
Slide 1

A CLOSER LOOK AT SYSTEM CALLS

➜ User’s view on system calls

➜ Implementation of System Calls

Slide 2

Application

Procedure Calls

System Libraries

System Calls

OS Kernel

Hardware
Kernel Mode

User Mode

SYSTEM CALLS IN UNIX 1

Slide 3

SYSTEM CALLS IN UNIX

➜ Process Management
- fork()

- waitpid (pid, &statloc, options)

- execve (name, argv, environp)

- exit (status)

- kill (pid, signal)

➜ File Management

- open (file, modes)

- close (fd)

- read (fd, buffer, nbytes)

- write (fd, buffer, nbytes)

- lseek (fd, offset, whence)

- stat (name, &buf)

Slide 4

➜ File System Management

- mkdir (name, mode)

- rmdir (name)

- link and unlink

- mount and unmount

W IN32 APPLICATION PROGRAMMER INTERFACE 2

Slide 5

WIN32 APPLICATION PROGRAMMER INTERFACE

➜ Consists of hundreds of functions

➜ Many do not invoke system calls, carried out in user space

➜ Window management is part of the Win32 API, partially carried
out in the kernel

Slide 6

� �

UNIX Win32 Description� �

fork CreateProcess Create a new process� �

waitpid WaitForSingleObject Can wait for a process to exit� �

execve (none) CreateProcess = fork + execve� �

exit ExitProcess Terminate execution� �

open CreateFile Create a file or open an existing file� �

close CloseHandle Close a file� �

read ReadFile Read data from a file� �

write WriteFile Write data to a file� �

lseek SetFilePointer Move the file pointer� �

stat GetFileAttributesEx Get various file attributes� �

mkdir CreateDirectory Create a new directory� �

rmdir RemoveDirectory Remove an empty directory� �

link (none) Win32 does not support links� �

unlink DeleteFile Destroy an existing file� �

mount (none) Win32 does not support mount� �

umount (none) Win32 does not support mount� �

chdir SetCurrentDirectory Change the current working directory� �
chmod (none) Win32 does not support security (although NT does)� �

kill (none) Win32 does not support signals� �

time GetLocalTime Get the current time� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

W IN32 APPLICATION PROGRAMMER INTERFACE 3

Slide 7

What is the difference between a system call and a regular
function call?

f1 (...)

{
...
f2 (...)
...

}

Stack
f1 stack
frame

<return address>
<registers>

<local variables>

f2 (...)

{
...
f3 (...)
...

}

f2 stack
frame

<return address>
<registers>

<local variables>

f3 (...)

{
...
...
...

} f3 stack
frame

<return address>
<registers>

<local variables>

Slide 8

PROCEDURE CALLS

➜ For a procedure call, it is important that the caller and the
callee agree on a certain protocol

➜ In theory, every compiler could use a different protocol

➜ Generally, compilers stick to the calling convention of the
architecture

MIPS CALLING CONVENTION 4

Slide 9

MIPS CALLING CONVENTION

Stack Layout:

➜ frame pointer is stored in register $30 ($fp)

➜ a stack frame consists of the memory on the stack between the
frame pointer and the stack pointer.

Slide 10

+-------------------------+ <--- sp

| dynamic area |

+-------------------------+

| local variables |

+-------------------------+

| saved registers |

+-------------------------+

| frame pointer | <--- fp

+-------------------------+

| : |

+-------------------------+

| argument 6 | all arguments which are not passed

+-------------------------+ in registers

| argument 5 |

+-------------------------+

MIPS CALLING CONVENTION 5

Slide 11

Procedure Call — Caller:

➀ Copy first 4 arguments to registers $a0-$a3

➁ Push remaining arguments on the stack.

➂ Save the caller-saved registers ($t0-$t9) if necessary

➃ Execute jump and link (jal) instruction

• causes current pc to be saved (in $ra)

Slide 12

Procedure Call — Callee:

➀ Allocate space for stack frame (decrement frame size from
stack pointer)

➁ Save the callee-saved registers in the frame:

• frame pointer ($fp)
• return address ($ra)
• arguments ($a0-$a3) if necessary
• registers $s0- $s7 if used by the callee

➂ Update frame pointer(add stack frame size to $sp)

RETURN FROM CALL 6

Slide 13

RETURN FROM CALL

➀ copy return value into register $v0

➁ restore callee-saved registers that were saved upon entry.

➂ pop the stack frame (add frame size to $sp)

➃ return by jumping to the address in register $ra.

➄ restore caller saved register values

Slide 14

SYSTEM CALLS

Systems calls are different from procedure calls in two
important aspects:

➜ Have to be executed in kernel mode

➜ For security reasons, they should not use the user stack, but
separate kernel stack

SYSTEM CALLS 7

Slide 15

Library procedure read

User Mode

read(...){
...
syscall
...
}

?

Kernel read

Kernel Mode

sys read(...)

{
......
}

➜ syscall to only way to switch to kernel mode

➜ causes an exception

➜ exception handler activated, not sys read

➜ stack etc has to be set up “by hand”

Slide 16

EXCEPTION HANDLER

What does an exception handler do?

➜ saves current stack pointer

➜ switches to kernel stack

➜ save remainder of state (registers, etc)

➜ push trap frame on stack, so stack looks (almost) like a regular
control stack

➜ find out what caused the exception?

- syscall

➜ Which system call

- check syscall number (set by syscall wrapper)

➜ call kernel function to handle system call

➜ return to wrapper

EXCEPTION HANDLER 8

