
Slide 1

Distributed Systems

COMP3231 Operating Systems

2005 S2

Slide 2

TODAY

➜ Challenges in Distributed Systems

➜ Client Server Architecture

➜ Message Passing

➜ Remote Procedure Call

➜ Remote Method Invocation

➜ TCP/IP

There is an extra subject
Distributed Systems (COMP9243).

D ISTRIBUTED SYSTEMS 1

Slide 3

DISTRIBUTED SYSTEMS

What is a distributed system?
➜ Andrew Tannenbaum defines it as follows:

A distributed system is a collection of independent
computers that appear to the users of the system as a
single computer.

➜ Is there any such system? Hardly!

➜ You can learn about the challenges in building “true”
distributed systems in COMP9243

For the time being, we would like a weaker definition of
distributed systems:

A distributed system is a collection of independent
computers that are used jointly to perform a single
task or to provide a single service.

Slide 4

Examples of distributed systems

➜ Collection of Web servers: distributed database of hypertext
and multimedia documents

➜ Distributed file system in a LAN (e.g., NFS as used at CSG)

➜ Point-of-sale system hooked up to a back office data center

➜ Domain Name Service (DNS)

➜ Cray T3E, UNICOS/mk

THE ADVANTAGES AND CHALLENGES OF D ISTRIBUTED SYSTEMS 2

Slide 5

THE ADVANTAGES AND CHALLENGES OF DISTRIBUTED SYSTEMS

What are economic and technical reasons for having
distributed system?

Cost. Better price/performance as long as commodity hardware is
used for the component computers

Performance. By using the combined processing and storage
capacity of many nodes, performance levels can be reached
that are out of the scope of centralised machines

Scalability. Resources such as processing and storage capacity
can be increased incrementally

Inherent distribution. Some applications like the Web are naturally
distributed

Reliability. By having redundant components, the impact of
hardware and software faults on users can be reduced

Slide 6

Which problems are there in the use and development of
distributed systems?

Limited software. Distributed software is harder to develop
than conventional software; hence, it is more expensive
and there is fewer software available

New component: network. Networks are needed to connect
independent nodes and are subject to performance
limits and constitute another potential point of failure

Security. It is easier to compromise distributed systems

D ISTRIBUTED SERVICES FROM NETWORK OSES TO D ISTRIBUTED SYSTEMS 3

Slide 7

DISTRIBUTED SERVICES
FROM NETWORK OSES TO DISTRIBUTED SYSTEMS

What is a Network OS?

➜ Network of application systems

➜ Configuration with one or more servers

➜ Servers provide network wide services or applications

➜ Network OS is adjunct to local OS which supports interaction
between application machines and servers

➜ User is aware of single machines, must deal with them explicitely

Network OSes provide the following:

➜ Services for remote login (� � � � � � , �� �, and � � �)

➜ File transfer (� �� , �	 � , and � 	 �)

Slide 8

How far is a network OS away from a distributed system?

➜ Network OS lacks a single image view for any of its services

➜ Individual nodes are highly autonomous

➜ All distribution of tasks is explicit to the user

D ISTRIBUTED SERVICES FROM NETWORK OSES TO D ISTRIBUTED SYSTEMS 4

Slide 9

With extra software, network OSes may provide some
distributed services:

Data sharing. Common data needs to be accessed and updated
(e.g., distributed file systems, Web)

Device sharing. Common peripherals need to be used remotely
(e.g., printers)

Flexibility. Workloads can be distributed or moved to less loaded
machines (e.g., remote login)

Communication. Email, IM, and so on

However, the user usually is aware of the distribution.

Slide 10

DISTRIBUTED SYSTEMS AND PARALLEL COMPUTING

➜ Parallel systems: improved performance by multiple processors
per application

➜ There are two flavours:

1. Shared-memory systems:

• Multiple processor share a single bus and memory unit
• SMP support in OS
• Much simpler than distributed systems
• Limited scalability

2. Distributed memory systems:

• Multiple nodes connected via a network
• These are a form of distributed systems
• Share many of the challenges discussed here
• Better scalability & cheaper

BASIC PROBLEMS AND CHALLENGES IN D ISTRIBUTED SYSTEMS 5

Slide 11

BASIC PROBLEMS AND CHALLENGES IN DISTRIBUTED SYSTEMS

The distributed nature of these systems brings some inherent
challenges:

➜ Transparency ⇐

➜ Flexibility

➜ Reliability

➜ Performance

➜ Scalability ⇐

Slide 12

Transparency:

Concealment of the separation of the components
of a distributed system (single image view).

There are different kinds of transparency

Location: Users unaware of location of resources

Migration: Resources can migrate without name change

Replication: Users unaware of existence of multiple copies

Failure: Users unaware of the failure of individual components

Concurrency: Users unaware of sharing resources with others

Parallelism: Users unaware of parallel execution of activities

BASIC PROBLEMS AND CHALLENGES IN D ISTRIBUTED SYSTEMS 6

Slide 13

Scalability:

➜ Centralised resources become performance bottlenecks:

• components (single server),
• tables (directories), or
• algorithms (based on complete information).

➜ Bottleneck can be resources or communication with them

Helpful design rules:
➜ Do not require any machine to hold complete system state

➜ Allow nodes to make decisions based on local info

➜ Algorithms must survive failure of nodes

➜ No assumption of a global clock

Scalability often conflicts with (small system) performance

Slide 14

CLIENT-SERVER ARCHITECTURE

Basic architectural building block for distributed systems:

Client

Kernel

Server

Kernel

Request

Reply

➜ Simple, connectionless request-reply protocol is sufficient

➜ Support in the form of stub generators etc. is possible

CLIENT-SERVER ARCHITECTURE 7

Slide 15

What is middleware?

Pentium

Windows

Middleware Middleware Middleware Middleware

Application

Pentium

Linux

Application

SPARC

Solaris

Application

Mac OS

Application

Macintosh

Common base for applications

Network

➜ Abstraction layer in the middle, between OS and applications

➜ Less OS dependencies in the applications

➜ Varying degrees of transparency

➜ Typically two components: communications abstraction &
services

Slide 16

The three most common communications abstractions:
➀ Message passing:

• Simple, light-weight
• Application has to do a lot of tedious work (e.g., marshalling)
• Sockets, Message Passing Interface (MPI)

➁ Remote Procedure Call (RPC):

• The idea: remote access apears as a local procedure call
• The called procedure is executed on the server
• Often stub generators or similar tool supported is available
• SUN RPC, XML-RPC, Simple Object Access Protocol (SOAP)

➂ Remote Method Invocation (RMI):

• The idea:
– Server is a remote object
– remote access apears as a local method invocation

• IDL compiler or other form of stub generation supported
• CORBA, Java RMI, DCOM

MESSAGE PASSING 8

Slide 17

MESSAGE PASSING

➜ Messaging layer supports send and receive operations
➜ The application has to implement marshalling:

• Conversion of in-memory to on-wire representation of data
structures

• Bridging architectural variants, e.g., byte order

➜ The application may also have to handle naming:

• Bind names to remote services
• Resolve names: name → location of service
• Migration of services

Example: socket interface:

� � � �� � �� � � � � � 	�
� � �� � � � �� � � � � � � �� � �� �� � ��

� � � � � � 	 � � � � � � �� � � � �� � 	 �
 � ��� � �� � �
� � � �� � � � � � � � � ��

� � � � � � � � � � � � � �� � 	 � �� � � � �� � �
� � � �� � � � � � � � � ��

Slide 18

�� � � ! �� " � �

 #
$

% �& ')(#
$

* +, - * * " 	 � � 	 " � �! � . 	 � � . " �

 #
$

& �/ 0 & 1 2 & � � � � � � � � � " � " 	 " � �

 #
$

& �/ 0 3 & 1 3 & � � � � � � � � � " � " 	 " � �

 #
$

& ' & ' 4 � " 1 � � � � � " � " 	 " � �

 #
$

� / 0 * & �5 5 � � � � � ! � � � . � � � � � � 	 � 6 � 1 . 	 �

 #
$

' 78 & 0 % 4 0 ')9 7 8 : & ; + 4 < 7= < � � " � " 	 " �

 #
$

- ' 7 8 - �� � � ! � � � 6 . " - ')9 7 8 � � " � " 	 " �

 #
$

- 0> ? , -	 	 � � � � " � � @ - 0 > ? , �

 #
$

- * / 0 - * 5 -� � � � � � �A

 #
$

 -, 5 / 0 * " @ � �1 � � � � 	 A � � . � � � � � � 	 �

MESSAGE PASSING 9

Slide 19

Sample message format:

� � �! 	 � � � � � � B � C

� " 6 � . 6
$ � � " ! � 	 �D :E � F� � � � � ! � � � . � 6 E :

� " 6 � . � $ � 6 � � � D :E � � 	 � .1 � � . 6 � � � . � F E :

. � � "� 	 " 6 �D :E @ � . 	 � "� � � � � . " � E :

. � � 	 " ! � � D :E 6� � � � .G � E :

	 �� � " H I � 	 � J �
$

� -> / K D :E �� � � " � � � � B � � " H I � 	 � E :

	 �� � 6� � � JL %#
$

; & M / K D :E 6� � � � " H � � �� �� � � � � � 6 E :

ND

Sample send code:

� � �! 	 � � � � � � B � �� BD

�� B9 � " ! � 	 � O � � PQ D

�� B9 6 � � � O � " � � @ � � � � D

�� B9 "� 	 " 6 � O R +
$

; + > / 0S & � T
$

, + + *D

�� B9 	 " ! � � O �D

� � � �	 � F PU �� B9 " H I � 	 � (V > F 	 " " � " H I � 	 � V (�
$

� - > / Q D

�� � � �� � �
$

6� � � PU �� B9 6� � � (@ �� � � 1 � � (L %#
$

; & M / Q D

� � � 6 P � (U �� B(� .G � " � P �� BQ Q D

Slide 20

There different flavours of point-to-point communication:

➜ Blocking versus non-blocking communication ⇐

➜ Reliable versus unreliable communication

➜ Buffered versus unbuffered messages ⇐

MESSAGE PASSING 10

Slide 21

Blocking versus non-blocking communication:

➜ Blocking (synchronous):

• client blocked until reply arrives
• delivery guarantee
• latency can be significant (infinite?)

➜ Non-blocking (asynchronous):

• client can perform other processing
• client must not modify message buffer until transmitted

– kernel buffers message
– kernel interrupts client when buffer processed

Several factors may influence a decision:

➜ Blocked client not a problem if multitasked/mulitthreaded

➜ Kernel buffering is overhead

➜ Interrupts are overhead, and tricky to program

Slide 22

Reliable versus unreliable communication

➜ Generally, messages may get lost (network failure, node down,
server crashed, . . .)

➜ Unreliable communication:

• Messaging layer does not make any guarantees
• Application has to handle message loss

➜ Reliable communication:

• Messaging layer guarantees delivery if possible
• Advantage:

– Application code gets simpler
• Disadvantage:

– Application-specific protocol properties cannot be
exploited
⇒ often more expensive

REMOTE PROCEDURE CALL (RPC) 11

Slide 23

REMOTE PROCEDURE CALL (RPC)

Idea: Replace I/O oriented message passing model by
execution of a procedure call on a remote node:

➜ Based on blocking messages

➜ Message-passing details hidden from application

➜ Procedure call parameters used to transmit data

➜ Client calls local “stub” which does messaging and marshalling

Slide 24

Local stub

RPC
mechanism

Local stub

RPC
mechanism

Local application
or

operating system

Client
application

Remote server
application

Local
procedure

calls

Local
procedure

call

Local
response

Local
response

Local
response

Remote procedure call

Remote procedure call

REMOTE PROCEDURE CALL (RPC) 12

Slide 25

Sample Stub: often generated from a high-level specification

� � � 	 � � � � � 	� �� � 	 � �� � � � �� � �
� �� � � � � �

� � � � � � � � ��

 � ��� 	� � � � � �
�

�� �� � �
�

	
 �

 � ��� � � �� 	� � � �
�

�� �
 �

 � ��� �� � � � � � � � �� � � � � � � � ��

� � � � � � �
 � �� 	 � � � � � � � � 	�

� � � � � � �
 � �� 	 � � � � � � � �� � � ��

� � � 	 � � � �
 � ��� � �� � � � �
 � � � �� � � � � � 	 � � �� � � � � �

� � � � � � � �
 � ��� � �� � � � �
 � � � �� � � � � � � � � � � � � �� � �

� � � � � � � � � � � � � � �
 � �� 	 � � � � �

� � � � � � � � � � � � �

� �� �� � �
 � �� 	 � � � � �
� �� � � � � � � � � � �

� � � � � � � � � � � ��

�

Slide 26

Application side:

➜ Just calls

� � � ! � � O � � � 6 P � � . � $
� 6(U � F $
H! � (�Q D

➜ The procedure call hides all the marshalling and messaging
complexity

REMOTE PROCEDURE CALL (RPC) 13

Slide 27

Parameter Marshalling
➜ stub must pack (“marshal”) parameters into message structure

➜ message data must be pointer free
by-reference data must be passed by-value

➜ may have to perform other conversions:

• byte order (big endian vs little endian)
• floating point format...
• convert everything to standard (“network”) format, or
• message indicates format, receiver converts if necessary

➜ stubs may be generated automatically from interface specs

Slide 28

POSSIBLE PROBLEMS WITH RPC

RPC can fail in ways not possible for “real” procedure calls:
➜ Cannot locate service (down, wrong version, migrating)

➜ request lost

➜ reply lost

➜ server crash

➜ client crash

Need error values for functions that cannot fail locally.
⇒ Limits the illusion of “procedure call” (lack of
transparency)

Disjoint address space:
➜ Concurrent access to global program variables (� � � � ")

➜ Need for stub to know size of all parameters (open arrays)

➜ Arbitrary (pointer) data structures cannot be marshalled

REMOTE MESSAGE INVOCATION (RMI) 14

Slide 29

REMOTE MESSAGE INVOCATION (RMI)

The transition from Remote Procedure Call (RPC) to
Remote Method Invocation (RMI) is a transition from
the server metaphor to the object metaphor.

Why is this important?
➜ There is no inherent link between procedure calls and issuing

server requests, but
➜ There certainly is an intimate link between method invocations

and the use of objects.
➜ RPC: explicit handling of host identification to determine the

destination
➜ RMI: addressed to a particular state-encapsulating entity

(object)
➜ Objects are first-class citizens
➜ More natural resource management and error handling
➜ But still only a small evolutionary step

Slide 30

References:
➜ Objects are identified by object references
➜ Distributed objects are identified by remote object reference
➜ The latter are more difficult to implement (why?)

Interfaces:
➜ Access to objects is controlled by interfaces
➜ Which contain the signatures of a set of methods
➜ Signatures include argument and result types of a method

� � �! 	 � � � � " � C

� � � . � B �� � �D

� � � . � B � � � 	 � D

� " � B F � � �D ND

. � � � � � � 	 � � �� " � * . � � C

� � � 6 " � � F � � � � . H! � � � � � . � B � . � � �� � � D

1 " . 6 � 6 6 � �� " � P . � � � � " � � Q D

1 " . 6 B � � � �� " � P . � � � � . � B �� � � (" ! � � �� " � � Q D

� " � B �! � H � � PQ D ND

THE ARCHITECTURE OF CORBA 15

Slide 31

THE ARCHITECTURE OF CORBA
➜ The concept of an Object Request Broker (ORB) is the

➜ centerpiece of OMG’s Common Object Request Broker
Architecture (CORBA).

Client Object

ORB

Object Services Common Facilities

request OR invocation

Tasks of an ORB:

➜ Find object implementation

➜ Prepare object implementation (activation)

➜ Communicate data

Slide 32

CORBA

➜ First version did not specify protocol between client and server
ORB

➜ Non-CORBA objects can be integrated using object adapter

Drawbacks:

➜ Each object is located on a single server only

➜ Mostly used on small scale systems

DATA CONSISTENCY 16

Slide 33

DATA CONSISTENCY

Common problem in distributed systems: data consistency:

➜ Consistency of virtual shared-memory systems

➜ Consistency of distributed file services

➜ Consistency of naming information

➜ Consistency of a snapshot of the global state of a system

Slide 34 Replication

Locally cached
copies

Original Data

A
B
C

Node 2Node 1

A
B
C
D

A
B
C
E

DATA CONSISTENCY 17

Slide 35

Why do these consistency problems arise?

➜ Absence of strict central control

➜ Presence of caches

➜ Replication of data

Central control:
➜ Central bottleneck
➜ Does not scale

Commands

Centralised Storage

A
B
C
D
E

Node 2Node 1

write (3, D) write (3, E)

Slide 36

CONCRETE EXAMPLES

Let’s look at the consistency problem in

➜ distributed shared memory and

➜ distributed file systems.

D ISTRIBUTED SHARED MEMORY (DSM) 18

Slide 37

DISTRIBUTED SHARED MEMORY (DSM)
➜ A set of processes on different hosts share part of their address

space

➜ DSM system guarantees that updates by one process are
available to others

➜ Data exchange often at the granularity of individual memory
pages

➜ Easy to use (no marshalling, but synchronisation primitives
required)

How does it work?

➜ Virtual memory management is extended

➜ In case of a page fault, the page may be requested from a
remote node

Slide 38

Network

Node 1 Node 2

0x1000 0x1000

D ISTRIBUTED SHARED MEMORY (DSM) 19

Slide 39

Network

Node 1 Node 2

0x1000 0x1000

Fault!

Slide 40

Network

Node 1 Node 2

0x1000 0x1000

D ISTRIBUTED SHARED MEMORY (DSM) 20

Slide 41

Network

Node 1 Node 2

0x1000 0x1000

Resume

Slide 42

Consistency problem:
➜ Concurrent write access to the same page

Network

Node 1 Node 2

0x1000 0x1000

Simultaneous Write

➜ Simplest solution: multiple-reader/single-writer policy
➜ Lock whole page ⇒ expensive
➜ Access maybe to same page, but different memory location

D ISTRIBUTED F ILE SYSTEMS (DFS) 21

Slide 43

DISTRIBUTED FILE SYSTEMS (DFS)
In a DFS
➜ multiple clients share
➜ multiple file servers, which may support
➜ differing types of file systems.

The client-side structure of the file system may
➜ consist of mixture of directories & files from local & remote

devices and
➜ be different for each client.

C

B

A

F

E

D

file server

file server

Slide 44

Semantics of file access:

UNIX semantics:
➜ A READ after a WRITE returns the value just written
➜ When two WRITEs follow in quick succession, the second persists
➜ Trivial with a single file server and without caching, but. . .

a b

a b

a b

c

II (write)

I

III

operation on
cache

➜ Caches are needed for performance & write-through is
expensive

➜ Multiple file servers aggravate the problem

=⇒ transparency for a UNIX system is problematic

D ISTRIBUTED F ILE SYSTEMS (DFS) 22

Slide 45

How can we solve this problem?

➀ We stay faithful to the semantics and compromise on
performance, or

➁ we search for an alternative semantics that can be
implemented more efficiently.

➜ The second alternative is quite popular (NFS & CODA)

➜ What are feasible semantics?

Slide 46

Session semantics:

➜ Changes to an open file are only locally visible

➜ When a file is closed, changes are propagated to the server
(and other clients)

➜ Easy to implement, but there are tradeoffs. For example,

• parent and child processes cannot share file pointers if
running on different machines.

� � � � � �� � � ��

� � � � � � � � �

� � � � � � � �� � � �

� � � � � � � �� � � �

� � �� � � �� �� � � � � �

� � � � � � � �� �

�
�

D ISTRIBUTED F ILE SYSTEMS (DFS) 23

Slide 47

Implementation of session semantics:
➜ Upload/download model

C

B

A

F

E

D

file server

file
server

upload/download

remote access

➀ Download the whole file to the client (often more efficient)

➁ Update in cache

➂ Upload file to server on 	 � " � � P Q

Slide 48

CONSISTENCY OF GLOBAL STATE

Why is determining the global state of a system difficult?

➜ Lack of global clock/synchronisation

➜ Messages may be in the network

CONSISTENCY OF GLOBAL STATE 24

Slide 49 Branch B

(a) Total = $100

SA = $100

SB = $0

3:00

t

t

t

t

t

t

Branch A

Branch B

msg = "Transfer $100
to Branch B"

(b) Total = $0

SA = $0

SB = $0

3:00

3:00

3:01

2:59
Branch A

Branch B

msg = "Transfer $100
to Branch B"

(c) Total = $200

SA = $100

SB = $100

3:00

3:00

3:01

2:59

Branch A

➜ Sum at 3:00 is $100

Slide 50

Branch B

(a) Total = $100

SA = $100

SB = $0

3:00

t

t

t

t

t

t

Branch A

Branch B

msg = "Transfer $100
to Branch B"

(b) Total = $0

SA = $0

SB = $0

3:00

3:00

3:01

2:59
Branch A

Branch B

msg = "Transfer $100
to Branch B"

(c) Total = $200

SA = $100

SB = $100

3:00

3:00

3:01

2:59

Branch A

➜ Message currently in transit

➜ Sum at 3:00 is $0

What can we do?

➜ Include record of transfers

➜ Check against receipts

CONSISTENCY OF GLOBAL STATE 25

Slide 51

Branch B

(a) Total = $100

SA = $100

SB = $0

3:00

t

t

t

t

t

t

Branch A

Branch B

msg = "Transfer $100
to Branch B"

(b) Total = $0

SA = $0

SB = $0

3:00

3:00

3:01

2:59
Branch A

Branch B

msg = "Transfer $100
to Branch B"

(c) Total = $200

SA = $100

SB = $100

3:00

3:00

3:01

2:59

Branch A

➜ Clocks are not synchronised

➜ Sum at 3:00 is $200

What can we do?

➜ Define a notion of consistent global state

➜ Make sure we only take consistent distributed snapshots

Slide 52

When is a distributed snapshot conistent?

➜ Snapshot of a process includes all messages that have been
sent or received since the last snapshot

➜ Distributed snapshot is a collection of snapshots, one for each
process

SB

SB

M1

M1

M2

M2

M3 M4

Sc

Process B

Process C

(a) Inconsistent Global State

t

t

t

t

t

t

SA

Process A

SB

Process B

Process C

(b) Consistent Global State

SA

Process A

M4M3

CONSISTENCY OF GLOBAL STATE 26

Slide 53

A distributed snapshot is consistent
➜ if any message recorded as received

➜ is recorded as sent by the originating process

SB

SB

M1

M1

M2

M2

M3 M4

Sc

Process B

Process C

(a) Inconsistent Global State

t

t

t

t

t

t

SA

Process A

SB

Process B

Process C

(b) Consistent Global State

SA

Process A

M4M3

No messages out of thin air!

Slide 54

TCP/IP PROTOCOL ARCHITECTURE

Collection of protocols issued as Internet standard by the
Internet Activity Board

TCP/IP Layers:

➜ Physical Layer

➜ Network access layer

➜ Internet Layer

➜ Host-to-host (transport-) layer

➜ Application layer

TCP/IP PROTOCOL ARCHITECTURE 27

Slide 55

Physical Layer:

Covers physical interface between data transfer device
(computer) and transmission medium (network):

➜ specifies characteristics of network

➜ data transfer rate

➜ nature of signals

➜ data rate

Slide 56

Network access layer:

Exchange of data between server/workstation and network
➜ sender provides network with address of receiver

➜ sender may invoke network services (eg priorities)

➜ type of network determines software used at this layer:

• circuit switching
• packet switching
• LAN

➜ upper layers need not be concerned about network specifics

TCP/IP PROTOCOL ARCHITECTURE 28

Slide 57

Internet Layer:

➜ Internet Protocol (IP) provides routing functions across multiple
networks

➜ Protocol implemented in end systems (server/workstations) and
routers

➜ Router: processor

- which connects two networks
- relays data from from one network to the other

Slide 58

Host-to-Host or Transport Layer:

➜ Reliability of data transfer:

- all data arrives
- data arrives in the correct order

➜ independent of applciation

➜ Transmission Contron Protocol (TCP) most commonly used

TCP 29

Slide 59

TCP
➜ applications send data stream

➜ TCP chops it up into packages

➜ packages then passed to IP layer

➜ TCP checks to avoid package loss

➜ waits for acknowledgement, otherwise resends

➜ uses checksum to ensure correct transmission of package

Slide 60

TCP header:

� 3 � �

� 4 � 4 �

� ; " ! � 	 � " � � � R � � � . �� � . " � " � � �

� 4 �

� ; � �! � �	 � �! � H � � �

� 4 �

� - 	 A � " @ � � 6 B � � � � �! � H � � �

� 4 4 4 4 4 4 4 4 4 4 4 4 � 4 �

� S � � 6 � � * � �9 � � � � 9 � � . � 6 " @ �

� 4 4 4 4 4 4 4 4 4 4 4 4 � 4 4 4 4 4 4 4 � 4 �

� , � � 	 A � ! � � % � B � � � " . � � � � �

� 4 � 4 �

� +� � . " �� 9 9 9 9 9 9 9 9 9 9 9 9 � 6 6 . � B �

� 4 �

� R � � � �

USER DATAGRAM PROTOCOL (UDP) 30

Slide 61

USER DATAGRAM PROTOCOL (UDP)
➜ small protocol overhead

➜ no guaranteed delivery

➜ no guaranteed preservation of sequence

➜ no protection against duplication

➜ Example application: SNMP (Simple Network Management
Protocol)

��� �

� �� � � � � �� � � �
 � � � � � � � �� � �� � � �

��� � � � � � � � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � �

� � � �
� � � � � � � � � � � �� � � � �
 �

��� � � � � � � � � � � � � � � � � � � ��� � � � � � � � � � � � � � � � � � � �

Slide 62

IP AND IPV6
➜ IPv4 is version 4 of the Internet Protocol (IP)

➜ first widely used IP version

➜ first published 1981

➜ IPv4 uses 32-bit addresses

➜ address space too limited

IP AND IPV6 31

Slide 63

Internet

Ethernet 1
header

Headers

Router

Message

Host

Ethernet
TCP MessageIP

Slide 64

TCP/IP OPERATION

Process on Host A associated with Port 3 wants to send data
to Process on host B, Port 2:

➀ Process A

- hands down message to TCP layer
- instructs it to send to Host B, Port 3

➁ TCP

- chops message up, if necessary
- adds control information to each package (TCP header)
- hands it down to IP layer
- instructs it to send to Host B

➂ IP

- adds control information (IP header)
- hands it down to Network layer (eg, Ethernet logic)
- instructs it to send it to router

TCP/IP OPERATION 32

Slide 65

➃ Network

- adds control information (Network header)

➄ IP module in router directs package to Host B

➅ Network strips off network header, passes it to IP layer

➆ IP layer strips off IP header, passes it to TCP

➇ TCP strips off TCP header, passes it to application

TCP/IP OPERATION 33

