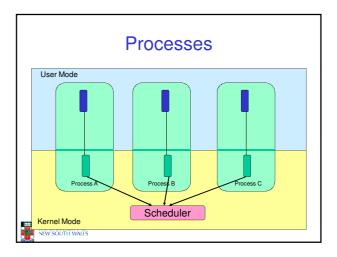
Processes and Threads Implementation

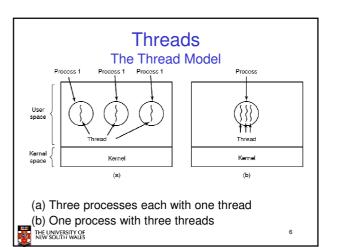
Learning Outcomes

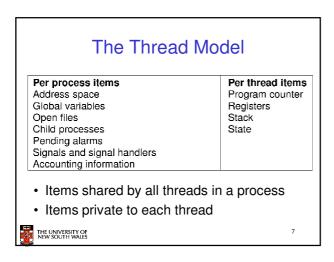

- An understanding of the typical implementation strategies of processes and threads
 - Including an appreciation of the trade-offs between the implementation approaches
 - · Kernel-threads versus user-level threads
- · A detailed understanding of "context switching"

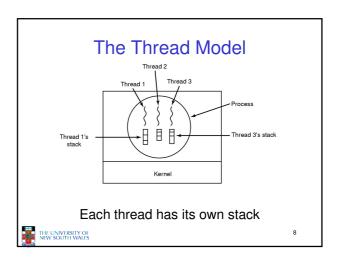
2

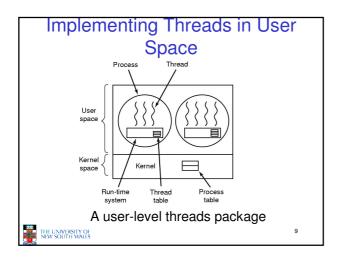
Summary: The Process Model One program counter One program counter Process switch Four program counters Summary: The Process Model One program counter Four program counters Summary: The Process Model One program counter Four program counters Summary: The Process Model One program counter Four program counters Summary: The Process Model One program counter Four program counters Four program counters Summary: The Process Model One program counter Four program counters Summary: The Process Model One program counter Four program counters Summary: The Process Model One program counter Four program counters Summary: The Process Model One program counter Four program counters Four program counters Summary: The Process Model One program counter Four program counters Summary: The Process Model One program counter Four program counters Four program counters Summary: The Process Model One program counters Four program coun

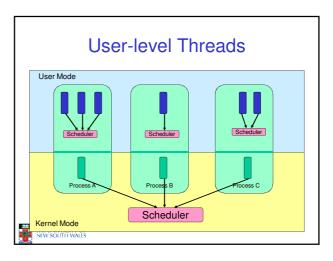
- Conceptual model of 4 independent, sequential processes (with a single thread each)
- Only one program active at any instant




Processes


- · User-mode
 - Processes (programs) scheduled by the kernel
 - Isolated from each other
 - No concurrency issues between each other
- System-calls transition into and return from the kernel
- Kernel-mode
 - Nearly all activities still associated with a process
 - Kernel memory shared between all processes
 - Concurrency issues exist between processes concurrently executing in a system call




5

User-level Threads

- · Implementation at user-level
 - User-level Thread Control Block (TCB), ready queue, blocked queue, and dispatcher
 - Kernel has no knowledge of the threads (it only sees a single process)
 - If a thread blocks waiting for a resource held by another thread, its state is saved and the dispatcher switches to another ready thread
 - Thread management (create, exit, yield, wait) are implemented in a runtime support library

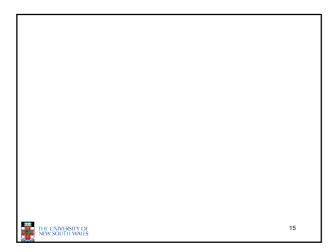
User-Level Threads

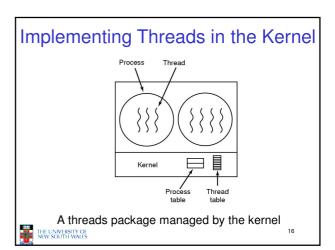
- Pros
 - Thread management and switching at user level is much faster than doing it in kernel level
 - No need to trap (take syscall exception) into kernel and back to switch
 - Dispatcher algorithm can be tuned to the application
 - E.g. use priorities
 - Can be implemented on any OS (thread or non-thread aware)
 - Can easily support massive numbers of threads on a perapplication basis
 - Use normal application virtual memory
 - Kernel memory more constrained. Difficult to efficiently support wildly differing numbers of threads for different applications.

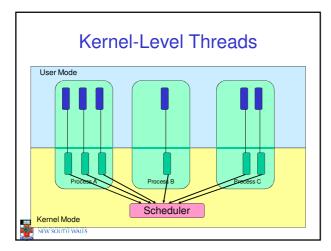
12

User-level Threads

- Cons
 - Threads have to yield() manually (no timer interrupt delivery to user-level)
 - Co-operative multithreading
 - A single poorly design/implemented thread can monopolise the available CPU time
 - There are work-arounds (e.g. a timer signal per second to enable pre-emptive multithreading), they are course grain and a kludge.
 - Does not take advantage of multiple CPUs (in reality, we still have a single threaded process as far as the kernel is concerned)


User-Level Threads


- Cons
 - If a thread makes a blocking system call (or takes a page fault), the process (and all the internal threads) blocks
 - Can't overlap I/O with computation
 - · Can use wrappers as a work around


 - Example: wrap the read() call
 Use select() to test if read system call would block

 - » select() then read()
 » Only call read() if it won't block
 - » Otherwise schedule another thread
 - Wrapper requires 2 system calls instead of one
 Wrappers are needed for environments doing lots of blocking system calls exactly when efficiency matters!

Kernel Threads

- · Threads are implemented in the kernel
 - TCBs are stored in the kernel
 - · A subset of information in a traditional PCB
 - The subset related to execution context
 - TCBs have a PCB associated with them
 - Resources associated with the group of threads (the
 - Thread management calls are implemented as system calls
 - · E.g. create, wait, exit

Kernel Threads

- Cons
 - Thread creation and destruction, and blocking and unblocking threads requires kernel entry
 - · More expensive than user-level equivalent
- Pros
 - Preemptive multithreading
 - Parallelism
 - Can overlap blocking I/O with computation
 - · Can take advantage of a multiprocessor

Multiprogramming Implementation

- Hardware stacks program counter, etc.
 Hardware loads new program counter from interrupt vector.
- Assembly language procedure saves registers.
 Assembly language procedure sets up new stack
- 5. C interrupt service runs (typically reads and buffers input).
- Scheduler decides which process is to run next.
 C procedure returns to the assembly code.
- 8. Assembly language procedure starts up new current process.

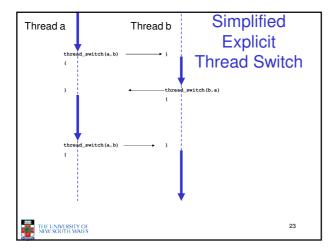
Skeleton of what lowest level of OS does when an interrupt occurs - a thread/context switch

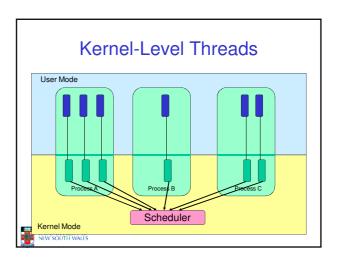
Thread Switch

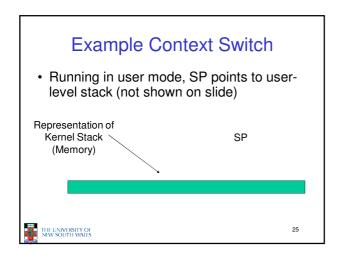
- · A switch between threads can happen any time the OS is invoked
 - On a system call
 - · Mandatory if system call blocks or on exit();
 - On an exception
 - · Mandatory if offender is killed
 - On an interrupt
 - Triggering a dispatch is the main purpose of the timer

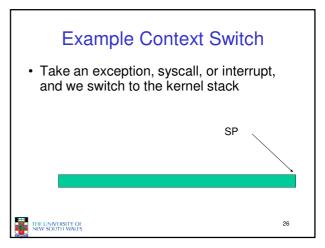
A thread switch can happen between any two instructions

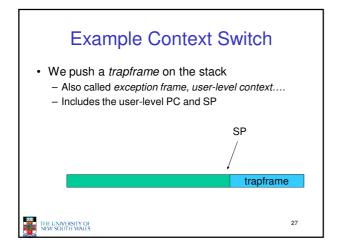
Note instructions do not equal program statements

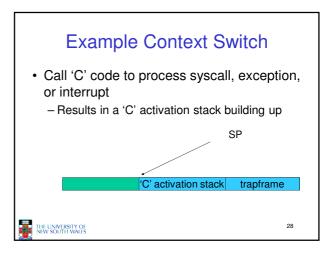


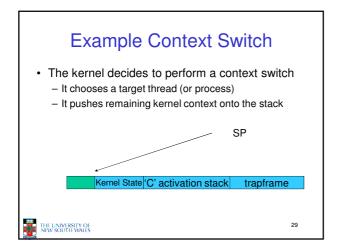

Context Switch

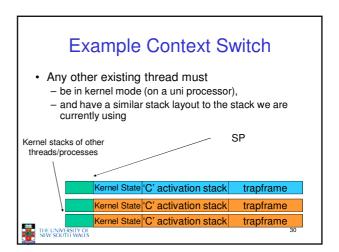

- Thread switch must be transparent for threads
 - When dispatched again, thread should not notice that something else was running in the meantime (except for elapsed time)
- ⇒OS must save all state that affects the thread
- This state is called the thread context
- · Switching between threads consequently results in a context switch.

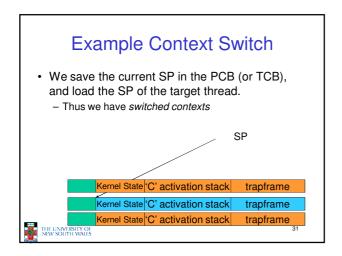


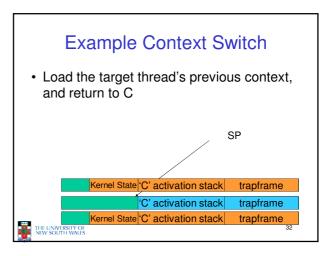

22

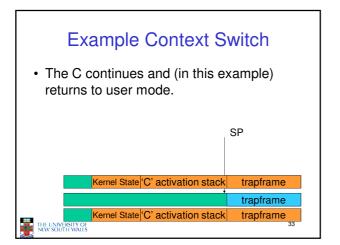


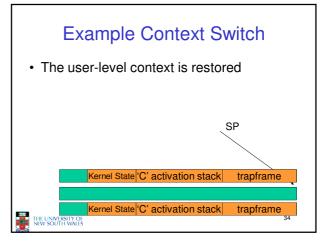


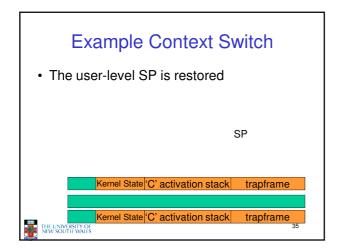


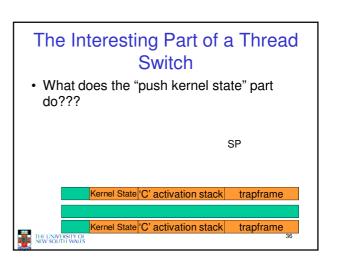













```
static
void
thread_switch(threadstate_t newstate, struct wchan *wc)
{
    struct thread *cur, *next;
    cur = curthread;
    do {
        next = threadlist_remhead(&curcpu->c_runqueue);
        if (next == NULL) {
            cpu_idle();
        }
    } while (next == NULL);

/* do the switch (in assembler in switch.s) */
switchframe_switch(&cur->t_context, &next->t_context);

Lots of code
removed - only
basics of pick
next thread and
run it remain
```

```
OS/161 switchframe_switch

switchframe_switch:

/*

* a0 contains the address of the switchframe pointer in the old thread.

* a1 contains the address of the switchframe pointer in the new thread.

* The switchframe pointer is really the stack pointer. The other

* registers get saved on the stack, namely:

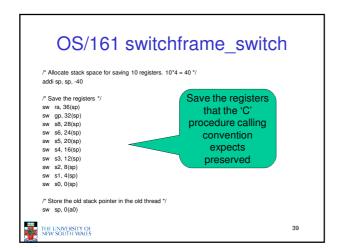
* $0-s6, s8

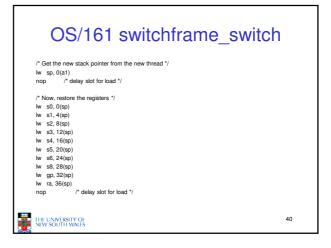
* gp, ra

* The order must match <mips/switchframe.h>.

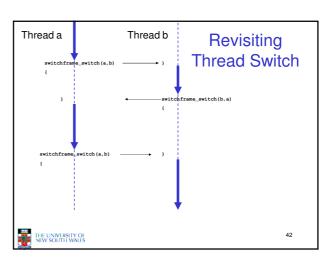
* Note that while we'd ordinarily need to save $7 too, because we

* use it to hold curthread saving it would interfere with the way


* curthread is managed by thread.c. So we'll just let thread.c


* manage it.

* THE INDIVERSITY OF SWINDIFFRENCE SOUTH WALLS


** THE INDIVERSITY OF SWINDIFFRENCE SOUTH WALLS

** 38
```