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Week 3

COMP3231 Operating Systems

2005/S2

➜ Threads and Processes

• What is a process? What is a thread?
• OS services to support processes, threads
• Thread switching
• Kernel level versus user level threads
• Threads in SVR4 Unix, Linux and Windows 2000

➜ Concurrency control

• Mutual exclusion (software, hardware, OS)
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THREADS

Do threads need OS support or is it possible to implement
them as user-level library?

We need four features to implement multi-threading:

➀ Context switching

➁ Preemption

➂ Scheduling

➃ Handling of blocking system calls

CONTEXT SWITCHING 1
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CONTEXT SWITCHING

➜ User-level operation sigsetjmp saves context and the set of
blocked signals

➜ siglongjmp restores the environment (and jumps to the
instruction the saved pc is pointing to)
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PREEMPTION AND SCHEDULING

➜ System call signal allows the user to install alternative signal
handler for some signals (timer)

➜ alarm sets the timer signal.

➜ Can be used to implement preemption and scheduling: timer
signal activates scheduler, which picks next thread, sets alarm
clock, then activates thread.

BLOCKING SYSTEM CALLS 2
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BLOCKING SYSTEM CALLS

➜ wrapper around each potentially blocking system call

➜ introduces fairly high overhead

➜ page faults can still lead to blocking of whole process
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USER-LEVEL THREADS

➜ All thread management is done by the application (library)

➜ Runs in usermode

➜ The kernel is not aware of the existence of threads

• User-level threads are not scheduled by the kernel
• Pure application/library level construct

➜ Used to enhance modularisation

➜ Also called co-routines

USER-LEVEL THREADS 3
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USER-LEVEL THREADS VS KERNEL LEVEL THREADS

✔ Scheduling policy tailored to specific application

✔ Extremely low overhead

✘ Process blocks if one of its threads blocks
- for system calls, it can be avoided by using wrapper

functions for all possibly blocking operations, introduces
extra system calls

- process blocks on page fault

✘ No inter-process parallelism possible on machines with multiple
CPUs

COMBINED APPROACHES 4
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COMBINED APPROACHES

Try to get best of both worlds!

➜ Library offers (user-level) thread interface

➜ OS supports kernel-level threads

➜ Thread library provides API for binding one or more user-level
threads to a kernel-level thread

➜ Most thread management done explicitly at user level
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EXAMPLE: SOLARIS THREAD ARCHITECTURE
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EXECUTION CONTEXT OF THE OPERATING SYSTEM

Non-process Kernel:

➜ Execute kernel outside of any process context

➜ Separate context for execution of OS code

• OS context may be automatically switched by hardware

➜ Traditional model
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Execution Within User Processes:

➜ OS software executes within context of a user process

➜ Process in privileged mode while executing OS code

• has access to additional (kernel) memory

➜ E.g: UNIX
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Execution Within Separate Process(es):

➜ Process-based (server-based) OS

➜ Separate process for major OS functions

➜ Clients use message-passing IPC to invoke services

• Aids distribution

➜ OS processes may execute in unprivileged (user) mode

➜ E.g: Windows-2000
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UNIX SVR4 PROCESS MANAGEMENT

➜ Mostly follows in-process model

➜ In addition has “kernel processes” (daemons)

➜ Several parts of kernel data:

• user-level context (text, data, stack)
• register context
• system-level context

– process table entry:
∗ global table, always entirely accessible by kernel
∗ process state, IDs, prio, links to other data

– “U area”: process resources

UNIX SVR4 PROCESS MANAGEMENT 7
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Typical Address Space Layout (UNIX):

code
(text) data bss DLLs stack kernel

0 max

➜ 0-th page typically not used

➜ text segment is read-only

➜ data segment is initialised data (part R/O)

➜ bss segment is uninitialised data (heap), can grow

➜ shared libraries (DLLs) allocated in free middle region

➜ stack at top of user space, grows downward

➜ kernel space is in reserved (shared) region
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UNIX process states (single-threaded):
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Main process system calls:

fork() Creates process with copy of parent’s process image

exec() Replaces image of calling process with new exe-
cutable file

exit() Terminate calling process. Return exit status to par-
ent

wait() Wait for (specific or any) child to terminate. Collect
exit status

kill() Sends signal to process. Default action for many sig-
nals is to kill recipient, but may install signal handler
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Typical use:

#include <stdio.h>

int pid;

pid = fork();

if (pid < 0) {

perror("fork() failed");

exit(1);

} else if (pid > 0) /* We’re the parent! */

printf("child PID=%d\n", pid);

} else { /* We’re the child! */

execve(file);

sprintf(STDERR, "Exec failed!");

exit(1);

}

UNIX SVR4 PROCESS MANAGEMENT 9
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Threads in Linux:

➜ Linux has no real threads (with reduced context)

➜ Provides clone() system call

• generalisation of Unix fork()

• creates new process
• parent and child can share (part of) address space
• effectively a shortcut for fork(); mmap()

• child has complete process context
• LinuxThreads lib implemented using clone

➜ PThreads package provides user-level threads

• can be bound to Linux “threads”
• gives some approximation of lightweight threads
• similar to Solaris

– but Solaris’ “lightweight processes” are faster
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LINUX clone SYSTEM CALL

➜ CLONE PARENT: (Linux 2.4 onwards) parent of new task same as
parent of caller

➜ CLONE FS: share file system information

➜ CLONE FILES: share file descriptor table

➜ CLONE SIGHAND: share table of signal handler

➜ CLONE VFORK: parent suspended until child releases vm resources
(exit(), execve())

➜ CLONE VM: parent and child run in the same memory space

➜ CLONE THREAD: (Linux 2.4 onwards) parent and child share the
same thread id
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THE THREAD AND PROCESS MODEL IN WINDOWS 2000

Four important concepts in Windows 2000:

➜ Jobs

• collection of processes bundled together
• share quotas: max. number of processes, CPU time, memory

usage, security restrictions

➜ Processes

• unit of resource ownership

➜ Threads

• units visible to scheduler

➜ Fibres

• user-level threads
• created using Win32 API calls, which do not trigger a system

call
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