend on number of processes
➜ Ready queue access not a bottle neck for SMP
➜ Better locality
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HARD REAL TIME OS
We look at examples of two types of systems:
➜ hard real-time variants of general purpose OSs

• try to alleviate shortcomings of OS with respect to real time
apps

➜ configurable hard real time systems
• system designed as real time OS from the start

RTL INUX 4
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RTLINUX
➜ abstract machine layer between actual hardware and Linux

kernel
➜ takes control of

- hardware interrupts
- timer hardware
- interrupt disable mechanism

➜ real time scheduler runs with no interference fron Linux kernel
➜ programmer must utilise RTLinux API for real time applications
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QNX
➜ Microkernel based architecture
➜ POSIX standard API
➜ Modular — can be costumised for very small size (eg,

embedded systems) or large systems
➜ Memory protection for user applications and os components

QNX 5
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Scheduling:
➜ FIFO scheduling
➜ Round-robin
➜ Adaptive scheduling

- thread consumes its timeslice, its priority is reduced by one
- thread blocks, it immediately comes back to its base priority

➜ POSIX sporadic scheduling
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Kernel Services:
➜ Thread services: provides the POSIX thread creation primitives.
➜ Signal services: provides the POSIX signal primitives.
➜ Message passing services: handles the routing of all messages

between all threads through the whole system.
➜ Synchronization services: provides the POSIX thread

synchronization primitives.
➜ Scheduling services: schedules threads using the various POSIX

realtime scheduling algorithms.
➜ Timers services: provides the set of POSIX timer.

QNX 6
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Process Manager:

The process manager is capable of creating multiple POSIX
processes (each of which may contain multiples POSIX
threads).

Its main areas of responsability include:
➜ Process management: manages process creation, destruction,

and process attributes such us user ID and group ID.
➜ Memory management: manages memory protection, shared

libraries, and POSIX shared memory primitives.
➜ Pathname management: manages the pathname space

(mountpoints).
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WINDOWS CE 5.0
Componentised OS designed for embedded systems with
hard real-time support
➜ handles nested interrupts
➜ handles priority inversion based on priority inheritance

Offers
➜ guaranteed upper bound on high priority thread scheduling
➜ guaranteed upper bound on delay for interrupt service routines

F ILE SYSTEMS 7
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FILE SYSTEMS

Long-term information storage:
➀ Must support storage of lager amount of data
➁ Information must survive termination of process creating the

information
➂ Multiple processes must be able to access information

concurrently
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Information is stored in files
➜ on disk or other external media
➜ processes can read, write, and create new files
➜ a file should only disappear when explicitely removed by owner

The OS component which manages files is called the file
system

Concrete file system determines:
➜ structure
➜ implementation
➜ usage
➜ protection

F ILE SYSTEMS 8
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Why is the file system part of the operating system?
➜ Manages trusted, shared resource
➜ Provides abstraction layer:

- hides low-level disk organisation
- presents it to the user as a collection or stream of records

Included set of tools outside of kernel:
➜ formatting
➜ recovery
➜ defragmentation
➜ back up
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OBJECTIVES
➜ Provide convenient user interface
➜ Provide uniform I/O support for a variety of storage devices
➜ Optimise performance
➜ Provide security and safety

F ILE NAMING 9
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FILE NAMING

File system must provide a convenient naming scheme:
➜ textual names
➜ namespace may be restricted

- exclude certain characters
- limited length
- only certain format (DOS 8+3)

➜ names may obey conventions
- interpreted by tools (UNIX)
- interpreted by operating system (Windows)
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� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Extension Meaning� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.bak Backup file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.c C source program� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.gif Compuserve Graphical Interchange Format image� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.hlp Help file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.html World Wide Web HyperText Markup Language document� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.jpg Still picture encoded with the JPEG standard� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.mp3 Music encoded in MPEG layer 3 audio format� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.mpg Movie encoded with the MPEG standard� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.o Object file (compiler output, not yet linked)� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.pdf Portable Document Format file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.ps PostScript file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.tex Input for the TEX formatting program� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.txt General text file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

file.zip Compressed archive� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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FILE STRUCTURE

File as Byte Sequence:
➜ operating system does not know about the contents of the file
➜ meaning imposed by user-level program
➜ approach used by Windows, Unix
➜ provides maximum flexibility
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(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

F ILE STRUCTURE 11
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File as Collection of Fixed-length Records:
➜ each record has internal structure
➜ read and write operations record oriented
➜ was used in many mainframe operating system
➜ not used in any current general purpose operating system
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(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

F ILE STRUCTURE 12
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File as Tree of Records:
➜ not necessarily of the same size
➜ access record through key
➜ os, not user level program places new records
➜ used for large scale data processing on some main frame

systems
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(a) (b) (c)

1 Record

Ant Fox Pig

Cat Cow Dog Goat Lion Owl Pony Rat Worm

Hen Ibis Lamb

1 Byte

F ILE TYPES 13

Slide 27

FILE TYPES
➜ Regular files

- ASCII text files
- binary files

➜ Directories
➜ Device files

- character devices (stream of bytes)
- block devices

All system recognize their own executable format (often
identified by magic number)
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FILE STRUCTURE

(a) (b)

Header

Header

Header

Magic number

Text size

Data size
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Symbol table size
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FILE ACCESS
➜ Sequential Access

- read all data from the beginning
- can’t move back, only rewind
- convenient for magnetic tape

➜ Random Access

- read data in any order
- essential for applications which use large files (data base

etc)
- start position can be either set by each call to read, or set by

special seek instruction
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FILE ATTRIBUTES
➜ in addition to name and data, file attributes are stored
➜ set of attributes associated with a file depends on OS
➜ categories:

- protection
- time stamps
- type of file

F ILE ATTRIBUTES 15
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FILE ATTRIBUTES

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Attribute Meaning� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Protection Who can access the file and in what way� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Password Password needed to access the file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Creator ID of the person who created the file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Owner Current owner� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Read-only flag 0 for read/write; 1 for read only� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Hidden flag 0 for normal; 1 for do not display in listings� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

System flag 0 for normal files; 1 for system file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Archive flag 0 for has been backed up; 1 for needs to be backed up� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

ASCII/binary flag 0 for ASCII file; 1 for binary file� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Random access flag 0 for sequential access only; 1 for random access� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Temporary flag 0 for normal; 1 for delete file on process exit� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Lock flags 0 for unlocked; nonzero for locked� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Record length Number of bytes in a record� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Key position Offset of the key within each record� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Key length Number of bytes in the key field� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Creation time Date and time the file was created� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Time of last access Date and time the file was last accessed� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
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FILE OPERATIONS
➜ Create / Delete
➜ Open / Close
➜ Read /Write
➜ Seek
➜ Get / Set attributes
➜ Append
➜ Rename

F ILE OPERATIONS 16
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/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */

#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])
{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF_SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */
if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {

rd_count = read(in_fd, buffer, BUF_SIZE); /* read a block of data */
if (rd_count <= 0) break; /* if end of file or error, exit loop */

wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */
close(in_fd);
close(out_fd);
if (rd_count == 0) /* no error on last read */

exit(0);
else

exit(5); /* error on last read */
}
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/* File copy program. Error checking and reporting is minimal. */

#include <sys/types.h> /* include necessary header files */
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]); /* ANSI prototype */

#define BUF_SIZE 4096 /* use a buffer size of 4096 bytes */
#define OUTPUT_MODE 0700 /* protection bits for output file */

int main(int argc, char *argv[])
{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF_SIZE];

if (argc != 3) exit(1); /* syntax error if argc is not 3 */

/* Open the input file and create the output file */
in_fd = open(argv[1], O_RDONLY); /* open the source file */
if (in_fd < 0) exit(2); /* if it cannot be opened, exit */
out_fd = creat(argv[2], OUTPUT_MODE); /* create the destination file */
if (out_fd < 0) exit(3); /* if it cannot be created, exit */

/* Copy loop */
while (TRUE) {

rd_count = read(in_fd, buffer, BUF_SIZE); /* read a block of data */
if (rd_count <= 0) break; /* if end of file or error, exit loop */

wt_count = write(out_fd, buffer, rd_count); /* write data */
if (wt_count <= 0) exit(4); /* wt_count <= 0 is an error */

}

/* Close the files */
close(in_fd);
close(out_fd);
if (rd_count == 0) /* no error on last read */

exit(0);
else

exit(5); /* error on last read */
}
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MEMORY-MAPPED FILES

This style of accessing files is inconvenient
➜ unmap

➜ map

➜ virtual address region backed by file
➜ easy to realise if system supports segmentation

Data

(a)

Program
text

Program
text abc

xyzData

(b)
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Potential Problems:
➜ consistency, if multiple processes access file
➜ file may be too large to fit in address space

D IRECTORIES 18
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DIRECTORIES
➜ Contain information about files

• attributes
• location
• ownership

➜ directory itself is file owned by os
➜ provides mapping between filenames and actual files
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SINGLE-LEVEL DIRECTORY SYSTEM

Root directory

A A B C

➜ used on early personal computers, first supercomputer
(CDC6600)

➜ no filename can be used twice
➜ problematic for multiuser systems
➜ no help for organising files
➜ sufficient for small embedded systems etc

TWO-LEVEL D IRECTORY 19
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TWO-LEVEL DIRECTORY
➜ master directory contains one entry per user (access control

information)
➜ user directory simple list of files owned by the user
➜ still no support for file organisation
➜ need for system directory containing shared executables

Files

User
directory

A A

A B

B

C

CC C

Root directory
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HIERARCHICAL DIRECTORY SYSTEMS
➜ master directory with user directories underneath
➜ each user directory may have subdirectories and/or files as

entries
➜ files can be located by following a path from the root (or

master) directory down (absolute path name)
➜ files with the same name possible, as long as the path name

differs

H IERARCHICAL D IRECTORY SYSTEMS 20
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User
directory

User subdirectories
C C

C

C C

C

B

B

A

A

B

B

C C

C

B

Root directory

User file 
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WORKING DIRECTORY
➜ the absolute pathname is in general quite long: too tedious to

work with
➜ introduce the concept of a working directory

• files can be referenced relative to working directory
• each process has its own working directory

➜ Example: if current working directory /home/keller, then
.profile references the same files as /home/keller/.profile

PATH NAMES 21
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PATH NAMES
➜ different syntax in different os’s

- Windows: \usr\ast\mailbox
- Unix: /usr/ast/mailbox
- Windows: >usr>ast>mailbox

➜ in most hierachical directory systems two special entries:

• current directory: . in Unix
• parent directory: .. in Unix
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Root directory

bin etc lib usr

ast

jim

tmp

jim

bin

etc

lib

usr

tmp

/

ast
/usr/jim

lib

lib



dict.
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DIRECTORY OPERATIONS

Contents of directory files may not be manipulated by user
directly

Unix directory operations:
➜ create/delete
➜ open/close
➜ read directory
➜ link/unlink
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FILE SHARING
➜ Multi user systems allow files to be shared among users
➜ How are the access rights handled?
➜ How is simultaneous access managed?

ACCESS R IGHTS 23
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ACCESS RIGHTS
➜ None:

- user may not know of existence of the file
- not allowed to read directory which includes file

➜ Knowledge
- user can only determine that file exists and who the owner is

➜ Execution
- user can load and execute, but cannot copy it

➜ Reading

- user can read the file for any purpose, including copying
and execution
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ACCESS RIGHT
➜ Appending

- user can add data at the end of the file, but cannot alter or
delete the file’s previous content

➜ Updating

• user can modify, delete, and add to file’s data
➜ Changing protection

- user can change access rights granted to other users
➜ Delete

- user can delete file

ACCESS R IGHTS 24
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ACCESS RIGHTS

Owner
➜ has all rights previously listed
➜ May grant rights to others using the following classes of users

- Specific user
- User group
- All for public files
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CASE STUDY
UNIX ACCESS PERMISSIONS

total 1704

drwxr-x--- 2 keller keller 4096 Oct 8 18:34 .

drwxr-x--- 15 keller keller 4096 Oct 8 18:33 ..

drwxr-x--- 1 keller keller 4096 Oct 8 18:33 backup

-rw-r----- 1 keller keller 423444 Oct 8 18:34 bar.txt

-rw-r----- 1 keller keller 12332 Oct 8 18:34 foo.jpg

➜ First letter: file type
- d: directory
- -: regular file

➜ Three user categories:
- user
- group
- other

UNIX ACCESS PERMISSIONS 25
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UNIX ACCESS PERMISSIONS

total 1704

drwxr-x--- 2 keller keller 4096 Oct 8 18:34 .

drwxr-x--- 15 keller keller 4096 Oct 8 18:33 ..

drwxr-x--- 1 keller keller 4096 Oct 8 18:33 backup

-rw-r----- 1 keller keller 423444 Oct 8 18:34 bar.txt

-rw-r----- 1 keller keller 12332 Oct 8 18:34 foo.jpg

Three access rights per category
➜ read
➜ write
➜ execute

drwxrwxrwx

user other

group
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UNIX ACCESS PERMISSIONS

total 1704

drwxr-x--- 2 keller keller 4096 Oct 8 18:34 .

drwxr-x--- 15 keller keller 4096 Oct 8 18:33 ..

drwxr-x--- 1 keller keller 4096 Oct 8 18:33 backup

-rw-r----- 1 keller keller 423444 Oct 8 18:34 bar.txt

-rw-r----- 1 keller keller 12332 Oct 8 18:34 foo.jpg

➜ execute permission for directory?
• permissions to access files in the directory

➜ to list a directory requires read permission
➜ What about drwxr-x--x?

UNIX ACCESS PERMISSIONS 26
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UNIX ACCESS PERMISSIONS
➜ Shortcoming

- three user categories rather coarse
➜ Example:

- Joe owns file foo.bar

- wished to keep file private, not accessible to general public
- wants Bill to be able to read and write
- wants Peter to be able to read only

Slide 54

ACCESS CONTROL LISTS

Available in most commercial Unix systems, Windows XP
professional, SELinux, Linux 2.6:
➜ data structure (usually table) containing that specifies access

rights of individual users or groups
➜ different implementations in different OS
➜ POSIX standard for ACLs

ACCESS CONTROL L ISTS 27
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Example: using file ACLs in Linux
➜ getfacl

➜ setfacl

urmel keller 1006 (~): getfacl R3000.pdf

# file: R3000.pdf

# owner: keller

# group: keller

user::rw-

group::r--

other::r--

Slide 56

urmel keller 1007 (~): setfacl -m u:chak:rw- R3000.pdf

urmel keller 1007 (~): getfacl R3000.pdf

# file: R3000

# owner: keller

# group: keller

user::rw-

group::r--

user:chak:rw-

other::r--

S IMULTANEUS ACCESS 28
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SIMULTANEUS ACCESS
➜ most OSes provide mechanism for users to manage concurrent

access to files

- Example: lockf, flock system calls
➜ user may lock entire file or part of file when it is updated
➜ mutual exclusion and deadlock are issues for shared access
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FILE SYSTEM IMPLEMENTATION

How can we map a file to the available space on a hard
disk?

Contiguous Allocation:
➜ each file stored as contiguous sequence of disk blocks

…

File A
(4 blocks)

File C
(6 blocks)

File B
(3 blocks)

File D
(5 blocks)

File F
(6 blocks)

File E
(12 blocks)

File G
(3 blocks)

(a)

…


(File A)


(File C)

File B 5 Free blocks 6 Free blocks


(File E)


(File G)

(b)
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✔ simple to implement
- only necessary to remember start block and no of blocks in

file
✔ excellen read performance

- only single seek necessary
✖ over time, fragmentation becomes a problem
✖ what happens if a file grows in size??
✔ good for write-once media (CD-ROM etc)
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Linked List Allocation:

Each file is kept as linked list of disk blocks

File A

Physical
block

Physical
block

4

0

7 2 10 12

File
block

0

File
block

1

File
block

2

File
block

3

File
block

4

File B

0

6 3 11 14

File
block

0

File
block

1

File
block

2

File
block

3
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✔ still relatively simple to implement
- only necessary to remember start block

✔ (almost) no fragmentation
✔ reading file straight forward (but slower than for contiguous

allocation)
✖ extremely poor random access performance
✖ effective block size is not 2n bytes anymore, as pointer takes up

storage
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Linked List with Table in Memory:
Using a separate table stored in main memory eliminates
both disadvantages:

Physical
block

File A starts here

File B starts here

Unused block

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15







10

11

7



3

2





12

14

-1



-1
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✔ File Allocation Table FATa
✔ entire block available for data
✔ random access is much faster and easier
✔ directory entry still only needs to store first block of file
✖ entire table must be in memory
✖ millions of table entries, huge memory consumption
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Index nodes (I-nodes):

I-node avoids those disadvantages
➜ each file is associated with an i-node
➜ i-node has to be in memory only if file is open
➜ each i-node contains

• the attributes of the file
• disk addresses of the file’s blocks
• straight forward i-node structure only able to store a fixed

number of block addresses. What happens if file grows
beyond this limit?
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File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 4

Address of disk block 5

Address of disk block 6

Address of disk block 7

Address of block of pointers



Disk block
containing
additional

disk addresses
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IMPLEMENTING DIRECTORIES

Main function of directory is to map the ASCII name of the
file to the information necessary to locate data
➜ Contiguous allocation: disk address of file
➜ Linked lists: number of first block
➜ I-nodes: number of i-node

Attributes:
➜ can be stored in the directory itself, or
➜ in i-nodes

IMPLEMENTING D IRECTORIES 33
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(a)

games

mail

news

work

attributes

attributes

attributes

attributes

Data structure
containing the
attributes

(b)

games

mail

news

work
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Managing File Names:
➜ old OSes often support only short file names:

- MS-DOS: 8+3 characters
- Unix, Version 7: 14 characters

➜ conceptually easy to increase the limit, but wasteful
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Variable Length File Names:

Two main approaches:
➜ In-line storage
➜ Heap storage
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File 1 entry length

File 1 attributes

Pointer to file 1's name

File 1 attributes

Pointer to file 2's name

File 2 attributes

Pointer to file 3's name
File 2 entry length

File 2 attributes

File 3 entry length



File 3 attributes

p
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-

g
p

e r s o
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f o o

p
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e
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n
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s

e





Entry
for one

file

Heap

Entry
for one

file

(a) (b)

File 3 attributes
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➜ In-line storage

- fragmentation
➜ Heap storage

- no fragmentation
- no need for names to start at word boundaries
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SHARED FILES

Root directory

B

B B C

C C

CA

B C

B

? C C C

A

Shared file
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SHARED FILES
➜ file tree becomes a directed acyclic graph (DAG)
➜ if directory contains disk addresses, copy has to be made

- what happens if the file size changes?
➜ hard link:

• copy points to the same i-node
• need to maintain a counter for each file

➜ symbolic link:
• link is new file type
• Unix: just the file name
• removing the file can lead to stale links
• deleting the link has no effect on the file
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C's directory B's directory B's directoryC's directory

Owner = C
Count = 1

Owner = C
Count = 2

Owner = C
Count = 1

(a) (b) (c)
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DISK SPACE MANAGEMENT

We discussed to ways to organise disk memory:
➜ allocation of contiguous area on disk
➜ split files into blocks

Similar problem as in RAM management
(segmentation/paging)

Almost all file systems divide files into fixed equal sized blocks
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Optimal Block Size:

What are the trade offs when choosing the block size?
➜ too small:

- files consist of too many blocks
- overhead
- extra seeks and rotational delays: reading a file will become

slow
➜ too big:

- internal fragmentation
- wasteful
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File size statistics (large Unix system, Tanenbaum)
➜ mean: 10,845 bytes
➜ median: 1680 bytes

Observations on similar type of Windows system lead to
comparable results

Disk Utilisation and Data Rate:
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FREE BLOCK MANAGEMENT

Two widely used methods

Linked list of Blocks:
➜ use a linked list of blocks
➜ each block contains disk block numbers of free blocks (number

depends on block size)
➜ last entry is pointer to next block
➜ use free blocks to store the information
➜ example: 16GB disk needs 16,794 blocks to hold all numbers
➜ only one block needs to be kept in main memory

Bitmap:
➜ disk with n blocks requires disk map with n bits
➜ 16GB disk needs 2048 blocks to store bitmap
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(a) (b)

Free disk blocks: 16, 17, 18

A bitmapA 1-KB disk block can hold 256
32-bit disk block numbers

86

234

897

422

140

223

223

160

126
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1001101101101100

0110110111110111

1010110110110110

0110110110111011

1110111011101111

1101101010001111

0000111011010111

1011101101101111

1100100011101111
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160
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216

320
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41

63

21

48
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310
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Linked list of Blocks:
✖ needs more space than bitmap when disk is empty
✔ needs less space when disk is almost full
✖ can lead to unnecessary disk I/O

(a)

Disk
Main

memory

(b) (c)
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Bitmaps:

✖ search through bitmap when few blocks are free
✔ easier to allocate contiguous blocks for file
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