
Slide 1

WEEK 2 — OVERVIEW

➜ Operating Systems Overview, continued

➜ A Closer Look at System Calls

- User’s perspective
- Implementation of System Calls

➜ Threads and Processes, Part I

Slide 2

PROCESSES

➜ Problems occurring in multiprogramming batch systems,
time-sharing systems required a closer look at “jobs”.

➜ What exactly is a Process?

Exact definition is differs from to textbook to textbook:
✱ A program in execution

✱ An instance of a program running on a computer

✱ A unit of execution characterised by

• a single, sequential thread of execution
• a current state
• an associated set of system resources (memory, devices,

files)

We define a Process to be an unit of resource ownership

PROCESSES 1

Slide 3

The OS has to

➜ Load the executable from hard disk to main memory

➜ Keep track of the states of every process currently executed

➜ Make sure

- no process monopolises the CPU
- no process starves
- interactive processes are responsive

Slide 4

PROCESS

Characterised by:
➀ An executable program (code)
➁ Associated data needed by the

program (global data, stack)
➂ Execution context (or state) of

the program, e.g.:

• contents of data registers
• program counter, stack

pointer
• state (waiting on an event?)
• memory allocation
• status of open files Code

Data

Stack

PROCESS 2



Slide 5

➜ process table keeps
track of processes

➜ context information
stored in Process
Control Block (PCB)

➜ process suspended:
register contents etc
stored in PCB

➜ process resumed: PCB
contents loaded into
registers

Main Memory

Code
Data

Stack
Context

Code
Data

Stack
Context

Code
Data

Stack
Context

} process table

}process A

}process B

}process C

Registers

PC
Stack pointer

...

Slide 6

DEALING WITH MULTIPLE PROCESSES IS DIFFICULT!
➜ Synchronization

• ensure a process waiting for an I/O device receives the
signal

• signals may be lost or duplicated

➜ Failed mutual exclusion

• attempt to use a shared resource at the same time

➜ Non-deterministic program operation

• program should only depend on input to it, not relying on
common memory areas

➜ Deadlocks

System software is hard to test and practically impossible to

prove correct =⇒ Usually buggy

MEMORY MANAGEMENT 3

Slide 7

MEMORY MANAGEMENT

➜ Automatic allocation and management:

• memory hierarchy should be transparent to programmer
• programmer should not be able to access physical memory

directly

➜ Process isolation:

• protect data and memory from other processes

➜ Support for modular programming

➜ Protection and access control

Slide 8

VIRTUAL MEMORY

Paging and Dynamic Mapping:
➜ Process memory is split into equally sized blocks called pages

➜ Main memory is also split into blocks of the same size, called
frames

➜ Pages of a process are dynamically loaded into main memory
whenever required

V IRTUAL MEMORY 4



Slide 9

Main Memory Process Memory

process A

0
1
2
3

...

Code

Data

Stack

process B

0
1
2
3

...

Code

Data

Stack

A.0

A.2
B.0

B.10

Slide 10

Advantages:
➜ Reduces start up time of processes

➜ Reduces fragmentation of main memory

➜ Possible overlap of execution and loading time of different
processes

V IRTUAL MEMORY 5

Slide 11

Virtual Address:
➜ Virtual address: page number plus offset

➜ OS maps virtual address to physical address

➜ From user point of view, every process has its own address space

Advantages:

➜ Gives applications the illusion to have all RAM to themselves

➜ Provides an address space for each process which is much
larger than actual RAM

➜ Provides complete isolation of processes from each other

Disadvantages:

➜ Extra hardware (MMU) is necessary

➜ Mapping of virtual address to physical address is complicated

Slide 12

TRANSLATION OF VIRTUAL ADDRESSES

➀ Virtual address goes to Memory Management Unit (MMU)

➁ MMU translates virtual address to physical address

➂ causes exception (page fault) if page is not mapped

➃ OS (exception handler) fetches page and restarts operation

V IRTUAL MEMORY ADDRESSING 6



Slide 13

VIRTUAL MEMORY ADDRESSING

Processor
Virtual
Address

Real
Address

Disk
Address

Memory
Management

Unit
Main

Memory

Secondary
Memory

Slide 14

SYSTEM CALLS

All requests of user level programs for OS services go via
system calls:

SYSTEM CALLS 7

Slide 15

Application

Procedure Calls

System Libraries

System Calls

OS Kernel

Hardware

Kernel Mode

User Mode

Slide 16

SYSTEM CALLS

Return to caller

4
10

6

0

9

7 8

3
2
1

11

Dispatch
Sys call
handler

Address
0xFFFFFFFF

User space

Kernel space
 (Operating system)

Library
procedure
read

User program
calling read

Trap to the kernel
Put code for read in register

Increment SP
Call read
Push fd
Push &buffer
Push nbytes

5

F ILE SYSTEM 8



Slide 17

FILE SYSTEM

Files and directories (used to group files) provided by the OS
to implement a uniform interface to

➜ disks

➜ I/O devices

Provide
➜ human-readable name space for data

➜ support for exchange of data between systems

Slide 18

EXAMPLE
Root directory

Students Faculty

Leo Prof.Brown

Files

Courses

CS101 CS105

Papers Grants

SOSP COST-11

Committees

Prof.Green Prof.WhiteMattyRobbert

➜ Unix-style:/Faculty/Prof.Brown/Courses/

➜ MS-DOS/Windows style:\Faculty\Prof.Brown\Courses\

MOUNTED F ILE SYSTEM 9

Slide 19

MOUNTED FILE SYSTEM

➜ In Unix-like OS’s to provide clean interface to removeable I/O
devices

Root Floppy

a b

c d c d

a bx y

x y

(a) (b)

Slide 20

INFORMATION PROTECTION AND SECURITY

➜ Access control

• regulate user access to the system, e.g.: password
protected access

➜ Information flow control

• regulate flow of data within the system and its delivery to
users: e.g. Unix file access permissions

➜ Certification

• proving that access and flow control perform according to
specifications

SCHEDULING AND RESOURCE MANAGEMENT 10



Slide 21

SCHEDULING AND RESOURCE MANAGEMENT

➜ Fairness

• give fair access to all processes

➜ Differential responsiveness

• discriminate between different classes of jobs (interactive,
CPU bound)

➜ Efficiency

• maximize throughput, minimize response time, and
accommodate as many uses as possible

Slide 22

SYSTEM STRUCTURE

Monolithic Systems:
➜ usually evolved from simpler to more complex systems:

- MS-DOS
- traditional Unix

➜ little internal structure

Main
procedure

Service
procedures

Utility
procedures

SYSTEM STRUCTURE 11

Slide 23

SYSTEM STRUCTURE

Struggle to cope with the increasing complexity of OS

➜ Software Engineering solutions (modular design, clean & simple
interfaces) were not sufficient

Hierarchical Layers and Information Abstraction:

➜ View the system as a series of levels (lowest may be hardware)

➜ Each level performs a related subset of functions

➜ Each level relies on the next lower level to perform more
primitive functions

➜ This decomposes a problem into a number of more
manageable subproblems

Slide 24

Examples:

➜ THE system, Dijkstra, 1968

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Layer Function� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

5 The operator� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

4 User programs� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

3 Input/output management� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

2 Operator-process communication� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

1 Memory and drum management� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

0 Processor allocation and multiprogramming� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

➜ MULTICS (M.I.T, Bell, GE)

M ICROKERNEL ARCHITECTURE 12



Slide 25

MICROKERNEL ARCHITECTURE

• assigns only a few essential functions to the kernel

– address space

– interprocess communication (IPC)

– basic scheduling

• other services implemented by user-level servers

Client
process

Client
process

Process
server



Terminal
server



File
server



Memory
server



Microkernel

User mode

Kernel mode

Client obtains
service by
sending messages
to server processes

Slide 26

MICROKERNEL ARCHITECTURE

➜ Mach, developed mid 80’s at CMU

➜ MacOS X based on Mach, many services moved back to kernel

➜ Windows NT partially based on Microkernel architecture

• “modified microkernel architecture”
• OS environments (DOS, Win16, Win32, OS/2, POSIX) run in

user mode
• Other services (process manager, vm manager) run in kernel

mode

➜ L4 Microkernel Architecture (GMD, IBM)

CHARACTERISTICS OF MODERN OPERATING SYSTEMS 13

Slide 27

CHARACTERISTICS OF MODERN OPERATING SYSTEMS

➜ Symmetric multiprocessing

• multiple processors are available
• these processors share same main memory and I/O facilities
• All processors can perform the same functions
• Potential benefits:

– availability
– incremental growth
– performance & scaling

Slide 28

CHARACTERISTICS OF MODERN OPERATING SYSTEMS

➜ Distributed operating systems provide the illusion of a single
main memory and single secondary memory space

• distributed file system, distributed shared memory
• microkernel architecture suitable for distributed OS (Cray’s

Unicos mk)
Machine 1 Machine 2 Machine 3 Machine 4

Client

Kernel

File server

Kernel

Process server

Kernel

Terminal server

Kernel

Message from
client to server

Network

➜ Object-oriented design

• used for adding modular extensions to a small kernel
• enables programmers to customize os without disrupting

system integrity

CHARACTERISTICS OF MODERN OPERATING SYSTEMS 14


