
4/9/2014

1

UNIX File Management

(continued)

2

OS storage stack (recap)

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

3

Virtual File System (VFS)

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

4

Older Systems only had a single

file system
•They had file system specific open, close, read,

write, … calls.

•However, modern systems need to support many

file system types

–ISO9660 (CDROM), MSDOS (floppy), ext2fs, tmpfs

5

Supporting Multiple File

Systems
Alternatives

• Change the file system code to understand
different file system types

– Prone to code bloat, complex, non-solution

• Provide a framework that separates file system
independent and file system dependent code.

– Allows different file systems to be “plugged in”

6

Disk scheduler

FS

OF table

FD table

Device driver

Application

Disk scheduler

FS2

Device driver

Buffer cache

Virtual File System (VFS)

VFS

4/9/2014

2

7

Virtual file system (VFS)

ext3

/

nfs

/home/leonidr

open(“/home/leonidr/file”, …);

Traversing the directory hierarchy
may require VFS to issue requests

to several underlying file systems

8

Virtual File System (VFS)

• Provides single system call interface for many file
systems

– E.g., UFS, Ext2, XFS, DOS, ISO9660,…

• Transparent handling of network file systems

– E.g., NFS, AFS, CODA

• File-based interface to arbitrary device drivers (/dev)

• File-based interface to kernel data structures (/proc)

• Provides an indirection layer for system calls

– File operation table set up at file open time

– Points to actual handling code for particular type

– Further file operations redirected to those functions

99

The file system independent code

deals with vfs and vnodes

vnode

File Descriptor

Tables Open File Table

inode

File system
dependent

code

VFS FS

10

VFS Interface
• Reference

– S.R. Kleiman., "Vnodes: An Architecture for Multiple File System
Types in Sun Unix," USENIX Association: Summer Conference
Proceedings, Atlanta, 1986

– Linux and OS/161 differ slightly, but the principles are the same

• Two major data types
– VFS

• Represents all file system types

• Contains pointers to functions to manipulate each file system as a whole (e.g.
mount, unmount)

– Form a standard interface to the file system

– Vnode

• Represents a file (inode) in the underlying filesystem

• Points to the real inode

• Contains pointers to functions to manipulate files/inodes (e.g. open, close, read,
write,…)

11

Vfs and Vnode Structures

Generic
(FS-independent)

fields

fs_data

vnode ops

FS-specific
fields

ext2fs_read
ext2fs_write

...

struct vnode • size
• uid, gid

• ctime, atime, mtime
• …

FS-specific
implementation of

vnode operations

• Block group number
• Data block list

• …

12

Vfs and Vnode Structures

Generic
(FS-independent)

fields

fs_data

vfs ops

FS-specific
fields

ext2_unmount

ext2_getroot

...

struct vfs
• Block size
• Max file size

• …

FS-specific
implementation of

FS operations

• i-nodes per group
• Superblock address

• …

4/9/2014

3

13

A look at OS/161’s VFS

The OS161’s file system type

Represents interface to a mounted filesystem

struct fs {

int (*fs_sync)(struct fs *);

const char *(*fs_getvolname)(struct fs *);

struct vnode *(*fs_getroot)(struct fs *);

int (*fs_unmount)(struct fs *);

void *fs_data;

};

Force the

filesystem to

flush its content

to disk

Retrieve the

volume name

Retrieve the vnode

associated with the

root of the

filesystem

Unmount the filesystem

Note: mount called via

function ptr passed to
vfs_mount

Private file system

specific data

14

Vnode

struct vnode {

int vn_refcount;

int vn_opencount;

struct lock *vn_countlock;

struct fs *vn_fs;

void *vn_data;

const struct vnode_ops *vn_ops;

};

Count the

number of
“references”
to this vnode

Number of

times vnode
is currently

open

Lock for mutual

exclusive
access to

counts

Pointer to FS

containing
the vnode

Pointer to FS

specific
vnode data
(e.g. inode)

Array of pointers

to functions
operating on

vnodes

15

Vnode Ops
struct vnode_ops {

unsigned long vop_magic; /* should always be VOP_MAGIC */

int (*vop_open)(struct vnode *object, int flags_from_open);

int (*vop_close)(struct vnode *object);

int (*vop_reclaim)(struct vnode *vnode);

int (*vop_read)(struct vnode *file, struct uio *uio);

int (*vop_readlink)(struct vnode *link, struct uio *uio);

int (*vop_getdirentry)(struct vnode *dir, struct uio *uio);

int (*vop_write)(struct vnode *file, struct uio *uio);

int (*vop_ioctl)(struct vnode *object, int op, userptr_t data);

int (*vop_stat)(struct vnode *object, struct stat *statbuf);

int (*vop_gettype)(struct vnode *object, int *result);

int (*vop_tryseek)(struct vnode *object, off_t pos);

int (*vop_fsync)(struct vnode *object);

int (*vop_mmap)(struct vnode *file /* add stuff */);

int (*vop_truncate)(struct vnode *file, off_t len);

int (*vop_namefile)(struct vnode *file, struct uio *uio);

16

Vnode Ops
int (*vop_creat)(struct vnode *dir,

const char *name, int excl,

struct vnode **result);

int (*vop_symlink)(struct vnode *dir,

const char *contents, const char *name);

int (*vop_mkdir)(struct vnode *parentdir,

const char *name);

int (*vop_link)(struct vnode *dir,

const char *name, struct vnode *file);

int (*vop_remove)(struct vnode *dir,

const char *name);

int (*vop_rmdir)(struct vnode *dir,

const char *name);

int (*vop_rename)(struct vnode *vn1, const char *name1,

struct vnode *vn2, const char *name2);

int (*vop_lookup)(struct vnode *dir,

char *pathname, struct vnode **result);

int (*vop_lookparent)(struct vnode *dir,

char *pathname, struct vnode **result,

char *buf, size_t len);

};

17

Vnode Ops
•Note that most operations are on vnodes. How do

we operate on file names?

–Higher level API on names that uses the internal VOP_*
functions
int vfs_open(char *path, int openflags, struct vnode **ret);

void vfs_close(struct vnode *vn);

int vfs_readlink(char *path, struct uio *data);

int vfs_symlink(const char *contents, char *path);

int vfs_mkdir(char *path);

int vfs_link(char *oldpath, char *newpath);

int vfs_remove(char *path);

int vfs_rmdir(char *path);

int vfs_rename(char *oldpath, char *newpath);

int vfs_chdir(char *path);

int vfs_getcwd(struct uio *buf);

1818

Example: OS/161 emufs vnode

ops
/*

* Function table for emufs
files.

*/

static const struct vnode_ops
emufs_fileops = {

VOP_MAGIC, /* mark this a
valid vnode ops table */

emufs_open,

emufs_close,

emufs_reclaim,

emufs_read,

NOTDIR, /* readlink */

NOTDIR, /* getdirentry */

emufs_write,

emufs_ioctl,

emufs_stat,

emufs_file_gettype,

emufs_tryseek,

emufs_fsync,

UNIMP, /* mmap */

emufs_truncate,

NOTDIR, /* namefile */

NOTDIR, /* creat */

NOTDIR, /* symlink */

NOTDIR, /* mkdir */

NOTDIR, /* link */

NOTDIR, /* remove */

NOTDIR, /* rmdir */

NOTDIR, /* rename */

NOTDIR, /* lookup */

NOTDIR, /* lookparent */

};

4/9/2014

4

19

File Descriptor & Open File Tables

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

20

Motivation

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

System call interface:
fd = open(“file”,…);
read(fd,…);write(fd,…);lseek(fd,…);

close(fd);

VFS interface:
vnode = vfs_open(“file”,…);
vop_read(vnode,uio);

vop_write(vnode,uio);

vop_close(vnode);

21

File Descriptors

• File descriptors

– Each open file has a file descriptor

– Read/Write/lseek/…. use them to specify which file to
operate on.

• State associated with a file descriptor

– File pointer
• Determines where in the file the next read or write is

performed

– Mode
• Was the file opened read-only, etc….

22

An Option?

•Use vnode numbers as file descriptors and
add a file pointer to the vnode

•Problems

–What happens when we concurrently open the

same file twice?

•We should get two separate file descriptors and file
pointers….

23

An Option?

•Single global open
file array

–fd is an index into the

array

–Entries contain file

pointer and pointer to a

vnode

fp

i-ptr

fd

vnode

Array of Inodes
in RAM

24

Issues

•File descriptor 1 is
stdout

–Stdout is

•console for some processes

•A file for others

•Entry 1 needs to be

different per process!

fp

v-ptr

fd

vnode

4/9/2014

5

25

Per-process File Descriptor

Array
•Each process has its
own open file array

–Contains fp, v-ptr etc.

–Fd 1 can point to any

vnode for each process

(console, log file).

P1 fd

vnode

fp

v-ptr

fp

v-ptr

P2 fd

vnode

26

Issue

•Fork
–Fork defines that the child shares
the file pointer with the parent

•Dup2
–Also defines the file descriptors
share the file pointer

•With per-process table, we
can only have independent
file pointers
–Even when accessing the same
file

P1 fd

vnode

fp

v-ptr

fp

v-ptr

P2 fd

vnode

27

Per-Process fd table with global

open file table
•Per-process file descriptor
array
–Contains pointers to open file
table entry

•Open file table array
–Contain entries with a fp and
pointer to an vnode.

•Provides

–Shared file pointers if required

–Independent file pointers if
required

•Example:
–All three fds refer to the same
file, two share a file pointer, one
has an independent file pointer

P1 fd

vnode

f-ptr

f-ptr

f-ptr
P2 fd

vnode

fp

v-ptr

fp

v-ptr

Per-process
File Descriptor

Tables
Open File Table 28

Per-Process fd table with global

open file table
•Used by Linux and

most other Unix

operating systems

P1 fd

vnode

f-ptr

f-ptr

f-ptr
P2 fd

vnode

fp

v-ptr

fp

v-ptr

Per-process
File Descriptor

Tables
Open File Table

29

Buffer Cache

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

30

Buffer

•Buffer:

–Temporary storage used when transferring data

between two entities

•Especially when the entities work at different rates

•Or when the unit of transfer is incompatible

•Example: between application program and disk

4/9/2014

6

31

Buffering Disk Blocks
•Allow applications to work with
arbitrarily sized region of a file

–However, apps can still optimise for

a particular block size

Disk

4

7

5

6

12

15

10

13

11

14

16

Buffers
in Kernel

RAM

Transfer of

whole
blocks

Application

Program

Transfer of

arbitrarily

sized regions

of file

32

Buffering Disk Blocks
•Writes can return immediately
after copying to kernel buffer

–Avoids waiting until write to disk is

complete

–Write is scheduled in the
background

Disk

4

7

5

6

12

15

10

13

11

14

16

Buffers
in Kernel

RAM

Transfer of

whole
blocks

Application

Program

Transfer of

arbitrarily

sized regions

of file

33

Buffering Disk Blocks
•Can implement read-ahead by
pre-loading next block on disk into

kernel buffer

–Avoids having to wait until next read
is issued

Disk

4

7

5

6

12

15

10

13

11

14

16

Buffers
in Kernel

RAM

Transfer of

whole
blocks

Application

Program

Transfer of

arbitrarily

sized regions

of file

34

Cache

•Cache:

–Fast storage used to temporarily hold data to

speed up repeated access to the data

•Example: Main memory can cache disk blocks

35

Caching Disk Blocks
•On access

–Before loading block from disk, check if it
is in cache first

•Avoids disk accesses

•Can optimise for repeated access for

single or several processes

Disk

4

7

5

6

12

15

10

13

11

14

16

Cached
blocks in

Kernel
RAM

Transfer of

whole
blocks

Application

Program

Transfer of
arbitrarily

sized regions

of file

36

Buffering and caching are

related
•Data is read into buffer; an extra
independent cache copy would be wasteful

•After use, block should be cached

•Future access may hit cached copy

•Cache utilises unused kernel memory

space; may have to shrink

4/9/2014

7

37

Unix Buffer Cache

On read
–Hash the device#,
block#

–Check if match in
buffer cache

–Yes, simply use in-
memory copy

–No, follow the
collision chain

–If not found, we load
block from disk into
cache

38

Replacement

•What happens when the buffer cache is full and

we need to read another block into memory?

–We must choose an existing entry to replace

•Need a policy to choose a victim

–Can use First-in First-out

–Least Recently Used, or others.

•Timestamps required for LRU implementation

• However, is strict LRU what we want?

39

File System Consistency

•File data is expected to survive

•Strict LRU could keep critical data in
memory forever if it is frequently used.

40

File System Consistency
•Generally, cached disk blocks are prioritised in
terms of how critical they are to file system
consistency
–Directory blocks, inode blocks if lost can corrupt entire
filesystem
•E.g. imagine losing the root directory

•These blocks are usually scheduled for immediate write to disk

–Data blocks if lost corrupt only the file that they are
associated with
•These blocks are only scheduled for write back to disk periodically

•In UNIX, flushd (flush daemon) flushes all modified blocks to disk
every 30 seconds

41

File System Consistency
•Alternatively, use a write-through cache
–All modified blocks are written immediately to disk

–Generates much more disk traffic
•Temporary files written back

•Multiple updates not combined

–Used by DOS
•Gave okay consistency when
–Floppies were removed from drives

–Users were constantly resetting (or crashing) their machines

–Still used, e.g. USB storage devices

42

Disk scheduler

Disk scheduler

FS

VFS

Buffer cache

OF table

FD table

Application

Device driver

4/9/2014

8

43

Disk Management

•Management and ordering of disk access
requests is important:

–Huge speed gap between memory and disk

–Disk throughput is extremely sensitive to

•Request order ⇒ Disk Scheduling

•Placement of data on the disk ⇒ file system design

–Disk scheduler must be aware of disk geometry

4444

Disk Geometry

•Physical geometry of a disk with two zones
–Outer tracks can store more sectors than inner without exceed max
information density

•A possible virtual geometry for this disk

4545

Evolution of Disk Hardware

Disk parameters for the original IBM PC floppy disk and
a Western Digital WD 18300 hard disk

46

Things to Note

•Average seek time is approx 12 times
better

•Rotation time is 24 times faster

•Transfer time is 1300 times faster

–Most of this gain is due to increase in density

•Represents a gradual engineering

improvement

47

Storage Capacity is 50000

times greater

48

Estimating Access Time

4/9/2014

9

49

A Timing Comparison

11 8 67

50

Disk Performance is Entirely Dominated

by Seek and Rotational Delays

•Will only get worse as
capacity increases much

faster than increase in seek

time and rotation speed

–Note it has been easier to
spin the disk faster than
improve seek time

•Operating System should

minimise mechanical delays
as much as possible

Average Access Time Scaled to 100%

0%

20%

40%

60%

80%

100%

Disk

Transfer

Rot. Del.

Seek

Transfer 22 0.017

Rot. Del. 100 4.165

Seek 77 6.9

1 2

Disk Arm Scheduling Algorithms

•Time required to read or write a disk
block determined by 3 factors
1.Seek time

2.Rotational delay

3.Actual transfer time

•Seek time dominates

•For a single disk, there will be a number
of I/O requests
–Processing them in random order leads to
worst possible performance

First-in, First-out (FIFO)
•Process requests as they come

•Fair (no starvation)

•Good for a few processes with clustered requests

•Deteriorates to random if there are many processes

Shortest Seek Time First
•Select request that minimises the seek time

•Generally performs much better than FIFO

•May lead to starvation

Elevator Algorithm (SCAN)
•Move head in one direction

–Services requests in track order until it reaches the last track, then
reverses direction

•Better than FIFO, usually worse than SSTF

•Avoids starvation

•Makes poor use of sequential reads (on down-scan)

•Inner tracks serviced more frequently than outer tracks

4/9/2014

10

Modified Elevator (Circular SCAN, C-SCAN)

•Like elevator, but reads sectors in only one direction

–When reaching last track, go back to first track non-stop

•Note: seeking across disk in one movement faster than stopping along the way.

•Better locality on sequential reads

•Better use of read ahead cache on controller

•Reduces max delay to read a particular sector

