
Slide 1

Deadlock

COMP3231 Operating Systems

2005 S2

Slide 2

DEADLOCK

What is a deadlock?
➜ Permanent blocking of a set of processes that either

• compete for system resources or
• communicate with each other (message as resource)

➜ Resources:

• preemptable
• nonpreemtable resources

➜ Deadlocks involve conflicting needs for nonpreemtable
resources by two or more processes

➜ Deadlocks can occur on many levels in the system

✘ Unfortunately, there is no efficient method to prevent a
deadlock in the general case

Let’s look at some examples and at the conditions for
deadlock

DEADLOCK 1

Slide 3

Danger of deadlock in continental driving rules:

(a) (b)

Slide 4

REUSABLE VERSUS CONSUMABLE RESOURCES

➜ Reusable resource: used by one process at a time and not
depleted by that use

➜ Consumable resource: created (produced) and destroyed
(consumed) by a process

Reusable Resources:

➜ Processes obtain resources that they later release for reuse by
other processes

➜ Examples are processors, I/O channels, main and secondary
memory, files, databases, and semaphores

➜ In case of two processes and two resources, deadlock occurs if
each process holds one resource and requests the other

REUSABLE VERSUS CONSUMABLE RESOURCES 2



Slide 5

Typical deadlock with reusable resources:

Process P Process Q

Step Action Step Action
p0 Request (D) q0 Request (T)
p1 Lock (D) q1 Lock (T)
p2 Request (T) q2 Request (D)
p3 Lock (T) q3 Lock (D)
p4 Perform function q4 Perform function
p5 Unlock (D) q5 Unlock (T)
p6 Unlock (T) q6 Unlock (D)

The following sequence leads to a deadlock:

p
0
, p

1
, q

0
, q

1
, p

2
, q

2

➽ Should this really be the problem of the OS designer?

Slide 6

Another example of deadlock with reusable resources:

➜ Space is available for allocation of 200K bytes and the following
sequence of events occur

P1

...
Request 80kB;
...
Request 60kB;

P2

...
Request 70kB;
...
Request 80kB;

➜ Deadlock occurs if both processes progress to their second
request

➜ In this case, the problem can be solved by using virtual memory
(this is an example of resource preemption)

REUSABLE VERSUS CONSUMABLE RESOURCES 3

Slide 7

Consumable Resources:

➜ Interrupts, signals, messages, and information in I/O buffers

➜ Deadlock may occur if a Receive message is blocking

➜ May take a rare combination of events to cause deadlock

Example of deadlock:

➜ Deadlock occurs if receive is blocking

P1

...
Receive(P2);
...
Send(P2, M1);

P2

...
Receive(P1);
...
Send(P1, M2);

Slide 8

CONDITIONS FOR DEADLOCK

How can we accurately characterise the conditions
that lead to a deadlock?

Necessary conditions for deadlock:
➀ Mutual exclusion: only one process may use a resource at a

time
➁ Hold-and-wait: a process holds a resource while awaiting

assignment of others
➂ No preemption of resources:

• A process that is denied a request must not release the
resources it already has

• When one process requests a resource held by another, the
second one is not preempted by the OS

➃ Circular wait: we have a closed chain of processes, such that
each process holds at least one resource needed by the next in
the chain, e.g.,

CONDITIONS FOR DEADLOCK 4



Slide 9
Held by

Resource
B

Requests

Requests Held by

Process
P1

Process
P2

Resource
A

Slide 10

STRATEGIES TO DEAL WITH DEADLOCKS

➀ The Ostrich Algorithm

➁ Prevention

➂ Avoidance by careful resource allocation

➃ Detection and Recovery: let then occur, detect them and take
action

The Ostrich Algorithm:

Stick your head in the sand and pretend there is no problem
at all!

➜ Unix & Windows

➜ Avoid deadlock in the kernel!

DEADLOCK PREVENTION 5

Slide 11

DEADLOCK PREVENTION

What is deadlock prevention?

Make it impossible that one of the four conditions for
deadlock arise

➀ mutual exclusion

➁ hold-and-wait

➂ no preemption

➃ circular wait

Mutual exclusion:

➜ we can’t generally exclude it

➜ we can avoid assigning resources when not absolutely
necessary

➜ as few processes as possible should claim the resource

Slide 12

Hold-and-wait:

➜ Can we require processes to request all resources at once?

➜ Most processes do not statically know about the resources they
need

➜ Used in some mainframe batch systems

➜ Wasteful, but works

➜ Variation: before requesting new resource, temporarily release
other resources

DEADLOCK PREVENTION 6



Slide 13

No preemption:

Preemption is feasible for some resources (e.g., processor
and memory), but not for others (state must be saved and
restored)

Circular wait:

• order resources by an index: R1, R2, . . .

• requires that resources are always requested in order

• P1 holds Ri and requests Rj , and P2 holds Rj and
requests Ri is impossible, as it implies

i < j and i > j

• is sometimes a feasible strategy, but not generally efficient

Slide 14

DEADLOCK AVOIDANCE

What is deadlock avoidance?:

➜ We don’t exclude any of the four conditions for deadlock per se

➜ Instead we decide on a per case basis whether a process is
deemed likely to deadlock

➜ Thus, we have to possess some knowledge about future
allocation requests of processes

Generally, we can distinguish two approaches to deadlock
avoidance:

➜ Process initiation denial: we just don’t start a process if it might
deadlock

➜ Resource allocation denial: we deny allocation requests, which
are likely to lead to deadlock in the future

PROCESS INITIATION DENIAL 7

Slide 15

PROCESS INITIATION DENIAL

Consider a system of n processes and m types of resources:

➜ Resource vector: (R1, R2, . . . , Rn)

➜ Available vector: (V1, V2, . . . , Vn)

➜ Matrices:
Claim matrix: Allocation matrix:

0

B

B

B

B

B

B

@

C11 C12 · · · C1m

C21 C22 · · · C2m

...
...

...
...

Cn1 Cn2 · · · Cnm

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

...
...

An1 An2 · · · Anm

1

C

C

C

C

C

C

A

➜ Cij requirement for process i for resource j

➜ Aij allocation of resource j to process i

Slide 16

Example: We have two processes P1 and P2 and three
resources R1, R2 and R3. Each of the three resources can be
allocated to only a single process at each point in time
➜ P1

- holds R1

- requires R1, R2

➜ P2

- holds no resource
- requires R2, R3

➜ Resource vector: (1, 1, 1)

➜ Available vector: (0, 1, 1)

Claim matrix: Allocation matrix:





1 1 0

0 1 1









1 0 0

0 0 0





PROCESS INITIATION DENIAL 8



Slide 17

The following relationships hold:

➀ Ri = Vi +
Pn

k=1
Aki : all resources are either available or

allocated

➁ Ckj ≤ Ri: no process can hold more than the total amount of
resources in the system

➂ Akj ≤ Cki: no process is allocated more than it originally
claimed to need

Deadlock avoidance policy:

➜ Start a new process Pn+1 only if, for all i,

Vi ≥ Cn+1,i +

n
X

k=1

Cki

➜ Unfortunately, this strategy is very wasteful!

➜ Assumes all processes make their claims together

Slide 18

RESOURCE ALLOCATION DENIAL

➜ At any request of a resource, it is tested whether granting this
request bears the potential of deadlock

➜ The standard algorithm to execute this test is due to Dijkstra and
known as the banker’s algorithm

Banker’s algorithm:

➜ Resource and available vector & claim and allocation matrix as
before

➜ The algorithm passes out resources to processes if it has enough
on hand to meet potential future demand

➜ Whenever we can guarantee that future demand can be met,
we are in a safe state

➜ A request for resources is granted only if the state after the
resource is granted is safe

RESOURCE ALLOCATION DENIAL 9

Slide 19

How do we know whether a state is safe?

➜ A state is safe if there is at least one sequence of resource
allocations that does not result in deadlock

➜ Pick a process whose outstanding resource claim can be met
and run it to completion

➜ Repeat until either all process have completed, or the system
locks up

Slide 20

Check that this state is safe:
R1 R2 R3

P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 1 0 0
P2 6 1 2
P3 2 1 1
P4 0 0 2

Allocation Matrix

(a) Initial state

R1 R2 R3
9 3 6

Resource Vector

R1 R2 R3
0 1 1

Available Vector

R1 R2 R3
P1 3 2 2
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 1 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation Matrix

R1 R2 R3
6 2 3

Available Vector

(b) P2 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation Matrix

R1 R2 R3
7 2 3

Available Vector

(c) P1 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 0 0 2

Allocation Matrix

R1 R2 R3
9 3 4

Available Vector

(d) P3 runs to completion

P2 runs to completion:

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 1 0 0
P2 6 1 2
P3 2 1 1
P4 0 0 2

Allocation Matrix

(a) Initial state

R1 R2 R3
9 3 6

Resource Vector

R1 R2 R3
0 1 1

Available Vector

R1 R2 R3
P1 3 2 2
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 1 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation Matrix

R1 R2 R3
6 2 3

Available Vector

(b) P2 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation Matrix

R1 R2 R3
7 2 3

Available Vector

(c) P1 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 0 0 2

Allocation Matrix

R1 R2 R3
9 3 4

Available Vector

(d) P3 runs to completion

RESOURCE ALLOCATION DENIAL 10



Slide 21

P1 Runs to Completion:

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 1 0 0
P2 6 1 2
P3 2 1 1
P4 0 0 2

Allocation Matrix

(a) Initial state

R1 R2 R3
9 3 6

Resource Vector

R1 R2 R3
0 1 1

Available Vector

R1 R2 R3
P1 3 2 2
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 1 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation Matrix

R1 R2 R3
6 2 3

Available Vector

(b) P2 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation Matrix

R1 R2 R3
7 2 3

Available Vector

(c) P1 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 0 0 2

Allocation Matrix

R1 R2 R3
9 3 4

Available Vector

(d) P3 runs to completion

P3 Runs to Completion:

R1 R2 R3
P1 3 2 2
P2 6 1 3
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 1 0 0
P2 6 1 2
P3 2 1 1
P4 0 0 2

Allocation Matrix

(a) Initial state

R1 R2 R3
9 3 6

Resource Vector

R1 R2 R3
0 1 1

Available Vector

R1 R2 R3
P1 3 2 2
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 1 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation Matrix

R1 R2 R3
6 2 3

Available Vector

(b) P2 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 3 1 4
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 2 1 1
P4 0 0 2

Allocation Matrix

R1 R2 R3
7 2 3

Available Vector

(c) P1 runs to completion

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 4 2 2

Claim Matrix

R1 R2 R3
P1 0 0 0
P2 0 0 0
P3 0 0 0
P4 0 0 2

Allocation Matrix

R1 R2 R3
9 3 4

Available Vector

(d) P3 runs to completion

Slide 22

Example of a request leading to an unsafe state:

R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

Claim Matrix

R1 R2 R3

P1 1 0 0

P2 5 1 1

P3 2 1 1

P4 0 0 2

Allocation Matrix

(a) Initial state

R1 R2 R3
9 3 6

Resource Vector

R1 R2 R3

1 1 2

Available Vector

R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

Claim Matrix

R1 R2 R3

P1 2 0 1

P2 5 1 1

P3 2 1 1

P4 0 0 2

Allocation Matrix

R1 R2 R3

0 1 1

Available Vector

(b) P1 requests one unit each of R1 and R3

P1 requests R1 & R3:

R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

Claim Matrix

R1 R2 R3

P1 1 0 0

P2 5 1 1

P3 2 1 1

P4 0 0 2

Allocation Matrix

(a) Initial state

R1 R2 R3
9 3 6

Resource Vector

R1 R2 R3

1 1 2

Available Vector

R1 R2 R3

P1 3 2 2

P2 6 1 3

P3 3 1 4

P4 4 2 2

Claim Matrix

R1 R2 R3

P1 2 0 1

P2 5 1 1

P3 2 1 1

P4 0 0 2

Allocation Matrix

R1 R2 R3

0 1 1

Available Vector

(b) P1 requests one unit each of R1 and R3

RESOURCE ALLOCATION DENIAL 11

Slide 23

Disadvantages of the Banker’s algorithm:

➜ Maximum resource requirement must be stated in advance

➜ Processes under consideration must be independent; no
synchronization requirements

➜ There must be a fixed number of resources to allocate

➜ No process may exit while holding resources

Slide 24

DEADLOCK DETECTION

➜ An alternative to deadlock avoidance is deadlock detection

➜ However, for this to be useful, we require to be able to either

• roll processes back (in the extreme case, kill them) or
• preempt resources

Modification of Banker’s algorithm for deadlock detection:

➜ We need a request matrix Q (oustanding requests) instead of
the claim matrix

➜ Disregard processes without any allocation (not holding
resources)

➜ Consider process completed if outstanding requests are
satisfied

➜ Checks can be made each time a resource is allocated
- early deadlock detection
- expensive

DEADLOCK DETECTION 12



Slide 25

Algorithm:

Initially, all processes are unmarked

➀ mark each process with zero-row in Request matrix

➁ set temporary vector W to Available vector

➂ find i such that process i is unmarked, Qik ≤ Wk for 1 ≤ k ≤ n

- no such process ⇒ terminate

➃ mark process i, add row of allocation matrix to W, go to step 3

Slide 26

R1 R2 R3 R4 R5

P1 0 1 0 0 1

P2 0 0 1 0 1

P3 0 0 0 0 1

P4 1 0 1 0 1

Request Matrix Q

R1 R2 R3 R4 R5

P1 1 0 1 1 0

P2 1 1 0 0 0

P3 0 0 0 1 0

P4 0 0 0 0 0

Allocation Matrix A

R1 R2 R3 R4 R5

2 1 1 2 1

Resource Vector

R1 R2 R3 R4 R5

0 0 0 0 1

Available Vector

DEADLOCK DETECTION 13

Slide 27

Recovery:
➀ Abort all deadlocked processes (most common solution)

➁ Rollback each deadlocked process to some previously defined
checkpoint and restart them (original deadlock may reoccur)

➂ Successively abort deadlocked processes until deadlock no
longer exists (invoke deadlock detection algorithm each time)

➃ Successively preempt some resources from process until
deadlock no longer exists

- a process that has a resource preempted must be rolled
back prior to its acquisition

DEADLOCK DETECTION 14


