
Slide 1

Scheduling

COMP3231 Operating Systems

2005 S2

➜ Real-time scheduling (continued)

➜ Hard real time systems

➜ Multiprocessor scheduling

➜ Case study 1: Windows 2000

➜ Case study 2: Linux 2.4 vs 2.6

➜ Discussion of existing hard real-time systems

Slide 2

ASSIGNMENT 2
➜ Simple file related system calls

➜ Process management system calls (fork)

REAL-TIME SCHEDULING 1

Slide 3

REAL-TIME SCHEDULING

Classes of Algorithms:
➜ Static table-driven

- suitable for periodic tasks
- input: periodic arrival, ending and execution time
- output: schedule that allows all processes to meet

requirements (if at all possible)
- determines at which points in time a task begins execution

➜ Static priority-driven preemptive
- static analysis determines priorities
- traditional priority-driven scheduler is used

➜ Dynamic planning-based
- feasibility to integrate new task is determined dynamically

➜ Dynamic best effort
- no feasibility analysis
- typically aperiodic, no static analysis possible
- does its best, procs that missed deadline aborted

Slide 4

SCHEDULING OF PERIODIC EVENTS

We know when a periodic event occurs and how long it will
take to handle the event

➜ Pi: period with which event i occurs

➜ Ci: CPU time required to handle event i

➜ deadline: generally, event has to be processed before next
event occurs

E.g., and event occurs every 50msec, requires 10ms of CPU
time
➜ Pi: 50msec

➜ Ci: 10msec

SCHEDULING OF PERIODIC EVENTS 2

Slide 5

When are periodic events schedulable?

➜ Pi: period with which event i occurs

➜ Ci: CPU time required to handle event i

A set of events e1 to em is schedulable if

m∑

i=1

Ci

Pi

≤ 1

Example:
➜ three periodic events with periods of 100, 200, and 500msecs

➜ require 50, 30 , and 100msec of CPU time

➜ schedulable?

50

100
+

30

200
+

100

500
= 0.5 + 0.15 + 0.2 ≤ 1

Slide 6

DEADLINE SCHEDULING

Current systems often try to provide real-time support by

➜ starting real time tasks are quickly as possible

➜ speeding up interrupt handling and task dispatching

Not necessarily appropriate, since

➜ real-time applications are not concerned with speed but with
reliably completing tasks

➜ priorities alone are not sufficient

DEADLINE SCHEDULING 3

Slide 7

DEADLINE SCHEDULING

Additional information used:

➜ Ready time
- sequence of times for periodic tasks, may or may not be

known statically

➜ Starting deadline

➜ Completion deadline

➜ Processing time
- may or may not be known, approximated

➜ Resource requirements

➜ Priority

➜ Subtask scheduler

Slide 8

DEADLINE SCHEDULING

Earliest deadline first strategy is provably optimal. It

➜ minimises number of tasks that miss deadline

➜ if there is a schedule for a set of tasks, earliest deadline first will
find it

Earliest deadline first
➜ can be used for dynamic or static scheduling

➜ works with starting or completion deadline

➜ for any given preemption strategy

- starting deadlines are given: nonpreemptive
- completion deadline: preemptive

DEADLINE SCHEDULING 4

Slide 9

Two tasks:

➜ Sensor A:

• data arrives every 20ms
• processing takes 10ms

➜ Sensor B:

• data arrives every 50ms
• processing takes 25ms

Scheduling decision every 10ms

Task Arrival Time Execution Time Deadline

A(1) 0 10 20

A(2) 20 10 40

A(3) 40 10 60
...

...
...

...

B(1) 0 25 50

B(2) 50 25 100
...

...
...

...

Slide 10

Periodic threads with completion deadline:

9070402010 30 50 60 80 1000 Time(ms)

B1 B2
A1 A2 A3 A4 A5Arrival times, execution

times, and deadlines

A1
deadline

A2
deadline

A3
deadline

A4
deadline

A5
deadline

B1
deadline

B1
deadline

A3 A4 A5A1 B1 A2 B1 B2 B2 B2

A1 A2 A3 A4 A5, B2B1
(missed)

A1
(missed)

A2 A3 A4
(missed)

A5, B2

B1 B2A2 A3 A5

A1 A2 A3 A4 A5, B2B1

A1 B1 A2 B1 A3 B2 A4 B2 A5

Fixed-priority scheduling;
A has priority

Fixed-priority scheduling;
B has priority

Earliest deadline scheduling
using completion deadlines

B1

DEADLINE SCHEDULING 5

Slide 11

Aperiodic threads with starting deadline:

9070402010 30 50 60 80 100 1100 120

B C E D A

B (missed) C E D A

B C E D A

C D A

A B C D E

A B C D E

A B C D E

A B C D E

A C E D

B C E D A

A C D

B (missed) E (missed)

Requirements

Arrival times

Starting deadline

Earliest
deadline

Arrival times

Starting deadline

Service

Earliest
deadline

with unforced
idle times

Arrival times

Starting deadline

Service

First-come
first-served

(FCFS)

Arrival times

Starting deadline

Service

Slide 12

RATE MONOTONIC SCHEDULING

Works by

➜ assigning priorities to threads on the basis of their periods

➜ highest-priority task is the one with the shortest period

Works for processes which

➜ are periodic

➜ need the same amount of CPU time on each burst

➜ optimal static scheduling algorithm

➜ guaranteed to succeed if

m∑

i=1

Ci

Pi

≤ m ∗ (2
1

m − 1)

for m = 1,10,100,1000: 1, 0.7, 0.695, 0.693

RATE MONOTONIC SCHEDULING 6

Slide 13

Periodic task timing diagram:

Processing ProcessingIdleP

task P execution time C

task P period T

Cycle 1 Cycle 2

Time

Slide 14

Task set with RMS:

P
ri

or
it

y

High

Low
Rate (Hz)

Highest rate and
highest priority task

Lowest rate and
lowest priority task

RATE MONOTONIC SCHEDULING 7

Slide 15

- A: 15/30, B: 15/40, C: 5/50

A1

A1

B1

B1

A1

A2

B2 B3A3 A4 A5 B4

A5

B1 B2

B2 Failed

A2

B3 B4

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Time (msec)

A

B

C

EDF

RMS

A2 A3 A4

C2 C3

C3

C1

C1 C2

Slide 16

WHY USE RMS?

Despite some obvious disadvantages of RMS over EDF, RMS is
sometimes used

➜ it has a lower overhead

➜ simple

➜ in pratice, performance similar

➜ greater stability, predictability

WHY USE RMS? 8

Slide 17

Problem:
➜ in real life applications, many tasks are not always periodic.

➜ static priorities may not work

If real time threads run periodically with same length, fixed
priority is no problem:

a a a a a a a
b b b b b b b

- a: periodic real time thread, highest priority

- b: periodic real time thread

- various different low priority tasks (e.g., user I/O)

Slide 18

But if frequency of high priority task increases temporarily,
system may encounter overload:

- system not able to respond

- system may not be able to perform requested service

We need a scheduling strategy which can guarantee

➜ quality of service for “well-behaving” periodic real time tasks

➜ no system freeze if real-time tasks misbehave

WHY USE RMS? 9

Slide 19

Example:a

Network interface control driver, requirements:
➜ avoid if possible to drop packets
➜ definitely avoid overload

If receiver thread get highest priority permanently, system
may go into overload if incoming rate exceeds a certain
value.
➜ expected frequency: packet once every 64µs

➜ CPU time required to process packet: 25µs

➜ 32-entry ring buffer, max 50% full

receiver
thread

25µs/packet

packet every 64µs

a
embedded.com, Scheduling Sporadic Events, Lonnie VanZandt

Slide 20

SPORADIC SCHEDULING

POSIX standard to handle

➜ aperiodic or sporadic events

➜ with static priority, preemptive scheduler

Implemented in hard real-time systems such as QNX, some
real-time versions of Linux, real-time specification for Java
(RTSJ)(partially)

Can be used to avoid overloading in a system

SPORADIC SCHEDULING 10

Slide 21

Basic Idea: enforcing periodic behaviour of thread by
assigning
➜ realtime priority: Pr

➜ background priority: Pb

➜ execution budget: E

➜ replenishment interval: R

to thread.
➜ Whenever thread exhausts execution budget, priority is set to

background priority Pb

➜ When thread blocks after n units, n will be added to execution
budget R units after execution started

➜ When execution budget is incremented, thread priority is reset
to Pr

Slide 22

Example:
➜ execution budget: 5

➜ replenishment interval: 13

Thread does not block:

5 10 15

5

budget

time

replenishment interval

SPORADIC SCHEDULING 11

Slide 23

Thread blocks:

5 10 15 20

5

budget

time

replenishment interval

replenishment interval

(0) exection starts, 1st replenishment interval starts
(3) thread blocks
(5) continues execution, 2nd replenishment interval starts
(7) budget exhausted
(13) budget set to 3, thread continues execution
(16) budget exhausted
(18) budget set to 2
(19) thread continues execution

Slide 24

Example: Network interface control Driver
➜ use expected incoming rate and desired max CPU utilisation of

thread to compute execution budget and replenishment
period

➜ if no other threads wait for execution, packets can be
processed even if load is higher

➜ otherwise, packets may be dropped

receiver
thread

25µs/packet

packet every 64µs

➜ period: 64µs * 16 = 1024µs

➜ execution time: 25µs * 16 = 400µs

➜ CPU load caused by receiver thread: 400/1024 = 0.39, about
39%

MULTI-PROCESSOR SYSTEMS 12

Slide 25

MULTI-PROCESSOR SYSTEMS

We have a look at different

➜ applications

➜ architectures

➜ operating systems

for multi-processor systems

Slide 26

MULTIPROCESSOR SCHEDULING

Classification of Multiprocessor Systems: What kind of systems
and applications are there?

C C C C

C C C C

M CC

C C

CShared
memory

Inter-
connect

CPU

Local
memory

(a) (b) (c)

M C

C

M

C

M

C

M

C

C

M

C

C M

C M

C C

M M M M

C+ M C+ M C+ M

C+ M C+ M C+ M

Complete system

Internet

(a) Tightly coupled multiprocessing

• Processors share main memory, controlled by single
operating system, called symmetric multi-processor (SMP)
system

MULTIPROCESSOR SCHEDULING 13

Slide 27

C C C C

C C C C

M CC

C C

CShared
memory

Inter-
connect

CPU

Local
memory

(a) (b) (c)

M C

C

M

C

M

C

M

C

C

M

C

C M

C M

C C

M M M M

C+ M C+ M C+ M

C+ M C+ M C+ M

Complete system

Internet

(b) Loosely coupled multiprocessor

• Each processor has its own memory and I/O channels
• Generally called a distributed memory multiprocessor

(c) Distributed System

• complete computer systems connected via wide area
network

• communicate via message passing

Slide 28

PARALLELISM

Independent parallelism:

➜ Separate applications/jobs

➜ No synchronization

➜ Parallelism improves throughput, responsiveness

➜ Parallelism doesn’t affect execution time of (single threaded)
programs

Coarse and very coarse-grained parallelism:

➜ Synchronization among processes is infrequent

➜ Good for loosely coupled multiprocessors

• Can be ported to multiprocessor with little change

PARALLELISM 14

Slide 29

Medium-grained parallelism:

➜ Parallel processing within a single application

• Application runs as multithreaded process

➜ Threads usually interact frequently

➜ Good for SMP systems

➜ Unsuitable for loosely-coupled systems

Fine-grained parallelism:

➜ Highly parallel applications

• e.g., parallel execution of loop iterations

➜ Very frequent synchronisation

➜ Works only well on special hardware

• vector computers, symmetric multithreading (SMT) hardware

Slide 30

MULTIPROCESSOR SCHEDULING

Multiprocessor Scheduling:

Which process should be run next and where?

We discuss:

➜ Tightly coupled multiprocessing

➜ Very coarse to medium grained parallelism

➜ Shared-memory systems

SHARED MEMORY MULTIPROCESSOR HARDWARE 15

Slide 31

SHARED MEMORY MULTIPROCESSOR HARDWARE

UMA (uniform memory access) Bus-based SMP Architectures:

CPU CPU M

Shared memory
Shared
memory

Bus
(a)

CPU CPU M

Private memory

(b)

CPU CPU M

(c)

Cache

Without caching (a):

➜ limited by the bandwidth of the bus

➜ only feasible for a small number of CPUs

Slide 32

SHARED MEMORY MULTIPROCESSOR HARDWARE

UMA Bus-based SMP Architectures:

CPU CPU M

Shared memory
Shared
memory

Bus
(a)

CPU CPU M

Private memory

(b)

CPU CPU M

(c)

Cache

With
caching (b):

➜ CPUs have their own cache

➜ each cache line is marked as read-only or read-write

➜ cache consistency an issue

➜ significantly reduces traffic on bus

SHARED MEMORY MULTIPROCESSOR HARDWARE 16

Slide 33

SHARED MEMORY MULTIPROCESSOR HARDWARE

UMA Bus-based SMP Architectures:

CPU CPU M

Shared memory
Shared
memory

Bus
(a)

CPU CPU M

Private memory

(b)

CPU CPU M

(c)

Cache

With
caching and private memory (c):

➜ CPUs have their own cache and private memory

➜ shared memory only used to “communicate” — ie, shared
variables, data structures

➜ requires compiler support

Slide 34

UMA Multiprocessor using Crossbar Switches:

➜ Even with cache and private memory, purely bus-based
systems scale only to about 32 CPUs

➜ Crossbar switches dynamically set up connections between
CPUs and different memory components

SHARED MEMORY MULTIPROCESSOR HARDWARE 17

Slide 35

UMA Multiprocessor using Crossbar Switches:

Memories

C
P

U
s

Closed
crosspoint
switch

Open
crosspoint
switch

(a)

(b)

(c)

Crosspoint
switch is closed

Crosspoint
switch is open

000

001

010

011

100

101

110

111

10
0

10
1

11
0

11
1

00
0

00
1

01
0

01
1

Slide 36

UMA Multiprocessor using Crossbar Switches:

➜ Number of crosspoints grows quadratically

➜ Good solution for small to medium sized systems

➜ Many different, more complicated switching networks possible

NUMA MULTIPROCESSORS 18

Slide 37

NUMA MULTIPROCESSORS

Uniform memory access time does not scale!

Characteristics of NUMA (non-uniform mem. access) systems:

➜ Single address space visible to all CPUs

➜ Access to remote memory via LOAD and STORE instructions

➜ Access to remote memory slower than to local memory

Cache coherent (CC-NUMA) and no caching (NC-NUMA)
available

Slide 38

Directory

Node 0 Node 1 Node 255

(a)

(b)

Bits 8 18 6

(c)

Interconnection network

CPU Memory

Local bus

CPU Memory

Local bus

CPU Memory

Local bus

Node Block Offset

0
1
2
3
4

0
0
1
0
0

218-1

82

…

SHARED-MEMORY MULTIPROCESSOR SCHEDULING 19

Slide 39

SHARED-MEMORY MULTIPROCESSOR SCHEDULING

Design Issues:

➜ Shared Memory Multiprocessor Systems

➜ How to assign processes/threads to the available processors?

➜ Multiprogramming on individual processors?

➜ Which scheduling strategy ?

➜ Scheduling dependend processes

Slide 40

ASSIGNMENT OF THREADS TO PROCESSORS

➜ Treat processors as a pooled resource and assign threads to
processors on demand

• Permanently assign threads to a processor

- Dedicate short-term queue for each processor
✔ Low overhead
✖ Processor could be idle while another processor has a

backlog
• Dynamically assign process to a processor

✖ higher overhead
✖ poor locality
✔ better load balancing

ASSIGNMENT OF THREADS TO PROCESSORS 20

Slide 41

ASSIGNMENT OF THREADS TO PROCESSORS

Who decides which thread runs on which processor?

Master/slave architecture:

➜ Key kernel functions always run on a particular processor

➜ Master is responsible for scheduling

➜ Slave sends service request to the master

✔ simple

✔ one processor has control of all resources, no synchronisation

✖ Failure of master brings down whole system

✖ Master can become a performance bottleneck

Slide 42

Peer architecture:

➜ Operating system can execute on any processor

➜ Each processor does self-scheduling

➜ Complicates the operating system

- Make sure no two processors schedule the same thread
- Synchronise access to resources

➜ Proper symmetric multiprocessing

ASSIGNMENT OF THREADS TO PROCESSORS 21

Slide 43

LOAD SHARING: TIME SHARING

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

A B C

D E

F

G H I

J K

L M N

7

5
4

2
1

0

Priority

CPU

0

A

8

12

1

5

9

13

2

6

10

14

3

7

11

15

B C

D E

F

G H I

J K

L M N

7

5
4

2
1

0

Priority

CPU 4
goes idle

CPU 12
goes idle

0

A

8

B

1

5

9

13

2

6

10

14

3

7

11

15

C

D E

F

G H I

J K

L M N

7

5
4

2
3 3 3

6 6 6

1

0

Priority

(a) (b) (c)

➜ Load is distributed evenly across the processors
➜ Use global ready queue

• Threads are not assigned to a particular processor
• Scheduler picks any ready thread (according to scheduling

policy)
• Actual scheduling policy less important than on uniprocessor

➜ No centralized scheduler required

Slide 44

Disadvantages of time sharing:

➜ Central queue needs mutual exclusion

• Potential race condition when several CPUs are trying to pick
a thread from ready queue

• May be a bottleneck blocking processors

➜ Preempted threads are unlikely to resume execution on the
same processor

• Cache use is less efficient, bad locality

➜ Different threads of same process unlikely to execute in parallel

• Potentially high intra-process communication latency

LOAD SHARING: T IME SHARING 22

Slide 45

A0 B0 A0 B0 A0 B0

B1 A1 B1 A1 B1 A1

Thread A0 running

0 100 200 300 400 500 600

CPU 0

CPU 1

Time

Request 1 Request 2
Reply 2Reply 1

Slide 46

LOAD SHARING: SPACE SHARING

Scheduling multiple threads of same process across multiple
CPUs

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

4-CPU partition

12-CPU partitionUnassigned CPU

6-CPU partition

8-CPU partition

➜ statically assigned to CPUs at creation time (figure) or

➜ dynamic assignment using a central server

GANG SCHEDULING 23

Slide 47

GANG SCHEDULING

Combined time and space sharing:
➜ Simultaneous scheduling of threads that make up a single

process
➜ Useful for applications where performance severely degrades

when any part of the application is not running

• e.g., often need to synchronise with each other

0

1

2

3

4

5

6

7

0 1 2 3 4 5
A0

B0 B1

D1

E2

A1

B1

D1

E2

A1 A2

B2

D2

E3

A2

B2

D2

E3

A3

D3

E4

A3

C0

D3

E4

C1

D4

E5

A4

C1

D4

E5

C2

E0

E6

A5

C2

E0

E6

C0

A4 A5

D0

E1

A0

B0

D0

E1

CPU

Time
slot

Slide 48

SMP SUPPORT IN MODERN GENERAL PURPOSE OS’S
➜ Solaris 10.0: up to 256

➜ Linux 2.46: up to 32 (64)

➜ Windows Server 2003 Data Center: up to 64

SMP Scheduling in Linux 2.4:

➜ tries to schedule process on same CPU

➜ if the CPU busy, assigns it to an idle CPU

➜ otherwise, checks if process priority allows interrupt on preferred
CPU

➜ uses spin locks to protect kernel data structures

W INDOWS 2000 CASE STUDY 24

Slide 49

WINDOWS 2000 CASE STUDY

➜ Scheduling

➜ Virtual Memory Management

Slide 50

WINDOWS 2000 SCHEDULING

➜ priority driven, preemptive scheduling system

➜ SMP: set of processors a thread can run on may be restricted
(processor affinity)

➜ scheduling decision may be necessary when

• a new thread has been created
• a thread released from wait state
• time quantum of a thread is exceeded
• a thread’s priority changes
• processor affinity of a thread changes

➜ no dedicated scheduler thread — each thread chooses
successor while running in kernel mode

W INDOWS 2000 SCHEDULING 25

Slide 51

Address
space

Thread

Process

User
stack

Kernel mode thread stack

Access token

Process
handle
table P T T T T P

Job

Slide 52

➜ if thread with higher priority becomes ready to run, current
thread is preempted

➜ scheduled at thread granularity

• processes with many threads get more CPU time

W INDOWS 2000 SCHEDULING 26

Slide 53

WINDOWS 2000 SCHEDULING

➜ Windows 2000 priority levels:
➜ 0 (zero-page thread)
➜ 1-15 (variable levels)
➜ 16-31 (realtime levels — soft)

➜ Win32 API priority classes:

• Real-time
• High
• Above Normal
• Normal
• Below Normal
• Idle

and relative priorities within these classes:

• Time-critical
• High
• . . .

Slide 54

➜ each thread has a quantum value, clock-interrupt handler
deducts 3 from running thread quantum

➜ default value of quantum: 6 Windows 2000 Professional, 36 on
Windows 2000 Server

➜ most wait-operations result in temporary priority boost, favouring
IO-bound threads

➜ priority of a user thread can be raised (eg, after waiting for a
semaphore etc), but never above 15

➜ no adjustments to priorities above 15

W INDOWS 2000 SCHEDULING 27

Slide 55

� �

Win32 process class priorities� �

Above Below
Realtime High Normal Normal Normal Idle� �

Time critical 31 15 15 15 15 15� �

Highest 26 15 12 10 8 6� �

Win32 Above normal 25 14 11 9 7 5� �

thread Normal 24 13 10 8 6 4� �

priorities Below normal 23 12 9 7 5 3� �

Lowest 22 11 8 6 4 2� �

Idle 16 1 1 1 1 1� �

��
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

�
�

�
�

�
�

�
�

�

Slide 56

Next thread to run

Priority

System
priorities

User
priorities

Zero page thread

31

24

16

8

1
0

Idle thread

DEALING WITH PRIORITY INVERSION IN W INDOWS 2000 28

Slide 57

DEALING WITH PRIORITY INVERSION IN WINDOWS 2000

Example: Producer-Consumer problem

12

4

8

12

Does a down on the
semaphore and blocks

Semaphone Semaphone

Blocked

Running

Ready

Waiting on the semaphore

Would like to do an up
on the semaphore but
never gets scheduled

(a) (b)

➜ System keeps track of how long a ready-thread has been in the
queue

➜ if waiting time exceeds threshold, priority boosted to 15

Slide 58

WIN32 SCHEDULING-RELATED API
➜ Suspend/ResumeThread

➜ Get/SetPriorityClass (base priority)

➜ Get/SetPriority (relative priority)

➜ Get/SetProcessAffinityMask

➜ Get/SetThreadAffinityMask

➜ Get/SetPriorityBoost

➜ SetThreadIdealProcessor

➜ SwitchtoThread

➜ Sleep

MEMORY MANAGEMENT 29

Slide 59

MEMORY MANAGEMENT

➜ Every process has 4GB virtual address space

Process A
4 GB

2 GB

0

Nonpaged pool

Paged pool

A's page tables

Stacks, data, etc

HAL + OS

System data

Process A's
private code

and data

Process B

Nonpaged pool

Paged pool

B's page tables

Stacks, data, etc

HAL + OS

System data

Process B's
private code

and data

Process C

Nonpaged pool

Paged pool

C's page tables

Stacks, data, etc

HAL + OS

System data

Process C's
private code

and data

Bottom and top
64 KB are invalid

Slide 60

MEMORY MANAGEMENT

➜ A page can be in one of three states:

• free: not in use, reference to such a page causes a page
fault

• committed: data or code mapped onto the page. If not in
main memory, page fault occurs, OS swaps page from disk.
No fixed mapping to swap space

• reserved: not yet mapped, but also not available. Used, for
example, to implement thread stacks

and has the usual readable, writable, executable attributes

MEMORY MAPPED F ILES 30

Slide 61

MEMORY MAPPED FILES
➜ memory mapped filed supported
➜ processes may share maps, updates visible to all processes
➜ if file is opened for normal reading, current version is shown
➜ copy-on-write (cow)

Process A Process B

Backing store on disk

Paging file

Lib.dll

Prog1.exe Prog2.exe

Program
Program

Shared
library

Shared
library

Data

StackStack

DataRegion

Slide 62

WIN32 API FOR VM

� �

Win32 API function Description� �

VirtualAlloc Reserve or commit a region� �

VirtualFree Release or decommit a region� �

VirtualProtect Change the read/write/execute protection on a region� �

VirtualQuery Inquire about the status of a region� �

VirtualLock Make a region memory resident (i.e., disable paging for it)� �

VirtualUnlock Make a region pageable in the usual way� �

CreateFileMapping Create a file mapping object and (optionally) assign it a name� �

MapViewOfFile Map (part of) a file into the address space� �

UnmapViewOfFile Remove a mapped file from the address space� �

OpenFileMapping Open a previously created file mapping object� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

MEMORY MANAGEMENT 31

Slide 63

MEMORY MANAGEMENT

➜ Unlike scheduler, who deals with threads and ignores processes,
MM deals only with processes

➜ Mapping of pages happens in the usual way, two-level page
table used

➜ In case of a page fault, a block of consecutive pages are read

Slide 64

PAGE REPLACEMENT ALGORITHM

Working Set:

➜ set of pages of a process which have been mapped into
memory

➜ described by (process specific) max and min size

➜ all processes start with the same limits, but may change over
time

➜ not hard bounds

➜ if page fault occurs and process has

• less than min pages: add page
• between min and max pages: add page if memory is not

scarce
• more than max pages: evict page from working set

➜ Working set of system is handled separately.

DAEMON THREADS TO MANAGE WORKING SETS 32

Slide 65

DAEMON THREADS TO MANAGE WORKING SETS

➜ Balance Set Manager: checks whether there are enough free
pages, starts Working Set Manager if required

➜ Working Set Manager: searches for processes which have
exceeded their maximum, didn’t have page faults recently and
removes some of their pages

Slide 66

A closer look at the free frames management:

Working
sets

Zero page needed (8)

Page read in (6)

Soft page fault (2)

Mod-
ified
page
list

Standby
page
list

Free
page
list

Zeroed
page
list

Bad
RAM
page
list

Top

Bottom

Modified
page
writer(4)

Dealloc(5) Zero
page
thread (7)

Page evicted from a working set (1) Process exist (3)

There are actually four separate lists which contain free
frames

➀ Modified Pages

➁ Standby Pages

➂ Free Pages

➃ Zeroed Pages

DAEMON THREADS TO MANAGE WORKING SETS 33

Slide 67

A closer look at the free frames management:

X

X

X
X

State Cnt WS PTOther Next

Clean
Dirty
Clean
Active
Clean
Dirty
Active
Dirty
Free
Free
Zeroed
Active

Active
Zeroed

13
12
11 20
10

8 4
7
6
5
4
3 6
2
1 14
0

14

Standby

Modified

Free

Zeroed

Page tables
Page frame database

Zeroed

List headers

9

DAEMON THREADS TO MANAGE WORKING SETS 34

