
1

1

Processes and Threads

2

Learning Outcomes

• An understanding of fundamental concepts of

processes and threads

• An understanding of the typical implementation

strategies of processes and threads

– Including an appreciation of the trade-offs between

the implementation approaches

• Kernel-threads versus user-level threads

• A detailed understanding of “context switching”

3

Major Requirements of an

Operating System
• Interleave the execution of several

processes to maximize processor

utilization while providing reasonable

response time

• Allocate resources to processes

• Support interprocess communication and

user creation of processes

4

Processes and Threads

• Processes:

– Also called a task or job

– Execution of an individual program

– “Owner” of resources allocated for program execution

– Encompasses one or more threads

• Threads:

– Unit of execution

– Can be traced

• list the sequence of instructions that execute

– Belongs to a process

Execution snapshot

of three single-

threaded processes

(No Virtual

Memory)

Logical Execution Trace

2

Combined Traces

(Actual CPU

Instructions)

What are the

shaded sections?

8

Summary: The Process Model

• Multiprogramming of four programs

• Conceptual model of 4 independent, sequential

processes (with a single thread each)

• Only one program active at any instant

10

Process and thread models of

selected OSes
• Single process, single thread

– MSDOS

• Single process, multiple threads

– OS/161 as distributed

• Multiple processes, single thread

– Traditional unix

• Multiple processes, multiple threads
– Modern Unix (Linux, Solaris), Windows 2000

Note: Literature (incl. Textbooks) often do not
cleanly distinguish between processes and
threads (for historical reasons)

11

Process Creation
Principal events that cause process creation

1. System initialization
• Foreground processes (interactive programs)

• Background processes

• Email server, web server, print server, etc.

• Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a
running process
• New login shell for an incoming telnet/ssh connection

3. User request to create a new process

4. Initiation of a batch job

Note: Technically, all these cases use the same
system mechanism to create new processes.

12

Process Termination

Conditions which terminate processes

1. Normal exit (voluntary)

2. Error exit (voluntary)

3. Fatal error (involuntary)

4. Killed by another process (involuntary)

3

13

Process/Thread States

• Possible process/thread states

– running

– blocked

– ready

• Transitions between states shown
14

Some Transition Causing

Events
Running >Ready

– Voluntary Yield()

– End of timeslice

Running >Blocked

– Waiting for input

• File, network,

– Waiting for a timer (alarm signal)

– Waiting for a resource to become available

15

Dispatcher
• Sometimes also called the scheduler

– The literature is also a little inconsistent on

this point

• Has to choose a Ready process to run

– How?

– It is inefficient to search through all

processes

16

The Ready Queue

17

What about blocked processes?

• When an unblocking event occurs, we also

wish to avoid scanning all processes to

select one to make Ready

18

Using Two Queues

4

20

Implementation of Processes
• A processes’ information is stored in

a process control block (PCB)

• The PCBs form a process table

– Sometimes the kernel stack for each

process is in the PCB

– Sometimes some process info is on the

kernel stack

• E.g. registers in the trapframe in OS/161

– Reality is much more complex (hashing,

chaining, allocation bitmaps,G)

P0

P1

P2

P3

P4

P5

P6

P7

21

Implementation of Processes

Example fields of a process table entry

Threads Analogy

The Hamburger Restaurant

22

Single-Threaded Restaurant

23

Customer

Arrives

Take Order

Fries Cook

Assemble

Order

Fries Finish

Start Fries

Serve

Customer

Burger CooksBurger

Finished

Start Burger

Wait for

Customer

Multithreaded Restaurant

24

Customer

Arrives

Take Order

Fries Cook

Assemble

Order

Fries Finish

Start Fries

Serve

Customer

Burger Cooks
Burger

Finished

Start Burger

Wait for

Customer

5

Finite-State Machine Model
(Event-based model)

25

Customer

Arrives

Take Order

Fries Cook

Assemble

Order

Fries Finish

Start Fries

Serve

Customer

Burger Cooks

Burger

Finished

Start Burger

Wait for

Customer

Input

Events Non-

Blocking

actions

External

activities

26

Threads
The Thread Model

(a) Three processes each with one thread

(b) One process with three threads

27

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

28

The Thread Model

Each thread has its own stack

29

Thread Model

• Local variables are per thread

– Allocated on the stack

• Global variables are shared between all threads

– Allocated in data section

– Concurrency control is an issue

• Dynamically allocated memory (malloc) can be
global or local
– Program defined (the pointer can be global or local)

30

Thread Usage

A word processor with three threads

6

31

Thread Usage

A multithreaded Web server
32

Thread Usage

• Rough outline of code for previous slide

(a) Dispatcher thread

(b) Worker thread

33

Thread Usage

Three ways to construct a server

34

Summarising “Why Threads?”

• Simpler to program than a state machine

• Less resources are associated with them than a
complete process
– Cheaper to create and destroy

– Shares resources (especially memory) between them

• Performance: Threads waiting for I/O can be overlapped
with computing threads
– Note if all threads are compute bound, then there is no
performance improvement (on a uniprocessor)

• Threads can take advantage of the parallelism available
on machines with more than one CPU (multiprocessor)

35

Implementing Threads in User

Space

A user-level threads package
36

User-level Threads
• Implementation at user-level

– User-level Thread Control Block (TCB), ready

queue, blocked queue, and dispatcher

– Kernel has no knowledge of the threads (it

only sees a single process)

– If a thread blocks waiting for a resource held

by another thread, its state is saved and the

dispatcher switches to another ready thread

– Thread management (create, exit, yield, wait)

are implemented in a runtime support library

7

37

User-Level Threads

• Pros
– Thread management and switching at user level is much faster
than doing it in kernel level

• No need to trap (take syscall exception) into kernel and back to
switch

– Dispatcher algorithm can be tuned to the application

• E.g. use priorities

– Can be implemented on any OS (thread or non-thread aware)

– Can easily support massive numbers of threads on a per-
application basis

• Use normal application virtual memory

• Kernel memory more constrained. Difficult to efficiently support
wildly differing numbers of threads for different applications.

38

User-level Threads
• Cons

– Threads have to yield() manually (no timer
interrupt delivery to user-level)

• Co-operative multithreading
– A single poorly design/implemented thread can
monopolise the available CPU time

• There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and a kludge.

– Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)

39

User-Level Threads

• Cons
– If a thread makes a blocking system call (or takes a page fault),
the process (and all the internal threads) blocks

• Can’t overlap I/O with computation

• Can use wrappers as a work around
– Example: wrap the read() call

– Use select() to test if read system call would block

» select() then read()

» Only call read() if it won’t block

» Otherwise schedule another thread

– Wrapper requires 2 system calls instead of one

» Wrappers are needed for environments doing lots of blocking
system calls?

• Can change to kernel to support non-blocking system call

– Lose “on any system” advantage, page faults still a problem.

40

Implementing Threads in the Kernel

A threads package managed by the kernel

41

Kernel Threads

• Threads are implemented in the kernel

– TCBs are stored in the kernel

• A subset of information in a traditional PCB

– The subset related to execution context

• TCBs have a PCB associated with them

– Resources associated with the group of threads (the

process)

– Thread management calls are implemented

as system calls

• E.g. create, wait, exit

42

Kernel Threads

• Cons

– Thread creation and destruction, and blocking
and unblocking threads requires kernel entry
and exit.

• More expensive than user-level equivalent

• Pros

– Preemptive multithreading

– Parallelism

• Can overlap blocking I/O with computation

• Can take advantage of a multiprocessor

8

User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

User-level Threads

� Fast thread management (creation, deletion,

switching, synchronisationG)

� Blocking blocks all threads in a process

– Syscalls

– Page faults

� No thread-level parallelism on multiprocessor

Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Kernel-level Threads

� Slow thread management (creation, deletion,

switching, synchronisationG)

• System calls

�Blocking blocks only the appropriate thread in a

process

� Thread-level parallelism on multiprocessor

47

Multiprogramming Implementation

Skeleton of what lowest level of OS does when an
interrupt occurs – a thread/context switch

48

Thread Switch
• A switch between threads can happen any time
the OS is invoked
– On a system call

• Mandatory if system call blocks or on exit();

– On an exception
• Mandatory if offender is killed

– On an interrupt
• Triggering a dispatch is the main purpose of the timer
interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements

9

49

Context Switch

• Thread switch must be transparent for threads

– When dispatched again, thread should not notice that

something else was running in the meantime (except

for elapsed time)

⇒OS must save all state that affects the thread

• This state is called the thread context

• Switching between threads consequently results

in a context switch.

50

Simplified

Explicit

Thread Switch
thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b

51

Example Context Switch

• Running in user mode, SP points to user-
level activation stack

SP

Representation of

Kernel Stack

(Memory)

52

Example Context Switch

• Take an exception, syscall, or interrupt,
and we switch to the kernel stack

SP

53

Example Context Switch

• We push a trapframe on the stack

– Also called exception frame, user-level context�.

– Includes the user-level PC and SP

SP

trapframe

54

Example Context Switch

• Call ‘C’ code to process syscall, exception,

or interrupt

– Results in a ‘C’ activation stack building up

SP

trapframe‘C’ activation stack

10

55

Example Context Switch

• The kernel decides to perform a context switch

– It chooses a target thread (or process)

– It pushes remaining kernel context onto the stack

SP

trapframe‘C’ activation stackKernel State

56

Example Context Switch

• Any other existing thread must

– be in kernel mode (on a uni processor),

– and have a similar stack layout to the stack we are
currently using

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel

stacks of

other

threads

57

Example Context Switch

• We save the current SP in the PCB (or TCB),

and load the SP of the target thread.

– Thus we have switched contexts

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
58

Example Context Switch

• Load the target thread’s previous context,

and return to C

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State

59

Example Context Switch

• The C continues and (in this example)

returns to user mode.

SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State
60

Example Context Switch

• The user-level context is restored

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

11

61

Example Context Switch

• The user-level SP is restored

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
62

The Interesting Part of a Thread

Switch
• What does the “push kernel state” part

do???

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

63

OS/161 md_switch
md_switch(struct pcb *old, struct pcb *nu)

{

if (old==nu) {

return;

}

/*

* Note: we don't need to switch curspl, because splhigh()

* should always be in effect when we get here and when we

* leave here.

*/

old->pcb_kstack = curkstack;

old->pcb_ininterrupt = in_interrupt;

curkstack = nu->pcb_kstack;

in_interrupt = nu->pcb_ininterrupt;

mips_switch(old, nu);

} 64

OS/161 mips_switch

mips_switch:

/*

* a0 contains a pointer to the old thread's struct pcb.

* a1 contains a pointer to the new thread's struct pcb.

*

* The only thing we touch in the pcb is the first word, which

* we save the stack pointer in. The other registers get saved

* on the stack, namely:

*

* s0-s8

* gp, ra

*

* The order must match arch/mips/include/switchframe.h.

*/

/* Allocate stack space for saving 11 registers. 11*4 = 44 */

addi sp, sp, -44

65

OS/161 mips_switch

/* Save the registers */

sw ra, 40(sp)

sw gp, 36(sp)

sw s8, 32(sp)

sw s7, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old pcb */

sw sp, 0(a0)

Save the registers

that the ‘C’

procedure calling

convention

expects

preserved

66

OS/161 mips_switch

/* Get the new stack pointer from the new pcb */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s7, 28(sp)

lw s8, 32(sp)

lw gp, 36(sp)

lw ra, 40(sp)

nop /* delay slot for load */

/* and return. */

j ra

addi sp, sp, 44 /* in delay slot */

.end mips_switch

12

67

Revisiting

Thread Switchmips_switch(a,b)

{

mips_switch(a,b)

{

mips_switch(b,a)

{

}

}

}

Thread a Thread b

