
Slide 1

Memory Management

COMP3231 Operating Systems

2005/S2

Slide 2

PROCESS

➜ One or more threads of execution

➜ Resources required for execution

• Memory (RAM)

– program code (“text”)
– data (initialised, uninitialised, stack)
– buffers etc held by kernel on behalf of process

• others

– CPU time
– files, disk space
– ...

MEMORY MANAGEMENT 1

Slide 3

MEMORY MANAGEMENT

➜ Subdividing memory to accommodate multiple concurrent
processes
(multiprogramming, multitasking)

➜ Goals:

• Maximise memory utilisation
• Maximise processor utilisation
• Ensure minimum response time
• Ensure timely execution of “important” processes

➜ Conflicting goals ⇒ tradeoffs

Slide 4

MEMORY MANAGEMENT REQUIREMENTS

➀ Address Binding and Relocation

➁ Protection

➂ Sharing

➃ Logical Organisation

➄ Physical Organisation

MEMORY MANAGEMENT REQUIREMENTS 2



Slide 5

MEMORY MANAGEMENT REQUIREMENTS

1. Address binding/relocation:

➽ Actual program location in memory unknown at the time the
program is written

• Programs use various forms of symbolic references to data
and instructions

• These must be bound to actual physical memory addresses
• Can happen:

– at compile/link time,
– at load time,
– at run (execution) time.

Slide 6

Example logical address-space layout:

Process Control Block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction

Reference
to data

MEMORY MANAGEMENT REQUIREMENTS 3

Slide 7

Compile/link-time binding:

➜ Can generate absolute addresses at compile/link time

➽ Must recompile/relink code if starting address changes

Load-time binding:

➜ Compiler/linker generates relocatable addresses

➜ Loader replaces relocatable address by absolute addresses
once starting address is known

Slide 8

Run-time binding:

➜ Compiler/linker/loader produce logical addresses

➜ Hardware translates addresses during execution

➽ Allows dynamic relocation (moving) of program

Dynamic linking:
➜ Libraries not linked (copied) into executable file

➜ Libraries are linked to program at load time

➜ Library entry points are accessed via jump table initialised by
dynamic linker

➜ Supports sharing of library code between programs

MEMORY MANAGEMENT REQUIREMENTS 4



Slide 9

Dynamic loading:

➜ Library code is not loaded until actually invoked

➜ Entrypoint table initially points to dynamic loader

➜ After loading library, loader resets entrypoint addresses.

Slide 10

2. Protection:

➽ Processes should not be able to reference memory locations in
another process without permission

➽ Impossible to check absolute addresses in programs since the
program could be relocated

➽ Checks must be done at run-time

• Requires hardware

MEMORY MANAGEMENT REQUIREMENTS 5

Slide 11

3. Sharing:

• Allow several processes to access the same portion of
memory
➀ Shared code ⇒ better memory utilisation
➁ Communication via shared data

• Selective sharing requires hardware support

Slide 12

4. Logical Organisation:

➜ Software engineering:

• Programs are written in modules
• Modules can be written and compiled independently
• Different degrees of protection given to modules (read-only,

execute-only)
• Share modules

➽ Needs OS support

MEMORY MANAGEMENT REQUIREMENTS 6



Slide 13

5. Physical Organisation:

➜ Memory available for a program plus its data may be insufficient

• Overlaying allows various modules to be assigned the same
region of memory

➜ Programmer does not know how much space will be available

• Memory size of system?
• How many active processes?

➽ OS should abstract physical organisation

Slide 14

SIMPLE MM APPROACH: FIXED PARTITIONING

Equal-size partitions:

➜ Any process ≤ partition size can be loaded into any partition

➜ If all partitions are full, swap out some process

➜ A program may not fit in a partition.

• The programmer must design the program with overlays

➜ Any unused space within a partition is wasted:

• Called internal fragmentation

S IMPLE MM APPROACH: F IXED PARTITIONING 7

Slide 15

Unequal-size partitions:

➜ Assign process to the smallest partition within which it will fit

➜ Reduces internal fragmentation

➜ May have contention for some partitions while others are
unused

• reduces memory and CPU utilisation
• can allocate bigger partition (increases internal

fragmentation)

Slide 16

Memory allocation for fixed partitioning:: E.g., IBM OS/360
mainframes

(a)

Multiple
input queues

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system

700K

400K

100K

0
(b)

Single
input queue

200K

800K

S IMPLE MM APPROACH: F IXED PARTITIONING 8



Slide 17

Fixed partitioning summary:

➜ Simple

➜ Low CPU overhead

➜ Poor memory utilisation

➜ limits number of processes

➜ no support for

- sharing
- logical organisation
- abstracting physical organisation

Slide 18

SIMPLE MM APPROACH: DYNAMIC PARTITIONING

➜ Partitions are of variable length and number

➜ Process is allocated exactly as much memory as required

➜ Eventually get unusable holes in the memory.

• Called external fragmentation

➜ Must use compaction to free up memory

• shift processes so they are contiguous and all free memory is
in one block

S IMPLE MM APPROACH: DYNAMIC PARTITIONING 9

Slide 19

External fragmentation:

(a)

Operating
System 8M

20M

36M

56M

(b)

Operating
System

Process 1 20M

14M

22M

(c)

Operating
System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating
System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating
System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating
System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating
System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating
System

Process 4

Process 3

Now swap out process 2 to make space for process 4:

Slide 20

External fragmentation...:

(a)

Operating
System 8M

20M

36M

56M

(b)

Operating
System

Process 1 20M

14M

22M

(c)

Operating
System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating
System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating
System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating
System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating
System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating
System

Process 4

Process 3

S IMPLE MM APPROACH: DYNAMIC PARTITIONING 10



Slide 21

Dynamic Partitioning Placement Algorithms:

OS must pick free block to allocate to a process

• Best-fit algorithm:
➜ Chooses the block that is closest in size to the request
➜ Maintain block list in size order
➜ Leaves small fragments, unlikely to be useful
➜ Tends to be slow

• First-fit algorithm:
➜ Use first block big enough
➜ Maintain block list in address order
➜ May have to search frequently past same allocated blocks

• Next-fit algorithm:
➜ Continue search from where last allocation was made
➜ fragmentation at end of memory block

Slide 22

8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last
allocated
block (14M)

8M

12M

6M

2M

8M

6M

14M

20 M

(b) After

Next Fit

Allocated block

Best Fit

First Fit

Free block

DYNAMIC PARTITIONING 11

Slide 23

DYNAMIC PARTITIONING

The Buddy System:

➀ Entire space available is treated as a single block of 2
U

➁ If a request of size s such that 2
U−1

< s ≤ 2
U , entire block is

allocated

➂ Otherwise:
➜ Block is split into two equal buddies
➜ Process continues until suitable size block of size 2

b is
generated, so that 2

b−1
< s ≤ 2

b

➃ Useful also for dynamic heap management (malloc())

Slide 24

Buddy system example:
1 Mbyte block 1 M

1 M

512 K256 KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256 K

A = 128 K 128 K

512 KB = 256 KA = 128 K 128 K

512 KB = 256 KA = 128 K C = 64 K 64 K

256 KB = 256 K D = 256 KA = 128 K C = 64 K 64 K

256 KD = 256 KA = 128 K C = 64 K 64 K

256 K 256 KD = 256 KE = 128 K C = 64 K 64 K

256 K 256 KD = 256 KE = 128 K 128 K

512 K 256 KD = 256 K

256 K 256 KD = 256 K128 K C = 64 K 64 K

DYNAMIC PARTITIONING 12



Slide 25

Buddy system representation::

256 K 256 KD = 256 KA = 128 K C = 64 K 64 K

1M

512K

256K

128K

64K

Slide 26

Relocation:

➜ Program uses logical (or virtual) addresses

➜ Actual (absolute or physical) addresses are determined at load
time

➜ Addresses change at run time due to

• swapping
• compaction

➜ Requires address translation at run time (by hardware)

➜ This approach to memory management is called virtual
memory

DYNAMIC PARTITIONING 13

Slide 27

Minimal hardware support for relocation:

Process Control Block

Program

Data

Stack

Comparator

Interrupt to
operating system

Absolute
address

Process image in
main memory

Relative address

Base Register

Bounds Register

Adder

Slide 28

Registers used during execution:

➜ Base register

• starting address for the process
• added to logical address to obtain absolute address

➜ Limit (bounds) register

• ending location of the process
• compared to absolute address to detect address-range

violation

➜ Set at load or relocation time

➜ Part of process context

➜ Implies contiguous allocation of physical memory

➜ Cannot support partial sharing of address spaces

PAGING 14



Slide 29

PAGING

➜ Partition physical memory into small equal-size chunks called
frames

➜ divide each process’ (virtual) address space into the same size
chunks called pages

➜ virtual memory address consist of

- page number and
- offset within the page

➜ OS maintains a page table for each process

- contains the frame location for each page in the process

➜ Process’ physical memory does not have to be contiguous

Slide 30

Page assignment:

0

Main memoryFrame
number

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(a) Fifteen Available Frames

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Load Process A

A.1
A.2
A.3

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(c) Load Process B

A.1
A.2
A.3

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(d) Load Process C

A.1
A.2
A.3

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(f) Load Process D

A.1
A.2
A.3

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(e) Swap out B

A.1
A.2
A.3

C.0
C.1
C.2
C.3

C.1
C.2
C.3

C.1
C.2
C.3

C.0 C.0

D.0
D.1
D.2

B.0
B.1
B.2

D.3
D.4



B.0
B.1
B.2



PAGING 15

Slide 31

0

Main memoryFrame
number

1
2
3
4
5
6
7
8
9

10
11
12
13
14

(a) Fifteen Available Frames

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(b) Load Process A

A.1
A.2
A.3

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(c) Load Process B

A.1
A.2
A.3

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(d) Load Process C

A.1
A.2
A.3

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(f) Load Process D

A.1
A.2
A.3

0

Main memory

A.0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

(e) Swap out B

A.1
A.2
A.3

C.0
C.1
C.2
C.3

C.1
C.2
C.3

C.1
C.2
C.3

C.0 C.0

D.0
D.1
D.2

B.0
B.1
B.2

D.3
D.4



B.0
B.1
B.2



00
11
22
33

Process A
page table

Ñ0
Ñ1
Ñ2

Process B
page table

70
81
92

103
Process C
page table

40
51
62
113
124

Process D
page table

13
14

Free frame
list

Slide 32

Paging:

➜ No external fragmentation

➜ Small internal fragmentation

➜ Allows sharing by mapping several pages to the same frame

➜ Abstracts physical organisation

➜ Moderate support for logical organisation

SEGMENTATION 16



Slide 33

SEGMENTATION

➜ Instead of equal-size pages use arbitrary-sized segments

➜ Address consist of two parts: segment number and offset

➜ Properties:

• Supports sharing by mapping several segments to same PM
• Supports logical organisation
• Abstracts physical organisation

➜ Since segments are not equal get similar issues as with dynamic
partitioning

• no internal fragmentation
• significant external fragmentation

Slide 34

Logical Addresses:

0000010111011110

(a) Partitioning

Relative address = 1502

U
se

r 
pr

oc
es

s
(2

70
0 

by
te

s)

0000010111011110

(b) Paging
(page size = 1K) 

Logical address =
Page# = 1, Offset = 478

Logical address =
Segment# = 1, Offset = 752

P
ag

e 
0

P
ag

e 
1

P
ag

e 
2

In
te

rn
al

fr
ag

m
en

ta
ti

on

0001001011110000

(c) Segmentation

Se
gm

en
t 

0
75

0 
by

te
s

Se
gm

en
t 

1
19

50
 b

yt
es

47
8 75

2

SEGMENTATION 17


