
Slide 1

Week 7

COMP3231 Operating Systems

2005 S2
- IO Management — Part 2

- Scheduling

Slide 2

I/O MANAGEMENT

➜ Categories of I/O devices and their integration with processor
and bus

➜ Design of I/O subsystems

➜ I/O buffering

➜ Disk scheduling

➜ RAID

D ISK SCHEDULING 1

Slide 3

DISK SCHEDULING

➜ Disk performance is critical for system performance

➜ Management and ordering of disk access requests have strong
influence on

- access time
- bandwidth

➜ Important to optimise because:

• huge speed gap between memory and disk
• disk throughput extremely sensitive to

- request order ⇒ disk scheduling
- placement of data on disk ⇒ file system design

➜ Request scheduler must be aware of disk geometry

Slide 4

Disk performance parameters:

➜ Disk is moving device ⇒ must position correctly for I/O

➜ Execution of a disk operation involves:

• Wait time: the process waits to be granted device access

– Wait for device: time the request spends in a wait queue
– Wait for channel: time until a shared I/O channel is

available
• Access time: time the hardware needs to position the head

– Seek time: position the head at the desired track
– Rotational delay (latency): spin disk to the desired sector

• Transfer time: sectors to be read/written rotate below the
head

D ISK SCHEDULING 2



Slide 5

Wait for
Device

Wait for
Channel

Seek Rotational
Delay

Data
Transfer

Device Busy

Slide 6

PERFORMANCE PARAMETERS

➜ Seek time Ts: Moving the head to the required track

• not linear in the number of tracks to traverse:
- startup and settling time

• Typical average seek time: a few milliseconds

➜ Rotational delay:

- rotational speed, r, of 5,000 to 10,000rpm
- At 10,000rpm, one revolution per 6ms ⇒ average delay 3ms

➜ Transfer time:

• to transfer b bytes, with N bytes per track:

T =
b

rN

• Total average access time:

Ta = Ts +
1

2r
+

b

rN

PERFORMANCE PARAMETERS 3

Slide 7

A Timing Comparison:
➜ Ts = 2 ms, r = 10, 000 rpm, 512B sect, 320 sect/track
➜ Read a file with 2560 sectors (= 1.3MB)
➜ File stored compactly (8 adjacent tracks):

Read first track

Average seek 2ms

Rot. delay 3ms

Read 320 sectors 6ms

11ms ⇒ All sectors: 11 + 7 ∗ 9 = 74ms

➜ Sectors distributed randomly over the disk:
Read any sector

Average seek 2ms

Rot. delay 3ms

Read 1 sector 0.01875ms

5.01875ms ⇒ All: 2560 ∗ 5.01875 = 12, 848ms

Slide 8

DISK SCHEDULING POLICY

Observation from the calculation:

➜ Seek time is the reason for differences in performance

➜ For a single disk there will be a number of I/O requests

➜ Processing in random order leads to worst possible performance

➜ We need better strategies

D ISK SCHEDULING POLICY 4



Slide 9

First-in, first-out (FIFO):

➜ Process requests as they come in

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

199

175

150

125

100

75

50

25

0

(a) FIFO Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

(d) C-SCAN

➜ Fair (no starvation!)

➜ Good for few processes with clustered requests

➜ deteriorates to random if there are many processes

Slide 10

Shortest Service Time First (SSTF):

➜ Select the request that minimises seek time

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184199

175

150

125

100

75

50

25

0

(a) FIFO Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

(d) C-SCAN

➜ service order: 90, 58, 55,39,18, 150,160,184

➜ Minimising locally may not lead to overall minimum!

➜ Can lead to starvation

D ISK SCHEDULING POLICY 5

Slide 11

SCAN (Elevator): Move head in one direction
➜ services requests in track order until it reaches last track, then

reverse direction

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

199

175

150

125

100

75

50

25

0

(a) FIFO Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

(d) C-SCAN

➜ service order: 150,160,184, (200), 90, 58, 55,39,18, (0)
➜ Similar to SSTF, but avoids starvation
➜ LOOK: variant of SCAN, moves head only to last request of one

direction: 150,160,184, 90, 58, 55,39,18
➜ SCAN/LOOK are biased against region most recently traversed
➜ Favour innermost and outermost tracks
➜ Makes poor use of sequential reads (on down-scan)

Slide 12

Circular SCAN (C-SCAN):

➜ Like SCAN, but scanning to one direction only

• When reaching last track, go back to first non-stop

Request tracks: 55, 58, 39, 18, 90, 160, 150, 38, 184

199

175

150

125

100

75

50

25

0

(a) FIFO Time

199

175

150

125

100

75

50

25

0

(b) SSTF

199

175

150

125

100

75

50

25

0

(c) SCAN

199

175

150

125

100

75

50

25

0

(d) C-SCAN
➜ Better use of locality (sequential reads)
➜ Better use of disk controller’s read-ahead cache
➜ Reduces the maximum delay compared to SCAN

D ISK SCHEDULING POLICY 6



Slide 13

N -step-SCAN:
➜ SSTF, SCAN & C-SCAN allow device monopolisation

• process issues many requests to same track

➜ N -step-SCAN segments request queue:

• subqueues of length N

• process one queue at a time, using SCAN
• added new requests to other queue

Slide 14

FSCAN:

➜ Two queues

• one being presently processed
• other to hold new incoming requests

D ISK SCHEDULING POLICY 7

Slide 15

Disk scheduling algorithms:
Name Description Remarks

Selection according to requestor

RSS Random scheduling For analysis and simulation

FIFO First in, first out Fairest

PRI By process priority Control outside disk magmt

LIFO Last in, first out Maximise locality & utilisation

Selection according to requested item

SSTF Shortest seek time first High utilisation, small queues

SCAN Back and forth over disk Better service distribution

C-SCAN One-way with fast return Better worst-case time

N-SCAN SCAN of N recs at once Service guarantee

FSCAN N-SCAN (N=init. queue) Load sensitive

Slide 16

DISK SCHEDULING

➜ Modern disks:

• seek and rotational delay dominate performance
• not efficient to read only few sectors
• cache contains substantial part of currently read track

➜ assume real disk geometry is same as virtual geometry

➜ if not, controller can use scheduling algorithm internally

So, does OS disk scheduling make any difference at all?

L INUX 2.4. 8



Slide 17

LINUX 2.4.
➜ Used a version of C-SCAN

➜ no real-time support

➜ Write and read handled in the same way — read requests have
to be prioritised

Slide 18

LINUX 2.6.

Deadline I/O scheduler:

➜ two additional queues: FIFO read queue with deadline of 5ms,
FIFO write with deadline of 500ms

➜ request submitted to both queues

➜ if request expires,scheduler dispatches from FIFO queue

➜ Performance:
✔ seeks minimised
✔ requests not starved
✔ read requests handled faster
✘ can result in seek storm, everything read from FIFO queues

L INUX 2.6. 9

Slide 19

Anticipatory Scheduling:

➜ Same, but anticipates dependent read requests

➜ After read request: waits for a few ms

➜ Performance

✔ can dramatically reduce the number of seek operations
✘ if no requests follow, time is wasted

Slide 20

PERFORMANCE

➜ Writes

- similar for writes
- deadline scheduler slightly better than AS

➜ Reads

- deadline: about 10 times faster for reads
- as: 100 times faster for streaming reads

D ISK CACHE 10



Slide 21

DISK CACHE

➜ Buffer in main memory for disk sectors

➜ Contains a copy of some of the sectors on the disk

Design Considerations:

➜ transfer of data from cache to process memory

➜ using shared memory approach to map memory area into
process memory

Slide 22

Least recently used:

➜ The block that has been in the cache the longest with no
reference to it is replaced

➜ The cache consists of a stack of blocks

➜ Most recently referenced block is on the top of the stack

➜ When a block is referenced or brought into the cache, it is
placed on the top of the stack

➜ The block on the bottom of the stack is removed when a new
block is brought in

➜ Blocks don’t actually move around in main memory

➜ A stack of pointers is used

D ISK CACHE 11

Slide 23

Least frequently used:
➜ The block that has experienced the fewest references is

replaced

➜ A counter is associated with each block

➜ Counter is incremented each time block accessed

➜ Block with smallest count is selected for replacement

➜ Some blocks may be referenced many times in a short period of
time and then not needed any more

Slide 24

UNIX Buffer Cache: Three lists maintained to manage buffer:

➜ Free list: free slots in the cache (LRU)

➜ Device list: all buffers associated with each disk

➜ Driver I/O queue: list of all buffers waiting for the completion of
an I/O request

D ISK CACHE 12



Slide 25
Device#, Block#

Device List
Hash Table Buffer Cache

¥
¥
¥Free List

Pointer

F
re

e 
L

is
t 

P
oi

nt
er

s

H
as

h 
P

oi
nt

er
s

Slide 26

RAID
➜ CPU performace has improved exponentially

➜ disk performance only by a factor of 5 to 10

➜ huge gap between CPU and disk performance

Parallel processing used to improve CPU performance.

Question: can parallel I/O be used to speed up and improve
reliability of I/O?

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT D ISKS 13

Slide 27

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT DISKS

Multiple disks for improved performance or reliability:

➜ Set of physical disks

➜ Treated as a single logical drive by OS

➜ Data is distributed over a number of physical disks

➜ Redundancy used to recover from disk failure (exception: RAID
0)

➜ There is a range of standard configurations

- numbered 0 to 6
- various redundancy and distribution arrangements

Slide 28

RAID 0 (striped, non-redundant):

strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

➜ controller translates single request into separate requests to
single disks

➜ requests can be processed in parallel
➜ simple, works well for large requests
➜ does not improve on reliability, no redundancy

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT D ISKS 14



Slide 29

Data mapping for RAID 0:

strip 12

strip 8

strip 4

strip 0

Physical
Disk 0

strip 3

strip 4

strip 5

strip 6

strip 7

strip 8

strip 9

strip 10

strip 11

strip 12

strip 13

strip 14

strip 15

strip 2

strip 1

strip 0

Logical Disk
Physical
Disk 1

Physical
Disk 2

Physical
Disk 3

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

Array
Management

Software

Slide 30

RAID 1 (mirrored, 2× redundancy):

strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

➜ duplicates all disks

➜ write: each request is written twice

➜ read: can be read from either disk

RAID: REDUNDANT ARRAY OF INEXPENSIVE/INDEPENDENT D ISKS 15

Slide 31

RAID 2 (redundancy through Hamming code):

strip 12

(a) RAID 0 (non-redundant)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

(b) RAID 1 (mirrored)

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

strip 15

strip 11

strip 7

strip 3

strip 12

strip 8

strip 4

strip 0

strip 13

strip 9

strip 5

strip 1

strip 14

strip 10

strip 6

strip 2

(c) RAID 2 (redundancy through Hamming code)

b0 b1 b2 b3 f0(b) f1(b) f2(b)

strip 15

strip 11

strip 7

strip 3

➜ strips are very small (single byte or word)

➜ error correction code across corresponding bit positions

➜ for n disks, log2n redundancy

➜ expensive

➜ high data rate, but only single request

Slide 32

ERROR CORRECTION AND REDUNDANCY

Just keeping two copies doesn’t necessarily help to correct
the error:

Example:

Original Copy
1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1

1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1

?

➜ it is not clear if the error occured in the copy or the original

➜ no error correction possible

ERROR CORRECTION AND REDUNDANCY 16



Slide 33
Hamming Distance between two bit-strings: The number of
bits in which they differ.

Slide 34

➜ One-bit error detection could be achieved much cheaper
(parity bit)

➜ How much redundancy is necessary for a one bit error
correction?

HAMMING CODE 17

Slide 35

HAMMING CODE

For every four bits of data, three parity bits

➀ Parity (3,5,7)

➁ Parity (3,6,7)

➂ Data

➃ Parity (5,6,7)

➄ Data

➅ Data

➆ Data

Slide 36

7 6 5 4 3 2 1

D D D Parity bit 1

D D D Parity bit 2

D D D Parity bit 4

1 1 0 0 1 1 0 Data

HAMMING CODE 18



Slide 37

7 6 5 4 3 2 1

1 1 0 0 1 1 0 Data

0 1 0 0 1 1 0 Corrupted Data

D D D 1 : bit 1 not ok

D D D 1: bit 2 not ok

D D D 1: bit 4 not ok

Error Correction:

➜ bit 111 (ie, 7) is corrupted

➜ two bit errors can be detected, but not corrected

Slide 38

RAID 3 (bit-interleaved parity):

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy) 

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

➜ strips are very small (single byte or word)

➜ simple parity bit based redundancy

➜ error detection

➜ partial error correction (if offender is known)

HAMMING CODE 19

Slide 39

RAID 4 (block-level parity):

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy) 

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

Slide 40

RAID 5 (block-level distributed parity):

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy) 

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

HAMMING CODE 20



Slide 41

RAID 6 (dual redundancy):

block 12

(e) RAID 4 (block-level parity)

block 8

block 4

block 0

block 13

block 9

block 5

block 1

block 14

block 10

block 6

block 2

block 15

block 7

block 3

P(12-15)

P(8-11)

P(4-7)

P(0-3)

block 12

block 8

block 4

block 0

block 9

block 5

block 1

block 13

block 6

block 2

block 14

block 10

block 3

block 15

P(16-19)

P(12-15)

P(8-11)

P(4-7)

block 16 block 17 block 18 block 19

block 11

block 7

(f) RAID 5 (block-level distributed parity)

(d) RAID 3 (bit-interleaved parity)

b0 b1 b2 b3 P(b)

P(0-3)

block 11

block 12

(g) RAID 6 (dual redundancy) 

block 8

block 4

block 0

P(12-15)

block 9

block 5

block 1

Q(12-15)

P(8-11)

block 6

block 2

block 13

P(4-7)

block 3

block 14

block 10

Q(4-7)

P(0-3)

Q(8-11)

block 15

block 7

Q(0-3)

block 11

HAMMING CODE 21


