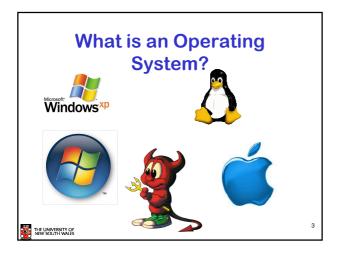
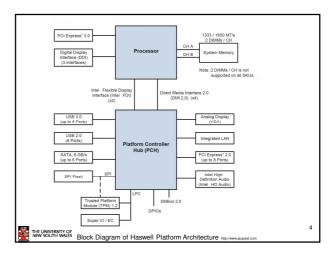
Introduction to Operating Systems

Chapter 1 - 1.3Chapter 1.5 - 1.9


THE UNIVERSITY OF NEW SOUTH WALES


Learning Outcomes

- High-level understand what is an operating system and the role it plays
- A high-level understanding of the structure of operating systems, applications, and the relationship between them.
- Some knowledge of the services provided by operating systems.
- Exposure to some details of major OS concepts.

THE UNIVERSITY OF NEW SOUTH WALES

2

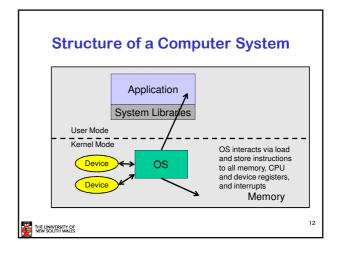
Viewing the Operating System as an Abstract Machine

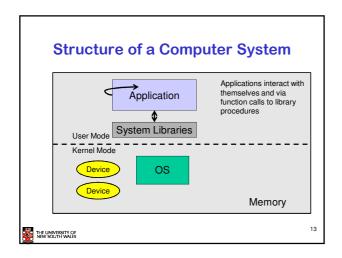
- Extends the basic hardware with added functionality
- · Provides high-level abstractions
 - More programmer friendly
 - Common core for all applications
- · It hides the details of the hardware
 - Makes application code portable

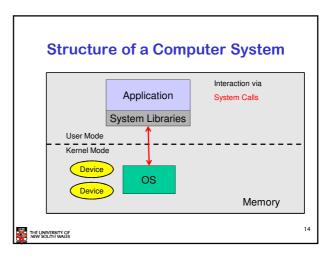

THE UNIVERSITY OF NEW SOUTH WALES

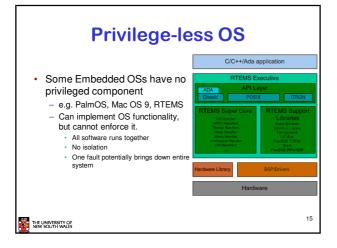
Viewing the Operating System as a Resource Manager

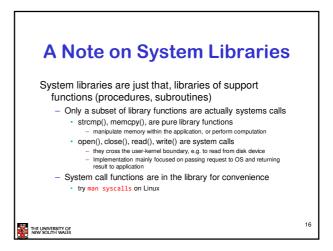
- Responsible for allocating resources to users and processes
- · Must ensure
 - No Starvation
 - Progress
 - Allocation is according to some desired policy
 - First-come, first-served; Fair share; Weighted fair share; limits (quotas), etc...
 - Overall, that the system is efficiently used


Operating System Kernel


- Portion of the operating system that is running in *privileged mode*
- · Usually resident in main memory
- · Contains fundamental functionality
 - Whatever is required to implement other services
 - Whatever is required to provide security
- Contains most-frequently used functions
- Also called the nucleus or supervisor


THE UNIVERSITY OF NEW SOUTH WALES


The Operating System is Privileged • Applications should not be able to interfere or bypass the operating system • OS can enforce the "extended machine" • OS can enforce its resource allocation policies • Prevent applications from interfering with each other Applications Applications Applications Applications Applications Hardware


Structure of a Computer System Application System Libraries User Mode Verice Device Device Operating System Memory

Operating System Objectives

- Convenience
 - Make the computer more convenient to use
- Abstraction
- Hardware-independent programming model
- Efficiency
 - Allows the computer system to be used in an efficient manner
- Ability to evolve
 - Permit effective development, testing, and introduction of new system functions without interfering with existing services
- Protection
 - allow only authorised access to data, computation, services, etc.

Services Provided by the Operating System

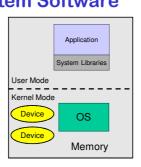
- Program execution
 - Load a program and its data
- · Access to I/O devices
 - Display, disk, network, printer, keyboard, camera, etc.
- · Controlled access to files
 - Access protection
- System access
 - User authentication

10

Services Provided by the **Operating System**

- · Error detection and response
 - internal and external hardware errors
 - · memory error
 - device failure
 - software errors
 - · arithmetic overflow
 - access forbidden memory locations
 - operating system cannot grant request of application

Services Provided by the **Operating System**


- Accounting
 - collect statistics
 - monitor performance
 - · diagnose lack of it
 - used to anticipate future enhancements
 - used for billing users

Operating System Software

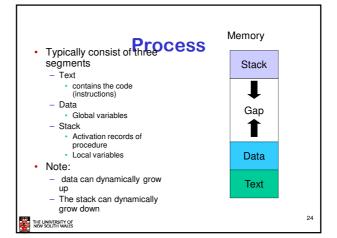
- Fundamentally, OS functions the same way as ordinary computer software
 - It is a program that is executed
 - (just like applications)
- It has more privileges
- Operating system relinquishes control of the processor to execute other programs
 - Reestablishes control after
 - · System calls
 - Interrupts (especially timer interrupts)

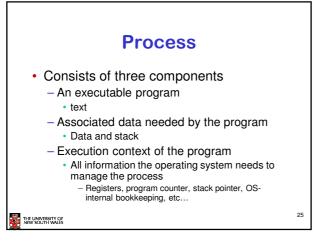
Major OS Concepts (Overview)

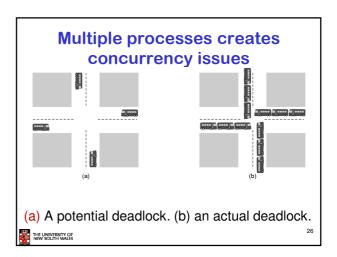
- Processes
- Concurrency and deadlocks
- · Memory management
- Files
- Scheduling and resource management
- · Information Security and Protection

THE UNIVERSITY OF NEW SOLITH WALES

21


22

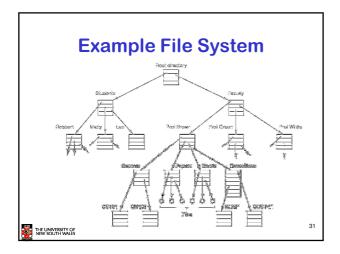

Processes


- · A program in execution
- An instance of a program running on a computer
- The entity that can be assigned to and executed on a processor
- · A unit of resource ownership

23 THE UNIVERSITY OF NEW SOUTH WALES

Memory Management · The view from thirty thousand feet

- Process isolation
- - Prevent processes from accessing each others data
- Automatic allocation and management
 - Don't want users to deal with physical memory directly
- Protection and access control
- Still want controlled sharing
- Long-term storage
- OS services
 - · Virtual memory
 - · File system



Virtual Memory

- · Allows programmers to address memory from a logical point of view
 - Gives apps the illusion of having RAM to themselves
 - Logical addresses are independent of other processes
 - Provides isolation of processes from each
- Can overlap execution of one process while swapping in/out others to disk.

Virtual Memory Addressing Memory management unit (hardware) translates program memory addresses to main memory addresses. Figure 2.10 Virtual Memory Addressing THE UNIVERSITY OF NEW SOUTH WALES

File System · Implements long-term store · Information stored in named objects called files THE UNIVERSITY OF NEW SOLITH WALES

Information Protection and Security

- · Access control
 - regulate user access to the system
 - Involves authentication
- Information flow control
 - regulate flow of data within the system and its delivery to users

THE UNIVERSITY OF NEW SOLITH WALES

32

Scheduling and Resource Management

- Fairness
 - give equal and fair access to all processes
- · Differential responsiveness
 - discriminate between different classes of jobs
- Efficiency
 - maximize throughput, minimize response time, and accommodate as many uses as possible

THE UNIVERSITY OF NEW SOUTH WALES

Operating System Internal Structure?

THE UNIVERSITY OF NEW SOUTH WALES

34

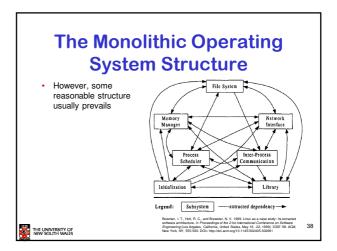
Classic Operating System Structure The layered approach a) Processor allocation and multiprogramming b) Memory Management c) Devices d) File system e) Users Each layer depends on the inner layers

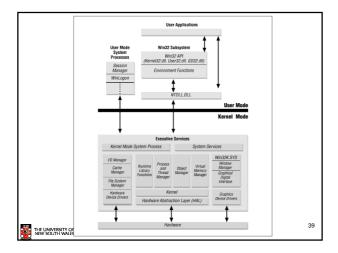
Operating System Structure

- · In practice, layering is only a guide
 - Operating Systems have many interdependencies
 - Scheduling on virtual memory
 - Virtual memory on I/O to disk
 - VM on files (page to file)
 - Files on VM (memory mapped files)
 - And many more...

THE UNIVERSITY OF NEW SOLITH WALES

36


- approach

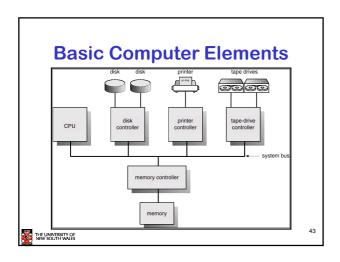

 Everything is tangled up with
- · Linux, Windows,

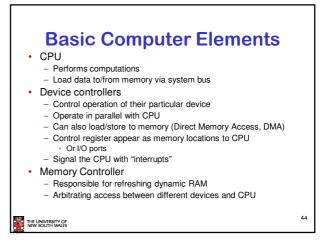
everything else.

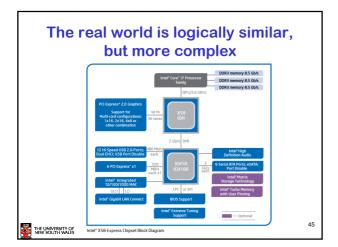
THE UNIVERSITY OF NEW SOUTH WALES

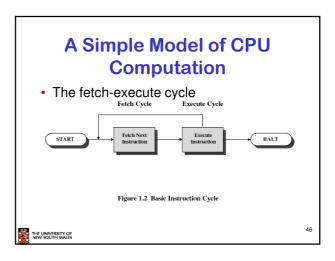
Learning Outcomes

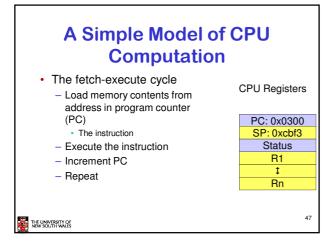
- Understand the basic components of computer hardware
 - CPU, buses, memory, devices controllers, DMA, Interrupts, hard disks
- Understand the concepts of memory hierarchy and caching, and how they affect performance.

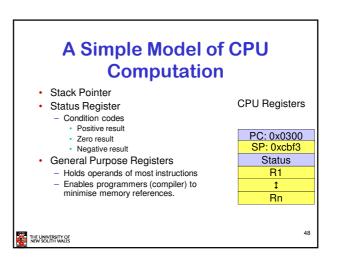

THE UNIVERSITY OF NEW SOUTH WALES

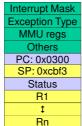

Operating Systems


- · Exploit the hardware available
- Provide a set of high-level services that represent or are implemented by the hardware.
- Manages the hardware reliably and efficiently
- Understanding operating systems requires a basic understanding of the underlying hardware




42





Privileged-mode Operation CPU Registers

- · To protect operating system execution, two or more CPU modes of operation exist
 - Privileged mode (system-, kernel-mode)
 - All instructions and registers are available
 - User-mode
 - Uses 'safe' subset of the instruction set
 - E.g. no disable interrupts instruction
- Only 'safe' registers are THE UNIVERSITY OF ACCESSIBLE

Rn

'Safe' registers and instructions

- · Registers and instructions are safe if
 - Only affect the state of the application itself
 - They cannot be used to uncontrollably interfere with
 - The operating system
 - · Other applications
 - They cannot be used to violate a correctly implemented operating system.

THE UNIVERSITY OF NEW SOUTH WALES

Example Unsafe Instruction

- "cli" instruction on x86 architecture
 - Disables interrupts
- Example exploit

cli /* disable interrupts */ while (true)

/* loop forever */;

THE UNIVERSITY OF NEW SOUTH WALES

Privileged-mode Operation

Memory Address Space

The accessibility of addresses within an address space changes depending on operating mode

To protect kernel code and data

Note: The exact memory ranges are usually configurable, and vary between CPU architectures and/or operating systems.

THE UNIVERSITY OF NEW SOUTH WALES

Kernel-mode

0x80000000

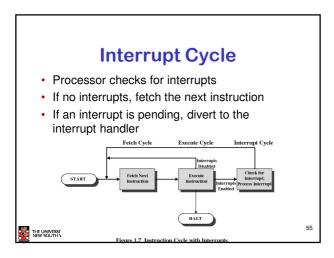
0xFFFFFFF

Accessible to User- and Kernel-mode

Accessible only

0x00000000

I/O and Interrupts


- I/O events (keyboard, mouse, incoming network packets) happen at unpredictable times
- How does the CPU know when to service an I/O

THE UNIVERSITY OF NEW SOUTH WALES

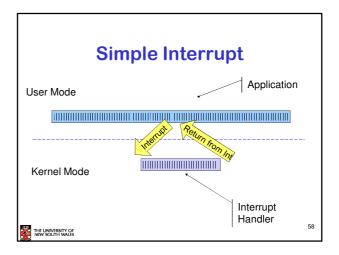
THE UNIVERSITY OF NEW SOUTH WALES

Interrupts

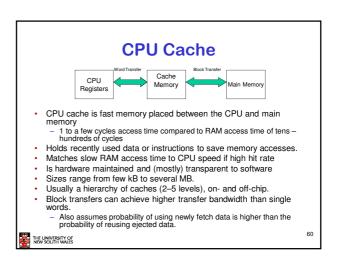
- · An interruption of the normal sequence of execution
- · A suspension of processing caused by an event external to that processing, and performed in such a way that the processing can be resumed.
- · Improves processing efficiency
 - Allows the processor to execute other instructions while an I/O operation is in progress
 - Avoids unnecessary completion checking (polling)

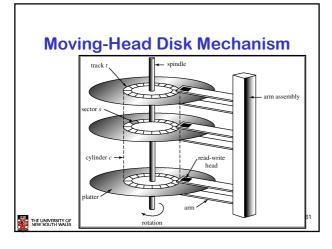
Interrupt Terminology

- Program exceptions
 (sometimes called synchronous interrupts)
 - Arithmetic overflow
 - Division by zero
 - Executing an illegal/privileged instruction
 - Reference outside user's memory space.
- Asynchronous (external) interrupts (usually just called *interrupts*)
 - Timer
 - I/O
 - Hardware or power failure


57

56


Interrupt Handler


- A software routine that determines the nature of the interrupt and performs whatever actions are needed.
- Control is transferred to the handler by hardware.
- The handler is generally part of the operating system.

Memory Hierarchy - Decreasing · Going down the frequency of access hierarchy to the memory by the Decreasing cost per processor bit Hopefully Increasing capacity Principle of locality!!!!! - Increasing access time 1 nsec <1 KB 2 nsec 1 MB 10 nsec Main memory 64-512 MB 5-50 GB 10 msec Magnetic disk 100 sec 20-100 GB THE UNIVERSITY ONEW SOUTH WAL

Example Disk Access Times

- · Disk can read/write data relatively fast
 - 15,000 rpm drive 80 MB/sec
 - 1 KB block is read in 12 microseconds
- Access time dominated by time to locate the head over data
 - Rotational latency
 - · Half one rotation is 2 milliseconds
 - Seek time
 - · Full inside to outside is 8 milliseconds
 - Track to track .5 milliseconds
- 2 milliseconds is 164KB in "lost bandwidth"

THE UNIVERSITY OF NEW SOUTH WALES

62

A Strategy: Avoid Waiting for Disk Access

- Keep a subset of the disk's data in main memory
- ⇒ Main memory acts as a *cache* of disk contents

THE UNIVERSITY OF NEW SOUTH WALES

THE UNIVERSITY OF NEW SOUTH WALES

Caching as a general technique

- Given a two-levels data storage: small and fast, versus large and slow,
 - cache memory and main memory (RAM)
 - main memory and disk
 - Local disk versus the cloud.
- Can speed access to slower data by using faster memory as a cache.
- · What is the effective access time?
- Answer: It depends on the hit rate in the first level.

Example

- · Cache memory access time 1ns
- · Main memory access time 10ns
- Hit rate of 95%

$$T_{eff} = 0.95 \times 10^{-9} +$$

 $(1 - 0.95) \times (10^{-9} + 10 \times 10^{-9})$
 $= 1.5 \times 10^{-9}$

THE UNIVERSITY OF NEW SOLITH WALES

Effective Access Time

 $T_{eff} = H \times T_1 + (1 - H) \times T_2$

 T_1 = access time of memory 1 T_2 = access time of memory 2

H = hit rate in memory 1

 T_{eff} = effective access time of system

THE UNIVERSITY OF NEW SOLITH WALES