
Slide 1

Week 12

COMP3231 Operating Systems

2005 S2

File Systems, Part 2:

➜ Case Study I: UNIX/Linux

➜ Case Study II: Windows NTFS

Slide 2

TRADITIONAL UNIX FILE MANAGEMENT

➜ We will focus on two types of files:

- Regular files
- Dictionaries

➜ And mostly ignore the others:

- Device files
- Symbolic links
- Pipes, sockets, etc

UNIX DISK PARTITION 1

Slide 3

UNIX DISK PARTITION
Boot
block

Super
block

I nodes Data blocks

➜ Block 0 not used by UNIX, often boot code

➜ Block 1: superblock contains information about layout of file
system:

- number of i-nodes
- number of disk blocks
- start of free list

➜ i-nodes

➜ data blocks

➜ directories consist of 16-byte entries containing file name (max
14 chars) and i-node number

Slide 4

UNIX I-NODES

➜ Each file is represented by an i-node

➜ i-node contains meta-data of file

- attributes
- part of the block index table of the file

➜ each i-node has a unique number

- system oriented name
- try ls -i

➜ directories map file names to i-node numbers

- maps human oriented to machine oriented identifier
- hard links: mapping of many to one

D IRECTORIES 2

Slide 5

DIRECTORIES

To open file in current dir:

➜ system reads through dir entries and compares names

➜ if found, extracts i-node number

➜ puts i-node in i-node table (kernel data structure)

What is the difference between
➜ ls .

➜ ls /home/keller/work/projects/polymer/c

if /home/keller/work/projects/polymer/c is current working
directory?

Slide 6

mode
uid
gid

atime
ctime
mtime

size
block count

ref count
10 direct blocks
single indirect

double indirect
triple indirect

i-node contents:
➜ mode

- type: regular file or directory?
- access mode; rwxrwxrwx

➜ uid

- user id
➜ gid

- group id

D IRECTORIES 3

Slide 7

mode
uid
gid

atime
ctime
mtime

size
block count

ref count
10 direct blocks
single indirect

double indirect
triple indirect

i-node contents:
➜ atime

- time of last access
➜ ctime

- time of creation
➜ mtime

- time of last modification

Slide 8

mode
uid
gid

atime
ctime
mtime

size
block count

ref count
10 direct blocks
single indirect

double indirect
triple indirect

i-node contents:
➜ size

• size of the file in bytes
➜ block count

- number of blocks used by file
- is not file size / block size
- file can be sparsely populated:

write (f, "hello"); lseek (f,

10000000); write (f, "bye");

- only requires 2 blocks for data,
but size of file is 10000003 bytes

D IRECTORIES 4

Slide 9

How do we store files with more than 10 blocks?

➜ add more direct entries?

✖ many unused entries for average sized files

Single indirection:

➜ entry points to a block on disk with contains block numbers

Slide 10

SINGLE INDIRECTION

➜ blocks referenced through the single indirect block require two
disk accesses to be read:

- one to read the index block
- one to read the actual data block

➜ what is the max. file size now?

- assume 1kbyte block size
- 4byte block numbers
- 10 * 1kbyte + (1/4) * 1 kbyte = 266 kbyte

➜ for most files (<266K), at most two disk accesses required to
read any block

DOUBLE AND TRIPLE INDIRECTION 5

Slide 11

DOUBLE AND TRIPLE INDIRECTION

Double Indirect Block:

➜ a block on disk containing block numbers for single indirect
blocks

➜ ie, a block containing block numbers of blocks which contain
block numbers

Triple Indirect Block:

➜ a block on disk containing block numbers for double indirect
blocks

➜ ie, a block containing block numbers of blocks containing block
numbers of blocks which contain block numbers

Slide 12

Mode

i-node

Link count

Uid

Gid

File size

Times

Addresses of
first 10

disk blocks

Single indirect

Double indirect

Triple indirect

Parent’s
file

descriptor
table

Child’s
file

descriptor
table

Unrelated
process

file
descriptor

table

Open file
description

File position
R/W

Pointer to i-node

File position
R/W

Pointer to i-node

Pointers to
disk blocks

Triple
indirect
block Double

indirect
block Single

indirect
block

‘

F ILE S IZE 6

Slide 13

FILE SIZE

What is the max file size?

➜ again, assume 1k blocks, 4byte block numbers

➜ direct blocks: 10

➜ single indirect: 256

➜ double indirect: 256 * 256 = 65536

➜ triple indirect: 256 * 256 * 256 = 1677716

Max. file size: 16GB

Slide 14

ACCESS PATTERNS

Read one byte:

➜ best: 1 read access via direct block

➜ worst: 4 read accesses, via triple indirect block

Write one byte:
➜ best: 1 write access via direct block (in case there is no previous

content)

➜ worst: 4 read accesses, via triple indirect block, 1 write (previous
content)

ACCESS PATTERNS 7

Slide 15

ACCESS PATTERNS

What happens if a (triple indirectly referenced) block is not
allocated yet?
➜ no indirection block is allocated yet:

- 4 writes: 3 indirect blocks, 1 data block

➜ only single indirect block is allocated:

- 1 read, 4 writes: read single indirect, write single indirect,
write double indirect, write triple indirect, write data

➜ single and double indirect block are allocated:

- 2 read, 3 writes: read single indirect, read double indirect,
write double indirect, write triple indirect, write data

➜ single, double, and triple indirect blocks are allocated:

- 3 read, 2 writes: read single indirect, read double indirect,
read triple indirect, write triple indirect, write data

Slide 16

I-NODE SUMMARY

➜ contain on disk data associated with a file

➜ provide efficient random and sequential access

➜ good support of small files

➜ large files require progressivly more disk accesses for random
access

➜ sequential access for large files still efficient

PROBLEMS WITH S5FS 8

Slide 17

PROBLEMS WITH S5FS

Let us have another look at the disk layout:
Boot
block

Super
block

I nodes Data blocks

➜ i-nodes at start of disk, data blocks at the end

- poor locality, we must read i-node before data block

➜ only single super block

- entire file system is lost if superblock is corrupted

➜ block allocation

- no support for consecutive block allocation

➜ i-node allocation

- random
- listing a directory results in random i-node access patterns

Slide 18

BERKELEY FAST FILESYSTEM (FFS)
➜ successor of s5fs

➜ Linux file system very similar

➜ we discuss Linux fs

L INUX EXT2 F ILE SYSTEM 9

Slide 19

LINUX EXT2 FILE SYSTEM

➜ Second extended file system

• evolved from Minix filesystem (via “extended file system”)

➜ features:

- supports different block sizes: 1024, 2046, 4096
- block size configured at FS creation
- blocks groups to increase locality
- symbolic links < 60 characters are stored within i-node

➜ problems:

- unclean unmount (e2fsck)
- ext3fs keeps journal of meta-data updates
- journal contains update logs
- compatible with ext2fs

Slide 20

LAYOUT OF EXT2FS PARTITION

➜ disk divided into one or more partitions

➜ partition:

- reserved boot block
- collection of block groups
- all block groups have same size and structure

Boot Block group 0

Super– Group
block descriptor

Block group 1

Block
bitmap

Data
blocks

I–node
bitmap I–nodes

Block group 2 Block group 3 Block group 4 ...

LAYOUT OF BLOCK GROUP 10

Slide 21

LAYOUT OF BLOCK GROUP

➜ replication of superblock on each group

➜ group descriptors

➜ bitmaps identify i-nodes/blocks

➜ all block groups have same number of data blocks

➜ advantages:

- replications simplifies recovery
- proximity of i-node tables and data blocks

Boot Block group 0

Super– Group
block descriptor

Block group 1

Block
bitmap

Data
blocks

I–node
bitmap I–nodes

Block group 2 Block group 3 Block group 4 ...

Slide 22

SUPERBLOCKS

Contain:

➜ size of file system

➜ overall free i-node, block counters

➜ data indicating if filesystem check is needed:

- cleanly unmounted?
- inconsistent?
- number of mounts since last check
- time expired since last check

Is replicated to add to recoverability

GROUP DESCRIPTORS 11

Slide 23

GROUP DESCRIPTORS

➜ location of bitmaps

➜ counter for free blocks in group

➜ counter for i-nodes in group

➜ number of directories in group

Slide 24

PERFORMANCE CONSIDERATIONS

Ext2 optimisations:

➜ read ahead for directories (directory searching)

➜ block groups cluster related i-nodes and data blocks

➜ pre-allocation of blocks to write (up to 8 blocks)

- 8 bit in tables
- better contiguity

FFS optimisations:

➜ files within a directory in the same group

EXT2FS D IRECTORIES 12

Slide 25

EXT2FS DIRECTORIES

➜ i-node describe file layout on disk

➜ i-node are an internal structure

➜ user deals with name of files, not i-node number

➜ directories are file of special format, managed by kernel

➜ directories translate names to i-nodes numbers

➜ directory entries have variable length

➜ entries can be deleted in place

• set i-node number to 0
• add to length of previous entry

Slide 26

EXT2FS DIRECTORIES

7
12
2

‘f‘ ‘1‘ 0 0
43
16
5

‘f‘ ‘i‘ ‘l‘ ‘e‘
‘2‘ 0 0 0

85
12
2

‘f‘ ‘3‘ 0 0
0

➜ “f1” = i-node 7
➜ “file2” = i-node 43
➜ “f3” = i-node 85

EXT2FS D IRECTORIES 13

Slide 27

EXT2FS DIRECTORIES

7
12
2

‘f‘ ‘1‘ 0 0
43
16
7

‘f‘ ‘i‘ ‘l‘ ‘e‘
‘2‘ 0 0 0

85
12
7

‘f‘ ‘3‘ 0 0
0

➜ i-node can have more than one name!
➜ called a hard link
➜ i-node 7 has three names

- “f1” = i-node 7
- “file2” = i-node 7
- “f3” = i-node 7

Slide 28

I-NODE CONTENTS

mode
uid
gid

atime
ctime
mtime

size
block count

ref count
10 direct blocks
single indirect

double indirect
triple indirect

➜ possibly many names for same i-
node

➜ when we delete file identified by
name we always remove directory
entry

➜ how can system decide when to
delete underlying i-node?

➜ keeps a reference count in i-node

- adding directory entry incre-
ments counter

- removing entry decrements
counter

- if counter is zero, delete i-node

KERNEL DATA STRUCTURES AND INTERFACES 14

Slide 29

KERNEL DATA STRUCTURES AND INTERFACES

➜ We know how files and directories are stored on disk

➜ We know the UNIX system call interface

➜ What is inbetween?

Slide 30

We need to keep track of

➜ File descriptors

- each open file has a file descriptor
- file operations use them to specify which file to operate on

➜ File pointer

- where in the file is the next read performed?

➜ Mode

- how was the file opened?

AN OPTION? 15

Slide 31

AN OPTION?

fd

fp
i-ptr i-node

➜ use the i-node numbers as file
descriptors, add file pointer
to i-node

➜ what happens if two pro-
cesses open the same file?

➜ we need two separate file
descriptors and file pointers?

Slide 32

PER PROCESS FILE DESCRIPTOR ARRAY

P1 fd

P2 fd

fp
i-ptr

fp
i-ptr

i-node

i-node

Idea:
➜ each process has its own open file

array
➜ contains fp, i-ptr
➜ fd 1 can be any i-node, different for

each process

Issues:
➜ fork, dup2 define that child shares

file pointer with parent
➜ with per-process table, we can only

have independent file pointers

PER PROCESS FD TABLE, GLOBAL OPEN FILE TABLE 16

Slide 33

PER PROCESS FD TABLE, GLOBAL OPEN FILE TABLE

P1 fd

P2 fd

fp
i-ptr

fp
i-ptr

f-ptr

f-ptr

f-ptr
i-node

i-node

➜ per-process fd array contains
pointer to open file table en-
try

➜ open file table array contains
entries with a fp and pointer
to i-node

➜ supports

- sharing of file pointers
- independent file pointers

➜ Example:

- all three fds refer to same
file

- two share a fp
- one has independent fp

➜ used by Linux, most UNIXes

Slide 34

SUPPORTING MULTIPLE FILE SYSTEMS

➜ older OS supported only a single file system

➜ open, close etc had system specific implementations

➜ open file table pointed to in-memory representation of i-node

➜ i-node format specific to file system

➜ modern OSs need to support many different file systems

- ISO9660 (CDROM)
- MSDOS (floppy)
- ext2fs

SUPPORTING MULTIPLE F ILE SYSTEMS 17

Slide 35

SUPPORTING MULTIPLE FILE SYSTEMS

Alternative:

➜ change file system code to understand different file sysyem
types

- leads to code bloat, complex, hard to extend

➜ add abstraction layer to separate file system independent code

- allows different fs to be “plugged-in”
- large part of infrastructure is independent of specific file

system

Slide 36

VIRTUAL FILE SYSTEM

➜ Provides uniform interface to many file systems

➜ Transparent handling of network file systems

➜ File-based interface to arbitrary device drivers (/dev)

➜ File-based interface to kernel data structures (/proc)

➜ Provides indirection layer for system calls

- file operation table set up at file open time
- points to actual handling of code for particular type
- further file operations redirected to those functions

V IRTUAL F ILE SYSTEM 18

Slide 37

P1 fd

P2 fd

fp
i-ptr

fp
i-ptr

File System Dependent Code

f-ptr

f-ptr

f-ptr
v-node i-node

Slide 38

VFS INTERFACE

Two major data types:

➜ VFS

- represents all file system types
- contains pointers to functions to manipulate each file system

as a whole (mount etc)

➜ v-node

- represents file in the underlying file system
- points to real node
- contains pointer to functions to manipulate files/i-nodes

(open, read, etc)

BUFFER 19

Slide 39

BUFFER

Temportary storage used when transferring data between
two different entities:

➜ especially useful when entities working at different rates, or

➜ unit of transfer incompatible

➜ e.g., application program and disk

Slide 40

BUFFERING DISK BLOCKS

➜ allow application to work with arbitrary sized regions of a file

- application can still optimise for certain block size

➜ writes can return immediately after copying to kernel buffer

- avoid waiting until write to disk is complete
- write is scheduled in the background

➜ can implement read-ahead by preloading next block on disk
into kernel buffer

CACHE 20

Slide 41

CACHE

Fast storage used to temporarily hold data to speed up
repeated access

➜ caching on access:

- before loading from disk, check if in cache first
- reduce number of disk accesses
- can optimise for repeated access for single or several

processes

Buffering and caching are related:

➜ data is read into buffer, extra cache copy would be wasteful

➜ after use, block should be put into cache

➜ future access may hit cached copy

➜ cache utilises unused kernel memory, may have to shrink

Slide 42

UNIX BUFFER CACHE

UNIX usually uses hashed buffer cache

➜ on read

- hash device & block number
- check if match in buffer cache (hash table)

➜ what happens if buffer is full?

- choose entry to replace (FIFO, Clock, LRU,. . .)
- disk accesses less frequent, take longer: different trade offs

(LRU possible)
- do we want LRU??
- what is the difference between paged data in RAM, and file

data in RAM?

F ILE SYSTEM CONSISTENCY 21

Slide 43

FILE SYSTEM CONSISTENCY

➜ File data is expected to survive crashes, power failure

➜ Strict LRU may keep data in cache for too long

➜ prioritise write back of disk blocks if they are important to
consistency:

- directory blocks
- i-node blocks

➜ UNIX flush daemon (flushd) flushes modified blocks every 30 secs

➜ alternative: write-through cache

- write modified blocks immediately
- generates much more disk traffic
- still used for some devices

Slide 44

THE NETWORK FILE SYSTEM (NFS)

Sun Microsystem’s Network file system joins file systems on
separate computers to logical whole

➜ NFS Architecture

➜ NFS Protocol

➜ NFS Implementation

NFS ARCHITECTURE 22

Slide 45

NFS ARCHITECTURE

➜ concept of client and server machines (can be both at the
same time)

➜ on the same LAN or connected through wide area network

➜ server:

- exports directory trees for access by remote clients

➜ clients:

- import directory trees by mounting them
- becomes part of its own directory hierachy
- mount point local to client

Slide 46

NFS ARCHITECTURE

Client 1 Client 2

Server 1 Server 2

/

/usr

/usr/ast

/usr/ast/work

/bin

/bin

cat cp Is mv sh
a b c d e

/proj2/proj1

/projects

/mnt/bin

Mount

/

NFS PROTOCOL 23

Slide 47

NFS PROTOCOL
➜ NFS supports heterogeneous systems
➜ may run different operating systems

Mounting Protocol:
➜ client send path name to server
➜ requests permission to mount the directory
➜ does not specify mount point
➜ if pathname legal and exported, server returns file handle
➜ file handle contains

- file system type
- disk
- i-node
- security information

➜ static mounting or auto mounting supported
➜ most UNIX file system calls are supported
➜ not open and close

Slide 48

- server does not keep track of open files
- stateless
- how does locking work?

NFS IMPLEMENTATION 24

Slide 49

NFS IMPLEMENTATION

Client kernel Server kernel

System call layer

Buffer cache Buffer cache

Virtual file system layer Virtual file system layer

Local
FS 1

Local
FS 1

Local
FS 2

Local
FS 2

NFS
client

NFS
server

Driver Driver Driver Driver

Message
to server

Message
from client

Local disks Local disks

V- node

Slide 50

WINDOWS FILE SYSTEM

Several file systems supported

➜ FAT-16

- old MS-DOS file system
- 16-bit addresses
- disk partition limited to max of 2GB

➜ FAT-32

- 32-bit addresses
- disk partition limited to max of 2TB

➜ NTFS

- developed for NT
- 64-bit addresses

➜ Read-only file systems for CD-ROMs, DVDs

We’ll have a closer look at NTFS

NTFS 25

Slide 51

NTFS
➜ file is not just a linear sequence of bytes

➜ file consists of multiple attributes

➜ each attribute represented as stream of bytes:

- name of file
- 64-bit object id
- one or more data streams

Use of multiple data streams:

➜ Macintosh compatibility

➜ pack related data in same file

- full size and thumbnail version of picture
- previous and current version of a document

Slide 52

FILE SYSTEM APIS
➜ similar to UNIX

➜ more parameters

➜ different security model

� �

Win32 API function UNIX Description� �

CreateFile open Create a file or open an existing file; return a handle� �

DeleteFile unlink Destroy an existing file� �

CloseHandle close Close a file� �

ReadFile read Read data from a file� �

WriteFile write Write data to a file� �

SetFilePointer lseek Set the file pointer to a specific place in the file� �

GetFileAttributes stat Return the file properties� �

LockFile fcntl Lock a region of the file to provide mutual exclusion� �

UnlockFile fcntl Unlock a previously locked region of the file� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

F ILE SYSTEM APIS 26

Slide 53

Parameters to CreateFile function:
➀ pointer to file name

➁ flags to specify if file can be read/written/both

➂ flags to specify if multiple processes can open the file

➃ pointer to security descriptor

➄ flags to specify what to do if file exists/does not exist

➅ attributes

➆ handle to file whose attributes should be cloned

Slide 54

/* Open files for input and output. */
inhandle = CreateFile("data", GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);
outhandle = CreateFile("newf", GENERIC_WRITE, 0, NULL, CREATE_ALWAYS,

FILE_ATTRIBUTE_NORMAL, NULL);

/* Copy the file. */
do {

s = ReadFile(inhandle, buffer, BUF_SIZE, &count, NULL);
if (s && count > 0) WriteFile(outhandle, buffer, count, &ocnt, NULL);

} while (s > 0 && count > 0);

/* Close the files. */
CloseHandle(inhandle);
CloseHandle(outhandle);

F ILE SYSTEM APIS 27

Slide 55

� �

Win32 API function UNIX Description� �

CreateDirectory mkdir Create a new directory� �

RemoveDirectory rmdir Remove an empty directory� �

FindFirstFile opendir Initialize to start reading the entries in a directory� �

FindNextFile readdir Read the next directory entry� �

MoveFile rename Move a file from one directory to another� �

SetCurrentDirectory chdir Change the current working directory� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Slide 56

IMPLEMENTATION OF NTFS
➜ Each NTFS partition (volume) contains

- files
- directories
- bitmaps
- other admin data structures

➜ Each partition is a linear sequence of blocks (clusters)

- block size fixed for each cluster
- 512 bytes to 64 KB, usually 4KB

➜ Master File Table (MFT):

- sequence of 1KB records
- each entry describes one file or directory
- large files may require more than one MFT record (list of)
- bitmap used to keep track of free MFT records
- regular file, can be placed anywhere on disk
- can grow to have up to 2

48 records

IMPLEMENTATION OF NTFS 28

Slide 57

� � � � � �

� � � � � �

� � � � � �

� � � � � �� � � � � �16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1
0

Metadata files

1 KB

First user file
(Reserved for future use)
(Reserved for future use)
(Reserved for future use)
(Reserved for future use)
$Extend	 Extentions: quotas,etc
$Upcase	 Case conversion table
$Secure	 Security descriptors for all files
$BadClus	List of bad blocks
$Boot	 Bootstrap loader
$Bitmap	 Bitmap of blocks used
$	 Root directory
$AttrDef	 Attribute definitions
$Volume	 Volume file
$LogFile 	Log file to recovery
$MftMirr	 Mirror copy of MFT
$Mft	 Master File Table

Slide 58

� �

Attribute Description� �

Standard information Flag bits, timestamps, etc.� �

File name File name in Unicode; may be repeated for MS-DOS name� �

Security descriptor Obsolete. Security information is now in $Extend$Secure� �

Attribute list Location of additional MFT records, if needed� �

Object ID 64-bit file identifier unique to this volume� �

Reparse point Used for mounting and symbolic links� �

Volume name Name of this volume (used only in $Volume)� �

Volume information Volume version (used only in $Volume)� �

Index root Used for directories� �

Index allocation Used for very large directories� �

Bitmap Used for very large directories� �

Logged utility stream Controls logging to $LogFile� �
Data Stream data; may be repeated� ����

���
���

���
���

���
�

���
���

���
���

���
���

�

���
���

���
���

���
���

�
IMPLEMENTATION OF NTFS 29

Slide 59

� � �

� � �Standard
info header

File name
header

Data
header

Info about data blocks

Run #1 Run #2 Run #3

Standard
info

File name

0 9 20 4 64 2 80 3 Unused

Disk blocks

Blocks numbers 20-23 64-65 80-82

MTF
record

Record
header

Header

Slide 60

109
108

106
105

103
102

100

Run #m+1 Run n

Run #k+1 Run m

MFT 105 Run #1MFT 108 Run #k

� �

Second extension record

First extension record

Base record
101

104

107

NTFS D IRECTORIES 30

Slide 61

NTFS DIRECTORIES

Small Directories:
➜ collection of directory entries

➜ each describes a file or directory

➜ each entry consists of

- index of MFT entry
- length of file name
- other flags and fields

➜ looking up a file potentially involves examining all the file names
in the directory

Large Directories:

➜ use B-trees to for alphabetical lookpu

➜ easy to insert new entries at the right place

Slide 62 File Name Lookup:

NTFS D IRECTORIES 31

