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Processes and Threads
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Learning Outcomes

• An understanding of fundamental concepts of 

processes and threads

• An understanding of the typical implementation 

strategies of processes and threads

– Including an appreciation of the trade-offs between 

the implementation approaches

• Kernel-threads versus user-level threads

• A detailed understanding of “context switching”
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Major Requirements of an

Operating System
• Interleave the execution of several 

processes to maximize processor 

utilization while providing reasonable 

response time

• Allocate resources to processes

• Support interprocess communication and 

user creation of processes
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Processes and Threads

• Processes:

– Also called a task or job

– Execution of an individual program

– “Owner” of resources allocated for program execution

– Encompasses one or more threads 

• Threads:

– Unit of execution

– Can be traced

• list the sequence of instructions that execute

– Belongs to a process

Execution snapshot 

of three single-

threaded processes 

(No Virtual 

Memory)

Logical Execution Trace



2

Combined Traces

(Actual CPU 

Instructions)

What are the 

shaded sections?
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Summary: The Process Model

• Multiprogramming of four programs

• Conceptual model of 4 independent, sequential 

processes (with a single thread each)

• Only one program active at any instant
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Process and thread models of 

selected OSes
• Single process, single thread

– MSDOS

• Single process, multiple threads 

– OS/161 as distributed

• Multiple processes, single thread

– Traditional unix

• Multiple processes, multiple threads
– Modern Unix (Linux, Solaris), Windows 2000 

Note: Literature (incl. Textbooks) often do not 
cleanly distinguish between processes and 
threads (for historical reasons)
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Process Creation
Principal events that cause process creation

1. System initialization
• Foreground processes (interactive programs)

• Background processes 

• Email server, web server, print server, etc.

• Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a 
running process
• New login shell for an incoming telnet/ssh connection

3. User request to create a new process

4. Initiation of a batch job

Note: Technically, all these cases use the same 
system mechanism to create new processes. 
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Process Termination

Conditions which terminate processes

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary)

4. Killed by another process (involuntary)



3

13

Process/Thread States

• Possible process/thread states

– running

– blocked

– ready

• Transitions between states shown
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Some Transition Causing 

Events
Running >Ready

– Voluntary Yield()

– End of timeslice

Running >Blocked

– Waiting for input

• File, network, 

– Waiting for a timer (alarm signal)

– Waiting for a resource to become available
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Dispatcher
• Sometimes also called the scheduler

– The literature is also a little inconsistent on 

this point

• Has to choose a Ready process to run

– How?

– It is inefficient to search through all 

processes
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The Ready Queue
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What about blocked processes?

• When an unblocking event occurs, we also 

wish to avoid scanning all processes to 

select one to make Ready
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Using Two Queues
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Implementation of Processes 
• A processes’ information is stored in 

a process control block (PCB)

• The PCBs form a process table

– Sometimes the kernel stack for each 

process is in the PCB

– Sometimes some process info is on the 

kernel stack

• E.g. registers in the trapframe in OS/161

– Reality is much more complex (hashing, 

chaining, allocation bitmaps,G)

P0

P1

P2

P3

P4

P5

P6

P7
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Implementation of Processes

Example fields of a process table entry

Threads Analogy

The Hamburger Restaurant
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Single-Threaded Restaurant
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Customer

Arrives

Take Order

Fries Cook

Assemble

Order

Fries Finish

Start Fries

Serve

Customer

Burger CooksBurger

Finished

Start Burger

Wait for

Customer

Multithreaded Restaurant

24

Customer

Arrives

Take Order

Fries Cook

Assemble

Order

Fries Finish

Start Fries

Serve

Customer

Burger Cooks
Burger

Finished

Start Burger

Wait for

Customer
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Finite-State Machine Model
(Event-based model)
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Customer

Arrives

Take Order

Fries Cook

Assemble

Order

Fries Finish

Start Fries

Serve

Customer

Burger Cooks

Burger

Finished

Start Burger

Wait for

Customer

Input

Events Non-

Blocking 

actions

External

activities
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Threads
The Thread Model

(a) Three processes each with one thread

(b) One process with three threads
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The Thread Model

• Items shared by all threads in a process

• Items private to each thread
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The Thread Model

Each thread has its own stack
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Thread Model

• Local variables are per thread

– Allocated on the stack

• Global variables are shared between all threads

– Allocated in data section

– Concurrency control is an issue

• Dynamically allocated memory (malloc) can be 
global or local
– Program defined (the pointer can be global or local)
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Thread Usage

A word processor with three threads
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Thread Usage

A multithreaded Web server
32

Thread Usage

• Rough outline of code for previous slide

(a) Dispatcher thread

(b) Worker thread

33

Thread Usage 

Three ways to construct a server
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Summarising “Why Threads?”

• Simpler to program than a state machine

• Less resources are associated with them than a 
complete process
– Cheaper to create and destroy

– Shares resources (especially memory) between them

• Performance: Threads waiting for I/O can be overlapped 
with computing threads
– Note if all threads are compute bound, then there is no 
performance improvement (on a uniprocessor)

• Threads can take advantage of the parallelism available 
on machines with more than one CPU (multiprocessor)
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Implementing Threads in User 

Space

A user-level threads package
36

User-level Threads
• Implementation at user-level

– User-level Thread Control Block (TCB), ready 

queue, blocked queue, and dispatcher

– Kernel has no knowledge of the threads (it 

only sees a single process)

– If a thread blocks waiting for a resource held 

by another thread, its state is saved and the 

dispatcher switches to another ready thread

– Thread management  (create, exit, yield, wait) 

are implemented in a runtime support library
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User-Level Threads

• Pros
– Thread management and switching at user level is much faster 
than doing it in kernel level

• No need to trap (take syscall exception) into kernel and back to 
switch

– Dispatcher algorithm can be tuned to the application

• E.g. use priorities

– Can be implemented on any OS (thread or non-thread aware)

– Can easily support massive numbers of threads on a per-
application basis

• Use normal application virtual memory

• Kernel memory more constrained. Difficult to efficiently support 
wildly differing numbers of threads for different applications.
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User-level Threads
• Cons

– Threads have to yield() manually (no timer 
interrupt delivery to user-level)

• Co-operative multithreading
– A single poorly design/implemented thread can 
monopolise the available CPU time

• There are work-arounds (e.g. a timer signal per 
second to enable pre-emptive multithreading), they 
are course grain and a kludge.

– Does not take advantage of multiple CPUs (in 
reality, we still have a single threaded process 
as far as the kernel is concerned)
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User-Level Threads

• Cons
– If a thread makes a blocking  system call (or takes a page fault), 
the process (and all the internal threads) blocks

• Can’t overlap I/O with computation

• Can use wrappers as a work around 
– Example: wrap the read() call

– Use select() to test if read system call would block

» select() then read()

» Only call read() if it won’t block

» Otherwise schedule another thread

– Wrapper requires 2 system calls instead of one

» Wrappers are needed for environments doing lots of blocking 
system calls?

• Can change to kernel to support non-blocking system call

– Lose “on any system” advantage, page faults still a problem.
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Implementing Threads in the Kernel

A threads package managed by the kernel
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Kernel Threads

• Threads are implemented in the kernel

– TCBs are stored in the kernel

• A subset of information in a traditional PCB

– The subset related to execution context

• TCBs have a PCB associated with them

– Resources associated with the group of threads (the 

process)

– Thread management calls are implemented 

as system calls

• E.g. create, wait, exit
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Kernel Threads

• Cons

– Thread creation and destruction, and blocking 
and unblocking threads requires kernel entry 
and exit.

• More expensive than user-level equivalent

• Pros

– Preemptive multithreading

– Parallelism

• Can overlap blocking I/O with computation

• Can take advantage of a multiprocessor 
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User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

User-level Threads

� Fast thread management (creation, deletion, 

switching, synchronisationG)

� Blocking blocks all threads in a process

– Syscalls

– Page faults

� No thread-level parallelism on multiprocessor

Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Kernel-level Threads

� Slow thread management (creation, deletion, 

switching, synchronisationG)

• System calls

�Blocking blocks only the appropriate thread in a 

process

� Thread-level parallelism on multiprocessor
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Multiprogramming Implementation

Skeleton of what lowest level of OS does when an 
interrupt occurs – a thread/context switch

48

Thread Switch
• A switch between threads can happen any time 
the OS is invoked
– On a system call

• Mandatory if system call blocks or on exit();

– On an exception
• Mandatory if offender is killed

– On an interrupt
• Triggering a dispatch is the main purpose of the timer 
interrupt

A thread switch can happen between any two 
instructions

Note instructions do not equal program statements
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Context Switch

• Thread switch must be transparent for threads

– When dispatched again, thread should not notice that 

something else was running in the meantime (except 

for elapsed time)

⇒OS must save all state that affects the thread

• This state is called the thread context

• Switching between threads consequently results 

in a context switch.

50

Simplified 

Explicit

Thread Switch
thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b
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Example Context Switch

• Running in user mode, SP points to user-
level activation stack

SP

Representation of 

Kernel Stack 

(Memory)
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Example Context Switch

• Take an exception, syscall, or interrupt, 
and we switch to the kernel stack

SP

53

Example Context Switch

• We push a trapframe on the stack

– Also called exception frame, user-level context�.

– Includes the user-level PC and SP

SP

trapframe

54

Example Context Switch

• Call ‘C’ code to process syscall, exception, 

or interrupt

– Results in a ‘C’ activation stack building up 

SP

trapframe‘C’ activation stack
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Example Context Switch

• The kernel decides to perform a context switch

– It chooses a target thread (or process)

– It pushes remaining kernel context onto the stack

SP

trapframe‘C’ activation stackKernel State
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Example Context Switch

• Any other existing thread must

– be in kernel mode (on a uni processor),

– and have a similar stack layout to the stack we are 
currently using

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel 

stacks of 

other 

threads
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Example Context Switch

• We save the current SP in the PCB (or TCB), 

and load the SP of the target thread.

– Thus we have switched contexts

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
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Example Context Switch

• Load the target thread’s previous context, 

and return to C

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State
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Example Context Switch

• The C continues and (in this example) 

returns to user mode.

SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State
60

Example Context Switch

• The user-level context is restored

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



11

61

Example Context Switch

• The user-level SP is restored

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
62

The Interesting Part of a Thread 

Switch
• What does the “push kernel state” part 

do???

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
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OS/161 md_switch
md_switch(struct pcb *old, struct pcb *nu)

{

if (old==nu) {

return;

}

/*

* Note: we don't need to switch curspl, because splhigh()

* should always be in effect when we get here and when we

* leave here.

*/

old->pcb_kstack = curkstack;

old->pcb_ininterrupt = in_interrupt;

curkstack = nu->pcb_kstack;

in_interrupt = nu->pcb_ininterrupt;

mips_switch(old, nu);

} 64

OS/161 mips_switch

mips_switch:

/*

* a0 contains a pointer to the old thread's struct pcb.

* a1 contains a pointer to the new thread's struct pcb.

*

* The only thing we touch in the pcb is the first word, which

* we save the stack pointer in. The other registers get saved

* on the stack, namely:

*

*      s0-s8

*      gp, ra

*

* The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44
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OS/161 mips_switch

/* Save the registers */

sw ra, 40(sp)

sw gp, 36(sp)

sw s8, 32(sp)

sw s7, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */

sw sp, 0(a0)

Save the registers 

that the ‘C’ 

procedure calling 

convention 

expects 

preserved
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OS/161 mips_switch

/* Get the new stack pointer from the new pcb */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s7, 28(sp)

lw s8, 32(sp)

lw gp, 36(sp)

lw ra, 40(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */

.end mips_switch
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Revisiting

Thread Switchmips_switch(a,b)

{

mips_switch(a,b)

{

mips_switch(b,a)

{

}

}

}

Thread a Thread b


