
1

2

Two-level Translation

3

R3000 TLB Refill

• Can be optimised for TLB refill
only

– Does not need to check the
exception type

– Does not need to save any
registers

• It uses a specialised

• An example routine

mfc0 k1,C0_CONTEXT

mfc0 k0,C0_EPC # mfc0 delay

slot

lw k1,0(k1) # may double

fault (k0 = orig EPC)

4

• It uses a specialised
assembly routine that only
uses k0 and k1.

– Does not check if PTE exists

• Assumes virtual linear array –
see extended OS notes

• With careful data structure
choice, exception handler can
be made very fast

nop

mtc0 k1,C0_ENTRYLO

nop

tlbwr

jr k0

rfe

5

6

7

Virtual Linear Array page table

• Assume a 2-level PT

• Assume 2nd-level PT nodes are in virtual memory

• Assume all 2nd-level nodes are allocated contiguously ⇒
2nd-level nodes form a contiguous array indexed by page
number

8

number

Virtual Linear Array Operation

• Index into 2nd level page table without referring to root
PT!

9

PT!

• Simply use the full page number as the PT index!

• Leave unused parts of PT unmapped!

• If access is attempted to unmapped part of PT, a
secondary page fault is triggered
– This will load the mapping for the PT from the root PT

– Root PT is kept in physical memory (cannot trigger page faults)

Virtual Linear Array Page Table
• Use Context register to simply

load PTE by indexing a PTE
array in virtual memory

• Occasionally, will get double
faults
– A TLB miss, while servicing a TLB

miss

– Handled by general exception

10

PTEbase in virtual

memory in kseg2

• Protected from

user access

– Handled by general exception
handler

c0 Context Register

• c0_Context = PTEBase + 4 * PageNumber
– PTEs are 4 bytes

– PTEBase is the base local of the page table array (note: aligned

11

– PTEBase is the base local of the page table array (note: aligned
on 4 MB boundary)

– PTEBase is (re)initialised by the OS whenever the page table
array is changed

• E.g on a context switch

– After an exception, c0_Context contains the address of the PTE
required to refill the TLB.

Code for VLA TLB refill handler
mfc0 k1,C0_CONTEXT

mfc0 k0,C0_EPC # mfc0 delay slot

lw k1,0(k1) # may double fault

(k0 = orig EPC)

nop

mtc0 k1,C0_ENTRYLO

nop

Load PTE

address from

context register

Move the PTE

into EntryLo.

Load address of

instruction to

12

nop

tlbwr

jr k0

rfe Load the PTE.

Note: this load can cause a

TLB refill miss itself, but

this miss is handled by the

general exception vector.

The general exception

vector has to understand

this situation and deal with

in appropriately

into EntryLo.

Write EntryLo

into random TLB

entry. Return from the

exception

instruction to

return to

