Week 7
COMP3231 Operating Systems
Slide 1
2005 s2
- 10 Management — Part 2
- Scheduling
1/O MANAGEMENT
O Categories of I/O devices and their integration with processor
and bus
Slide 2 Design of 1/O subsystems

Disk scheduling

O
O 1/O buffering
O
0 RAID

Disk SCHEDULING

DISK SCHEDULING

0 Disk performance is critical for system performance
0 Management and ordering of disk access requests have strong
influence on
- access time
- bandwidth

Slide 3 0 Important to optimise because:

e huge speed gap between memory and disk
e disk throughput extremely sensitive to
- request order = disk scheduling
- placement of data on disk = file system design

0 Request scheduler must be aware of disk geometry

Disk performance parameters:
O Disk is moving device = must position correctly for I/O
0 Execution of a disk operation involves:

e Wait fime: the process waits to be granted device access
- Wait for device: time the request spends in a wait queue
slide 4 - Wait for channel: fime until a shared I/O channel is
available
e Access fime: fime the hardware needs to position the head
- Seek time: position the head at the desired track
- Rotational delay (latency): spin disk to the desired sector
e Transfer fime: sectors to be read/written rotate below the
head

Disk SCHEDULING

Wait for Wait for Seek Rotational Data
Device Channel Delay Transfer

e - R I B B B I L RRRREEEEEES

4—Device Busy

PERFORMANCE PARAMETERS
O Seek time T,: Moving the head to the required track
e not linear in the number of fracks to traverse:
- startup and seftling time
e Typical average seek time: a few milliseconds
O Rotational delay:
- rotational speed, r, of 5,000 to 10,000rom
Slide 6 - At 10,000rpm, one revolution per éms = average delay 3ms
O Transfer time:
o fo fransfer b bytes, with N bytes per track:
_ b
T rN

e Total average access time:

PERFORMANCE PARAMETERS

A Timing Comparison:
O Ts =2ms, r = 10,000 rom, 512B sect, 320 sect/track
0 Read a file with 2560 sectors (= 1.3MB)
O File stored compactly (8 adjacent tracks):

Read first track
Average seek 2ms
Rot. delay 3ms
Slide 7 Read 320 sectors éms

1Tms = Allsectors: 11 + 7% 9 = 74ms
0 Sectors distributed randomly over the disk:
Read any sector

Average seek 2ms
Rot. delay 3ms
Read 1 sector 0.01875ms
5.01875ms = All: 2560 x 5.01875 = 12, 848ms

DiSK SCHEDULING PoLicy

Observation from the calculation:
slide 8 0 Seek time is the reason for differences in performance
O For asingle disk there will be a number of 1/O requests
0 Processing in random order leads to worst possible performance
0O We need better strategies

Disk SCHEDULING PoLicy

First-in, first-out (FIFO):
O Process requests as they come in

Request fracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

25
50

Slide 9 IS
100
125

150
175

\

199
O Fair (no starvation!)
0 Good for few processes with clustered requests
0 deteriorates to random if there are many processes

Shortest Service Time First (SSTF):
O Select the request that minimises seek fime

Request fracks: 55, 88, 39, 18, 90, 160, 150, 38, 184

0
25
50

Slide 10 I3
100
125

150
175

199
O service order: 90, 58, 55,39,18, 150,160,184
0 Minimising locally may not lead to overall minimum!
0 Can lead fo starvation

Disk SCHEDULING PoLicy

Slide 11

Slide 12

SCAN (Elevator): Move head in one direction
O services requests in frack order until it reaches last frack, then
reverse direction

Request fracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

O service order: 150,160,184, (200), 90, 58, 55,39,18, (0)

0O Similar to SSTF, but avoids starvation

0 LOOK: variant of SCAN, moves head only to last request of one
direction: 150,160,184, 90, 58, 55,39,18

0 SCAN/LOOK are biased against region most recently traversed

0 Favour innermost and outermost tracks

O Makes poor use of sequential reads (on down-scan)

Circular SCAN (C-SCAN):
0 Like SCAN, but scanning to one direction only
e When reaching last tfrack, go back to first non-stop

Request fracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

0 Better use of locality (sequential reads)
O Better use of disk controller’s read-ahead cache
0 Reduces the maximum delay compared to SCAN

Disk SCHEDULING PoLicy

N-step-SCAN:
0O SSTF, SCAN & C-SCAN allow device monopolisation
e process issues many requests to same track
Slide 13 0O N-step-SCAN segments request queue:

e subqueues of length N
e process one queue at a ftime, using SCAN
e added new requests to other queue

FSCAN:

0 Two queues

Slide 14)
e one being presently processed

e other to hold new incoming requests

Disk SCHEDULING PoLicy

Disk scheduling algorithms:

Name

Description Remarks

RSS
FIFO
PRI

Slide 15 LIFO

SSTF
SCAN
C-SCAN
N-SCAN
FSCAN

Selection according to requestor

Random scheduling For analysis and simulation
First in, first out Fairest

By process priority Control outside disk magmt
Last in, first out Maximise locality & utilisation

Selection according to requested item
Shortest seek time first High utilisation, small queues
Back and forth over disk Better service distribution
One-way with fast return Better worst-case time
SCAN of Nrecsatonce Service guarantee
N-SCAN (N=init. queue) Load sensitive

DiIsK SCHEDULING

0 Modern disks:

e seek and rotational delay dominate performmance

e not efficient o read only few sectors

Slide 16

e cache contains substantial part of currently read track

O assume real disk geometry is same as virtual geometry

O if not, controller can use scheduling algorithm internally

So, does OS disk scheduling make any difference at all?

LINUx 2.4.

LiNux 2.4.

0 Used a version of C-SCAN
Slide 17 0 no realtime support

0 Write and read handled in the same way — read requests have
to be prioritised

LINUX 2.6.

Deadline 1/O scheduler:
O two additional queues: FIFO read queue with deadline of 5ms,
FIFO write with deadline of 500ms
request submitted to both queues
if request expires,scheduler dispatches from FIFO queue
0O Performance:
[seeks minimised
[J requests not starved
[0 read requests handled faster
0 can result in seek storm, everything read from FIFO queues

O O

Slide 18

LINUX 2.6.

Anticipatory Scheduling:
0 Same, but anficipates dependent read requests
0 After read request: waits for a few ms

Slide 19 O Performance

[J can dramatically reduce the number of seek operations
[if no requests follow, time is wasted

PERFORMANCE
O Writes
- similar for writes
Slide 20 - deadline scheduler slightly better than AS
0 Reads

- deadline: about 10 times faster for reads
- as: 100 times faster for streaming reads

DIsk CACHE 10

DISK CACHE

O Bufferin main memory for disk sectors
O Contains a copy of some of the sectors on the disk

Slide 21 pesign Considerations:

0 transfer of data from cache to process memory

0 using shared memory approach to map memory area into
process memory

Least recently used:
0 The block that has been in the cache the longest with no
reference to it is replaced
O The cache consists of a stack of blocks
Most recently referenced block is on the top of the stack
Slide 22 O When a block is referenced or brought into the cache, it is
placed on the top of the stack
O The block on the bottom of the stack is removed when a new
block is brought in

O

0 Blocks don’t actually move around in main memory
O A stack of pointers is used

DIsk CACHE

Least frequently used:

O The block that has experienced the fewest references is
replaced
A counter is associated with each block
Counter is incremented each time block accessed
Block with smallest count is selected for replacement

Slide 23

O oOooo

Some blocks may be referenced many times in a short period of
time and then not needed any more

UNIX Buffer Cache: Three lists maintained to manage buffer:
0O Free list: free slots in the cache (LRU)
Slide 24 0 Device list: all buffers associated with each disk

O Driver I/O queue: list of all buffers waiting for the completion of
an 1/O request

11 DIsk CACHE 12

5
El:
DeviceList 8 g RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS
Hash Table Buffer Cache [T o
Multiple disks for improved performance or reliability:
Pl FT O Set of physical disks
, , 0 Treated as a single logical drive by OS
- Device#, Blocks# - - -! : - 0 Data is distributed over a number of physical disks
Slide 25 e Slide 27
0 Redundancy used to recover from disk failure (exception: RAID
- 0
E O There is a range of standard configurations
E - - numbered 0o 6
- ¥ - various redundancy and distribution arrangements
FreelList ¥
Pointer
RAID O (striped, non-redundant):
strip 0 strip 1 strip 2 strip 3
RAID N N N A N A
i - strip 4 strip 5 strip 6 strip 7
0 CPU performace has improved exponentially o " "
0 disk performance only by a factor of 5 fo 10 Stl‘ip 8 Stl’ip 9 strip 10 Stl’ip 1
slide 26 0 huge gap between CPU and disk performance Slide 28 ~—— ~—— ~—— ~——
strip 12 strip 13 strip 14 strip 15
Parallel processing used to improve CPU performance. | N~ — \/I \/I
1 1 1 1
Question: can parallel I/O be used o speed up and improve - o .ol . Yo S . S
reliability of 1/O? O controller translates single request into separate requests to
single disks

O requests can be processed in parallel
O simple, works well for large requests
0 does not improve on reliability, no redundancy

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 13 RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 14

Data mapping for RAID 0:

Physical Physical Physical Physical
Logical Disk Disk 0 Disk 1 Disk 2 Disk 3
strip 0
stripl fommT
M———
srip2 |-
——
strip3 [
———
Srip4
M—
srip5

Slide 29 NS

srip7

strip8
strip 9
strip 10
i
strip 11
strip 12
srip 13
srip 14
srip 15
—

RAID 1 (mirrored, 2x redundancy):

v f))) ' ' '
' ' ' ' ' i i '
' ’ ' ' ' i i '

0 duplicates all disks
O write: each request is written twice
O read: can be read from either disk

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS 15

RAID 2 (redundancy through Hamming code):

PR P PN EEE N R R g

slide31 -
strips are very small (single byte or word)

error correction code across corresponding bit positions
for n disks, logan redundancy

expensive

high data rate, but only single request

Oooood

ERROR CORRECTION AND REDUNDANCY

Just keeping two copies doesn’t necessarily help to correct
the error:
Example:

Original Copy
10010[1]11 10010[0]11
?
10010111 10010011

Slide 32

O it is not clear if the error occured in the copy or the original
0 no error correction possible

ERROR CORRECTION AND REDUNDANCY 16

Hamming Distance between two bit-strings: The number of

Slide 33 1its in which they differ.
0 One-bit error detection could be achieved much cheaper
O How much redundancy is necessary for a one bit error
correction?

HAMMING CODE

HAMMING CODE

For every four bits of data, three parity bits
O Parity (3,5.7)

Parity (3.6.7)

Data

Parity (6,6.7)

Data

Data

Data

Slide 35

O o0oooogao

7

D D D Parity bit 1
D|D D Parity bit 2
D|D|D Parity bit 4

1|1]o]o]1]1]0] Doata

Slide 36

HAMMING CODE 18

71615 31211

11110 11110 Data

o|1]0 11110 | Corrupted Data

D D D 1: bit 1 not ok
Slide 37 D|D D 1: bit 2 not ok

D|D|D 1: bit 4 not ok

Error Correction:

O

bit 111 (ie, 7) is corrupted

O two bit errors can be detected, but not corrected

RAID 3 (bit-interleaved parity):

oz | 1 [T

O
O
O
O

h
! ' ! '
S ‘e S ‘

strips are very small (single byte or word)

simple parity bit based redundancy

error detection

partial error correction (if offender is known)

! '
- —I

HAMMING CODE

RAID 4 (block-level parity):

o o o OO O
| blocko | | blook1] | blodkz | | bloda] [P03 |
Slide 39 |Doke | |Dlocs | [boke | | biock7] | P@D |
Sr| [iers| [wen| [wem
Sie| (sl [iew] [oow] (R

RAID 5 (block-level distributed parity):

19 HAMMING CODE 20

RAID 6 (dual redundancy):

T G) O B G2
sigosr (35t [mowe] [wee] [wen] [own] [wer]
| o] [w] [oew| [weo| [wew

HAMMING CODE

21

