User-level Mutual Exclusion

Mutual Exclusion
Overheads

* Locking implemented by:
— Interrupt disabling and enabling
* not suitable for user-level
— Hardware primitives (test and set)
* not always available, not efficiently implemented
— System calls
* high overheads

« Trade-off between granularity of locking and locking
overhead

— Fine granularity
* more potential parallelism
* more locks and thus overhead

E5

B THE UNIVERSITY OF
P NEW SOUTH WALES

Can we avoid locking?

* Yes
— In some cases

* Lock-free data structures

— Need hardware help
* compare-and-swap
- exchange
 test_and_set

B
CE] THE UNIVERSITY OF
@8 NCW SOUTH WALES

=
EL THE UNIVERSITY OF
@8 NCW SOUTH WALES

Atomic Compare and Swap

bool compare swap(addr, val, new)

{
if (*addr == val) {
*addr = new;
return true;

}

return false

addr = memory address
val = expected value
new = value to replace
r = success or failure

Example

 Lock-free atomic increment

atomic inc(int *addr)

{
do {
old = *addr;
new = old + 1;
} while (!compare and swap(addr, old, new));
}

* Lock-free does not preclude starvation
« Tricky to implement more complex structures

Lock-free the solution?

« Can avoid locking by using lock-free data
structures

— Still need short atomic sequences
* compare-and-swap,eftc,..
- not always provided by hardware
* may be slow to execute
- Observe: Lock-based data structure also
need mutual exclusion to implement the lock
primitive themselves.

= THE UNIVERSITY OF
B NrW SOUTH WALES

How do we provide efficient
atomic sequences?

* Interrupt disabling?
» Syscalls?
* Processor Instructions?

=
el THE UNIVERSITY OF
pegesil NEW SOUTH WALES

Qe
R

The problem

add:

w rO, (rl)
add ro, ro, 1
sw r@, (rl)

Optimistic Approach

* Assume the critical code runs atomically
— Atomic Sequence

* |If an interrupt occurs, OS recovers such that
atomicity is preserved

« Two basic mechanisms
— Rollback

* Only single memory location update
« Guarantee progress???

— Rollforward

o)
EL THE UNIVERSITY OF
@8 NCW SOUTH WALES

How does the OS know what is
an atomic sequence?

» Designated sequences

— Match well know sequences surrounding PC
- Matching takes time

* sequence may occur outside an atomic sequences
— Rollback might break code
— Rollforward okay

« Sequences can be inlined

* No overhead added to each sequence, overhead only on
interruption

» Static Registration

— All sequences are registered at program
startup
* No direct overhead to sequences themselves

 Limited number of sequences
— Reasonable to identify on interrupt
— No inlining

=
51| THE UNIVERSITY OF
@8 NCW SOUTH WALES

* Dynamic Registration

— Share a variable between kernel and user-
level, set it while in an atomic sequence

— Can inline, even synthesize sequences at
runtime

— Adds direct overhead to each sequence

o)
EL THE UNIVERSITY OF
@8 NCW SOUTH WALES

How to roll forward?

* Problem: How to regain control after
rolling forward to end of sequence

» Code re-writing
— Re-write instruction after sequence to call

back to interrupt handler

» Cache issues — need to flush the instruction
cache??

==
CEL| THE UNIVERSITY OF
8| NEW SOUTH WALES

 Cloning

— Two copies of each sequence
* normal copy

- modified copy that call back into interrupt
handler

* On interrupt, map PC in normal sequence into
PC in modified
* Mapping can be time consuming
— Inlining???
» Difficulties with PC relative offsets

CEL| THE UNIVERSITY OF
@8 NCW SOUTH WALES

« Computed Jump

— Every sequence uses a computed jump at
the end

* Normal sequence simply jmp to next instruction
* Interrupted sequence jumps to interrupt handler
- Adds a jump to every sequence

B
CE] THE UNIVERSITY OF
@8 NCW SOUTH WALES

e Controlled fault

— Dummy instruction at end of each
sequences
* NOP for normal case
* Fault for interrupt case
— Example is read from (in)accessible page
— Only good for user-kernel privilege
changes

— Still adds an extra instruction

o)
EL THE UNIVERSITY OF
@8 NCW SOUTH WALES

Limiting Duration of Roll
forward

» Watchdog

* Restriction on code so termination can
be inspected for

=
el THE UNIVERSITY OF
pegesil NEW SOUTH WALES

Qe
R

Implementations - Dynamic Registration
Scheme With Jump

destAddr <+ addressOf (theEnd)

theEnd:

theEnd:

mmAS + TRUE
(atomic sequence. . .)
mAS < FALSE
jump destAddr

lda 1r4, 1naAs

lda 1rl, theEnd

stl =zero, (r4)

lda r3, sharedCounter
1dl r2, (r3)

addl r2, 1, r2

stl rz2, (r3)

stl rl, (r4)

Jmp (rl)

H o= H H O H H = H

load address

load address
inAS < TRUE

load address

of
of
(0

of

inaAs
theEnd into rl
= TRUZ)

csharedCounter

load value of sharedCounter

incremsnt counter

store back new wvalue
reset 1inAS to FALSE (not 0 = FALSE)

jump to address stored in rl

B!
=1 THE UNIVERSITY OF

Implementations - Dynamic Registration
Scheme With Fault

destAddr + addressOf(theEnd)
mAS «+ TRUE
(atomic sequence . . .)

theEnd: nAS <+ xfalseOrFault

@8 NCW SOUTH WALES

Implementations — Hybrid registration - a
hint-based approach

destAddr + addressOf (theEnd)
mAS «+ TRUE
(atomic sequence.. . .)
jump destAddr
theEnd:

* 1lda rl, theEnd load address of theEnd into rl

lda 13, sharedCounter load address of sharedCounter
1dl r2, (r3)
addl rz2, 1, r2

atl r2, (r3)

load value of sharedCounter
ilncrement counter

store back new wvalue

O O O

jump to addresse stored in rl

theEnd:

Results

DEC Alpha HP PA-RISC 1.1
Technique NULL LIFO FIFO | NULL LIFO FIFO
sigprocmask 1682 3045 3363 1787 3578 3590
Dyn/Fault 3 27 24 12 24 27
Dyn/Jump 9 16 13 11 21 27
Hyb/Jump 6 5 6 5 8 12
DI 4 : 4 4 5 12
CIPL 4 5 0 14 24 29
splx 44 89 88 30 63 73
PALcode > 13 > 13 > 13 n/a n/a n/a
LL/STC n/a > 118 > 118 n/a n/a n/a

Table 1: Overheads of Different Atomicity Schemes in Cycles

Benchmark Legend

» Sigprocmask — syscall based approach
* DI —disable all interrupts

» CIPL — set interrupt priority level
 SPLx — same as CIPL with function call
* PALcode — special Alpha processor call
» LL/SC — load link store conditional

=
& THE UNIVERSITY OF
@8 NCW SOUTH WALES

—_————————
Interrupt Delay

* Whenever an interrupt occurs, we need to
check for atomic sequence.

— Hyb/Jump
 does r1 point to instruction after a jump
* sequence <= 32 instructions
* no backward jumps/branches
- forward jump/branch targets within sequence

» Cost
— 73 + N * 25 cycles (N is length of sequence)

