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PROCESS

➜ One or more threads of execution

➜ Resources required for execution

• Memory (RAM)

– program code (“text”)
– data (initialised, uninitialised, stack)
– buffers etc held by kernel on behalf of process

• others

– CPU time
– files, disk space
– ...
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MEMORY MANAGEMENT

➜ Subdividing memory to accommodate multiple concurrent
processes
(multiprogramming, multitasking)

➜ Goals:

• Maximise memory utilisation
• Maximise processor utilisation
• Ensure minimum response time
• Ensure timely execution of “important” processes

➜ Conflicting goals ⇒ tradeoffs
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MEMORY MANAGEMENT REQUIREMENTS

➀ Address Binding and Relocation

➁ Protection

➂ Sharing

➃ Logical Organisation

➄ Physical Organisation
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MEMORY MANAGEMENT REQUIREMENTS

1. Address binding/relocation:

➽ Actual program location in memory unknown at the time the
program is written

• Programs use various forms of symbolic references to data
and instructions

• These must be bound to actual physical memory addresses
• Can happen:

– at compile/link time,
– at load time,
– at run (execution) time.
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Example logical address-space layout:

Process Control Block

Program

Data

Stack

Current top
of stack

Entry point
to program

Process control
information

Increasing
address
values

Branch
instruction

Reference
to data
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Compile/link-time binding:

➜ Can generate absolute addresses at compile/link time

➽ Must recompile/relink code if starting address changes

Load-time binding:

➜ Compiler/linker generates relocatable addresses

➜ Loader replaces relocatable address by absolute addresses
once starting address is known
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Run-time binding:

➜ Compiler/linker/loader produce logical addresses

➜ Hardware translates addresses during execution

➽ Allows dynamic relocation (moving) of program

Dynamic linking:
➜ Libraries not linked (copied) into executable file

➜ Libraries are linked to program at load time

➜ Library entry points are accessed via jump table initialised by
dynamic linker

➜ Supports sharing of library code between programs
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Dynamic loading:

➜ Library code is not loaded until actually invoked

➜ Entrypoint table initially points to dynamic loader

➜ After loading library, loader resets entrypoint addresses.
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2. Protection:

➽ Processes should not be able to reference memory locations in
another process without permission

➽ Impossible to check absolute addresses in programs since the
program could be relocated

➽ Checks must be done at run-time

• Requires hardware
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3. Sharing:

• Allow several processes to access the same portion of
memory
➀ Shared code ⇒ better memory utilisation
➁ Communication via shared data

• Selective sharing requires hardware support
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4. Logical Organisation:

➜ Software engineering:

• Programs are written in modules
• Modules can be written and compiled independently
• Different degrees of protection given to modules (read-only,

execute-only)
• Share modules

➽ Needs OS support
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5. Physical Organisation:

➜ Memory available for a program plus its data may be insufficient

• Overlaying allows various modules to be assigned the same
region of memory

➜ Programmer does not know how much space will be available

• Memory size of system?
• How many active processes?

➽ OS should abstract physical organisation
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SIMPLE MM APPROACH: FIXED PARTITIONING

Equal-size partitions:

➜ Any process ≤ partition size can be loaded into any partition

➜ If all partitions are full, swap out some process

➜ A program may not fit in a partition.

• The programmer must design the program with overlays

➜ Any unused space within a partition is wasted:

• Called internal fragmentation
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Unequal-size partitions:

➜ Assign process to the smallest partition within which it will fit

➜ Reduces internal fragmentation

➜ May have contention for some partitions while others are
unused

• reduces memory and CPU utilisation
• can allocate bigger partition (increases internal

fragmentation)
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Memory allocation for fixed partitioning:: E.g., IBM OS/360
mainframes

(a)

Multiple
input queues

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system

Partition 4

Partition 3

Partition 2

Partition 1

Operating
system
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400K

100K

0
(b)

Single
input queue

200K

800K
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Fixed partitioning summary:

➜ Simple

➜ Low CPU overhead

➜ Poor memory utilisation

➜ limits number of processes

➜ no support for

- sharing
- logical organisation
- abstracting physical organisation
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SIMPLE MM APPROACH: DYNAMIC PARTITIONING

➜ Partitions are of variable length and number

➜ Process is allocated exactly as much memory as required

➜ Eventually get unusable holes in the memory.

• Called external fragmentation

➜ Must use compaction to free up memory

• shift processes so they are contiguous and all free memory is
in one block
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External fragmentation:

(a)
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Operating
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Now swap out process 2 to make space for process 4:
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External fragmentation...:
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Dynamic Partitioning Placement Algorithms:

OS must pick free block to allocate to a process

• Best-fit algorithm:
➜ Chooses the block that is closest in size to the request
➜ Maintain block list in size order
➜ Leaves small fragments, unlikely to be useful
➜ Tends to be slow

• First-fit algorithm:
➜ Use first block big enough
➜ Maintain block list in address order
➜ May have to search frequently past same allocated blocks

• Next-fit algorithm:
➜ Continue search from where last allocation was made
➜ fragmentation at end of memory block
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DYNAMIC PARTITIONING

The Buddy System:

➀ Entire space available is treated as a single block of 2
U

➁ If a request of size s such that 2
U−1

< s ≤ 2
U , entire block is

allocated

➂ Otherwise:
➜ Block is split into two equal buddies
➜ Process continues until suitable size block of size 2

b is
generated, so that 2

b−1
< s ≤ 2

b

➃ Useful also for dynamic heap management (malloc())
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Buddy system example:
1 Mbyte block 1 M

1 M

512 K256 KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256 K

A = 128 K 128 K

512 KB = 256 KA = 128 K 128 K

512 KB = 256 KA = 128 K C = 64 K 64 K

256 KB = 256 K D = 256 KA = 128 K C = 64 K 64 K

256 KD = 256 KA = 128 K C = 64 K 64 K

256 K 256 KD = 256 KE = 128 K C = 64 K 64 K

256 K 256 KD = 256 KE = 128 K 128 K

512 K 256 KD = 256 K

256 K 256 KD = 256 K128 K C = 64 K 64 K
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Buddy system representation::

256 K 256 KD = 256 KA = 128 K C = 64 K 64 K

1M

512K

256K

128K

64K
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Relocation:

➜ Program uses logical (or virtual) addresses

➜ Actual (absolute or physical) addresses are determined at load
time

➜ Addresses change at run time due to

• swapping
• compaction

➜ Requires address translation at run time (by hardware)

➜ This approach to memory management is called virtual
memory

DYNAMIC PARTITIONING 13
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Minimal hardware support for relocation:

Process Control Block

Program

Data

Stack

Comparator

Interrupt to
operating system

Absolute
address

Process image in
main memory

Relative address

Base Register

Bounds Register

Adder
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Registers used during execution:

➜ Base register

• starting address for the process
• added to logical address to obtain absolute address

➜ Limit (bounds) register

• ending location of the process
• compared to absolute address to detect address-range

violation

➜ Set at load or relocation time

➜ Part of process context

➜ Implies contiguous allocation of physical memory

➜ Cannot support partial sharing of address spaces

PAGING 14
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PAGING

➜ Partition physical memory into small equal-size chunks called
frames

➜ divide each process’ (virtual) address space into the same size
chunks called pages

➜ virtual memory address consist of

- page number and
- offset within the page

➜ OS maintains a page table for each process

- contains the frame location for each page in the process

➜ Process’ physical memory does not have to be contiguous
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Page assignment:
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Paging:

➜ No external fragmentation

➜ Small internal fragmentation

➜ Allows sharing by mapping several pages to the same frame

➜ Abstracts physical organisation

➜ Moderate support for logical organisation
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SEGMENTATION

➜ Instead of equal-size pages use arbitrary-sized segments

➜ Address consist of two parts: segment number and offset

➜ Properties:

• Supports sharing by mapping several segments to same PM
• Supports logical organisation
• Abstracts physical organisation

➜ Since segments are not equal get similar issues as with dynamic
partitioning

• no internal fragmentation
• significant external fragmentation
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Logical Addresses:

0000010111011110
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