
Slide 1

Week 3

COMP3231 Operating Systems

2005/S2

➜ Threads and Processes

• What is a process? What is a thread?
• OS services to support processes, threads
• Thread switching
• Kernel level versus user level threads
• Threads in SVR4 Unix, Linux and Windows 2000

➜ Concurrency control

• Mutual exclusion (software, hardware, OS)

Slide 2

THREADS

Do threads need OS support or is it possible to implement
them as user-level library?

We need four features to implement multi-threading:

➀ Context switching

➁ Preemption

➂ Scheduling

➃ Handling of blocking system calls

CONTEXT SWITCHING 1

Slide 3

CONTEXT SWITCHING

➜ User-level operation sigsetjmp saves context and the set of
blocked signals

➜ siglongjmp restores the environment (and jumps to the
instruction the saved pc is pointing to)

Slide 4

PREEMPTION AND SCHEDULING

➜ System call signal allows the user to install alternative signal
handler for some signals (timer)

➜ alarm sets the timer signal.

➜ Can be used to implement preemption and scheduling: timer
signal activates scheduler, which picks next thread, sets alarm
clock, then activates thread.

BLOCKING SYSTEM CALLS 2

Slide 5

BLOCKING SYSTEM CALLS

➜ wrapper around each potentially blocking system call

➜ introduces fairly high overhead

➜ page faults can still lead to blocking of whole process

Slide 6

USER-LEVEL THREADS

➜ All thread management is done by the application (library)

➜ Runs in usermode

➜ The kernel is not aware of the existence of threads

• User-level threads are not scheduled by the kernel
• Pure application/library level construct

➜ Used to enhance modularisation

➜ Also called co-routines

USER-LEVEL THREADS 3

Slide 7

Process ProcessThread Thread

Process

table

Process

table

Thread

table

Thread

table

Run-time

system

Kernel

space

User

space

KernelKernel

Slide 8

USER-LEVEL THREADS VS KERNEL LEVEL THREADS

✔ Scheduling policy tailored to specific application

✔ Extremely low overhead

✘ Process blocks if one of its threads blocks
- for system calls, it can be avoided by using wrapper

functions for all possibly blocking operations, introduces
extra system calls

- process blocks on page fault

✘ No inter-process parallelism possible on machines with multiple
CPUs

COMBINED APPROACHES 4

Slide 9

COMBINED APPROACHES

Try to get best of both worlds!

➜ Library offers (user-level) thread interface

➜ OS supports kernel-level threads

➜ Thread library provides API for binding one or more user-level
threads to a kernel-level thread

➜ Most thread management done explicitly at user level

Slide 10

EXAMPLE: SOLARIS THREAD ARCHITECTURE

User

Kernel

Hardware

Threads
Library

Process 5Process 4Process 3Process 2Process 1

User-level thread Kernel-level thread Light-weight Process Processor

L L L

L

LLL LLL

PP

P

PPP

‘

EXECUTION CONTEXT OF THE OPERATING SYSTEM 5

Slide 11

EXECUTION CONTEXT OF THE OPERATING SYSTEM

Non-process Kernel:

➜ Execute kernel outside of any process context

➜ Separate context for execution of OS code

• OS context may be automatically switched by hardware

➜ Traditional model

P1 P2 Pn

Kernel

¥ ¥ ¥

¥ ¥ ¥

(a) Separate kernel

P1 P2 Pn¥ ¥ ¥ OS1 OSk¥ ¥ ¥

(c) OS functions execute as separate processes

OS
Func-
tions

OS
Func-
tions

OS
Func-
tions

P1 P2 Pn

Process Switching Functions

Process Switching Functions

(b) OS functions execute within user processes

Slide 12

Execution Within User Processes:

➜ OS software executes within context of a user process

➜ Process in privileged mode while executing OS code

• has access to additional (kernel) memory

➜ E.g: UNIX

P1 P2 Pn

Kernel

¥ ¥ ¥

¥ ¥ ¥

(a) Separate kernel

P1 P2 Pn¥ ¥ ¥ OS1 OSk¥ ¥ ¥

(c) OS functions execute as separate processes

OS
Func-
tions

OS
Func-
tions

OS
Func-
tions

P1 P2 Pn

Process Switching Functions

Process Switching Functions

(b) OS functions execute within user processes

EXECUTION CONTEXT OF THE OPERATING SYSTEM 6

Slide 13

Execution Within Separate Process(es):

➜ Process-based (server-based) OS

➜ Separate process for major OS functions

➜ Clients use message-passing IPC to invoke services

• Aids distribution

➜ OS processes may execute in unprivileged (user) mode

➜ E.g: Windows-2000

P1 P2 Pn

Kernel

¥ ¥ ¥

¥ ¥ ¥

(a) Separate kernel

P1 P2 Pn¥ ¥ ¥ OS1 OSk¥ ¥ ¥

(c) OS functions execute as separate processes

OS
Func-
tions

OS
Func-
tions

OS
Func-
tions

P1 P2 Pn

Process Switching Functions

Process Switching Functions

(b) OS functions execute within user processes

Slide 14

UNIX SVR4 PROCESS MANAGEMENT

➜ Mostly follows in-process model

➜ In addition has “kernel processes” (daemons)

➜ Several parts of kernel data:

• user-level context (text, data, stack)
• register context
• system-level context

– process table entry:
∗ global table, always entirely accessible by kernel
∗ process state, IDs, prio, links to other data

– “U area”: process resources

UNIX SVR4 PROCESS MANAGEMENT 7

Slide 15

Typical Address Space Layout (UNIX):

code
(text) data bss DLLs stack kernel

0 max

➜ 0-th page typically not used

➜ text segment is read-only

➜ data segment is initialised data (part R/O)

➜ bss segment is uninitialised data (heap), can grow

➜ shared libraries (DLLs) allocated in free middle region

➜ stack at top of user space, grows downward

➜ kernel space is in reserved (shared) region

Slide 16

UNIX process states (single-threaded):

Created

Sleep,
Swapped

Ready to Run
In Memory

Ready to Run
Swapped

Asleep in
MemoryZombie

Kernel
Running

User
Running

Preempted

fork

not enough memory
(swapping system only)

enough
memory

swap in

swap out

swap out

wakeupwakeupsleep

return

preempt

return
to user

system call,
interrupt

exit

reschedule
process

interrupt,
interrupt return

UNIX SVR4 PROCESS MANAGEMENT 8

Slide 17

Main process system calls:

fork() Creates process with copy of parent’s process image

exec() Replaces image of calling process with new exe-
cutable file

exit() Terminate calling process. Return exit status to par-
ent

wait() Wait for (specific or any) child to terminate. Collect
exit status

kill() Sends signal to process. Default action for many sig-
nals is to kill recipient, but may install signal handler

Slide 18

Typical use:

#include <stdio.h>

int pid;

pid = fork();

if (pid < 0) {

perror("fork() failed");

exit(1);

} else if (pid > 0) /* We’re the parent! */

printf("child PID=%d\n", pid);

} else { /* We’re the child! */

execve(file);

sprintf(STDERR, "Exec failed!");

exit(1);

}

UNIX SVR4 PROCESS MANAGEMENT 9

Slide 19

Threads in Linux:

➜ Linux has no real threads (with reduced context)

➜ Provides clone() system call

• generalisation of Unix fork()

• creates new process
• parent and child can share (part of) address space
• effectively a shortcut for fork(); mmap()

• child has complete process context
• LinuxThreads lib implemented using clone

➜ PThreads package provides user-level threads

• can be bound to Linux “threads”
• gives some approximation of lightweight threads
• similar to Solaris

– but Solaris’ “lightweight processes” are faster

Slide 20

LINUX clone SYSTEM CALL

➜ CLONE PARENT: (Linux 2.4 onwards) parent of new task same as
parent of caller

➜ CLONE FS: share file system information

➜ CLONE FILES: share file descriptor table

➜ CLONE SIGHAND: share table of signal handler

➜ CLONE VFORK: parent suspended until child releases vm resources
(exit(), execve())

➜ CLONE VM: parent and child run in the same memory space

➜ CLONE THREAD: (Linux 2.4 onwards) parent and child share the
same thread id

THE THREAD AND PROCESS MODEL IN W INDOWS 2000 10

Slide 21

THE THREAD AND PROCESS MODEL IN WINDOWS 2000

Four important concepts in Windows 2000:

➜ Jobs

• collection of processes bundled together
• share quotas: max. number of processes, CPU time, memory

usage, security restrictions

➜ Processes

• unit of resource ownership

➜ Threads

• units visible to scheduler

➜ Fibres

• user-level threads
• created using Win32 API calls, which do not trigger a system

call

Slide 22

Address

space

Thread

Process

User

stack

Kernel mode thread stack

Access token

Process

handle

table P T T T T P

Job

THE THREAD AND PROCESS MODEL IN W INDOWS 2000 11

