
1

User-level Mutual Exclusion Lock-free?• Avoid needing locking by using lock-free data structure– Still need short atomic sequences• compare-and-swap• Lock-based data structure also need mutual exclusion to implement the lock primitive themselves.
How do we provide efficient mutual exclusion to kernel-implemented threads at user-level• Interrupt disabling?• Syscalls?• Processor Instructions?

Optimistic Approach• Assume the critical code runs atomically– Atomic Sequence• If an interrupt occurs, OS recovers such that atomicity is preserved• Two basic mechanisms– Rollback• Only single memory location update• Guarantee progress???– Rollforward
How does the OS know what is an atomic sequence?• Designated sequences– Match well know sequences surrounding PC• Matching takes time• sequence may occur outside an atomic sequences– Rollback might break code– Rollforward okay• Sequences can be inlined• No overhead added to each sequence, overhead only on interruption

• Static Registration– All sequences are registered at program startup• No direct overhead to sequences themselves• Limited number of sequences– Reasonable to identify on interrupt– No inlining



2

• Dynamic Registration– Share a variable between kernel and user-level, set it while in an atomic sequence– Can inline, even synthesize sequences at runtime– Adds direct overhead to each sequence
How to roll forward?• Code re-writing– Re-write instruction after sequence to call back to interrupt handler • Cache issues – need to flush the instruction cache??

• Cloning– Two copies of each sequence• normal copy• modified copy that call back into interrupt handler• On interrupt, map PC in normal sequence into PC in modified• Mapping can be time consuming– Inlining???
• Computed Jump– Every sequence uses a computed jump at the end• Normal sequence simply jmp to next instruction• Interrupted sequence jumps to interrupt handler• Adds a jump to every sequence

• Controlled fault– Dummy instruction at end of each sequences• NOP for normal case• Fault for interrupt case– Example is read from (in)accessible page– Only good for user-kernel privilege changes– Still adds an extra instruction
Limiting Duration of Roll forward• Watchdog• Restriction on code so termination can be inspected for



3

Implementations - Dynamic Registration Scheme With Jump Implementations - Dynamic Registration Scheme With Fault

Implementations - Dynamic Registration Scheme With Fault Results


