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I/O Management

Software

Chapter 5

Learning Outcomes

• An understanding of the structure of I/O related 

software, including interrupt handers.

• An appreciation of the issues surrounding long 

running interrupt handlers, blocking, and 

deferred interrupt handling.

• An understanding of I/O buffering and buffering's 

relationship to a producer-consumer problem.
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Operating System Design 

Issues
• Efficiency

– Most I/O devices slow compared to main memory 

(and the CPU)

• Use of multiprogramming allows for some processes to be 
waiting on I/O while another process executes

• Often I/O still cannot keep up with processor speed

• Swapping may used to bring in additional Ready processes 

– More I/O operations

• Optimise I/O efficiency – especially Disk & 

Network I/O
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Operating System Design 

Issues
• The quest for generality/uniformity:

– Ideally, handle all I/O devices in the same way
• Both in the OS and in user applications

– Problem: 
• Diversity of I/O devices

• Especially, different access methods (random access versus 
stream based) as well as vastly different data rates.

• Generality often compromises efficiency!

– Hide most of the details of device I/O in lower-level 
routines so that processes and upper levels see 
devices in general terms such as read, write, open, 
close.
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I/O Software Layers

Layers of the I/O Software System
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Interrupt Handlers
• Interrupt handlers 

– Can execute at (almost) any time

• Raise (complex)  concurrency issues in the kernel

• Can propagate to userspace (signals, upcalls), causing similar 
issues

• Generally structured so I/O operations block until interrupts 
notify them of completion

– kern/dev/lamebus/lhd.c
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Interrupt Handler Example
static int 

lhd_io(struct device *d, 

struct uio *uio)

{

...

/* Loop over all the sectors

* we were asked to do. */

for (i=0; i<len; i++) {

/* Wait until nobody else 

* is using the device. */

P(lh->lh_clear);

...

/* Tell it what sector we want... */

lhd_wreg(lh, LHD_REG_SECT, sector+i);

/* and start the operation. */

lhd_wreg(lh, LHD_REG_STAT, statval);

/* Now wait until the interrupt 

* handler tells us we're done. */

P(lh->lh_done);

/* Get the result value 

* saved by the interrupt handler. */

result = lh->lh_result;

}

lhd_iodone(struct lhd_softc *lh, int err)

{

lh->lh_result = err;

V(lh->lh_done);

}

void

lhd_irq(void *vlh)

{

... 

val = lhd_rdreg(lh, LHD_REG_STAT);

switch (val & LHD_STATEMASK) {

case LHD_IDLE:

case LHD_WORKING:

break;

case LHD_OK:

case LHD_INVSECT:

case LHD_MEDIA:

lhd_wreg(lh, LHD_REG_STAT, 0);

lhd_iodone(lh,

lhd_code_to_errno(lh, val));

break;

}

}

INT

SLEEP
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Interrupt Handler Steps
• Save Registers not already saved by hardware interrupt 

mechanism

• (Optionally) set up context for interrupt service procedure
– Typically, handler runs in the context of the currently running process

• No expensive context switch

• Set up stack for interrupt service procedure
– Handler usually runs on the kernel stack of current process

• Ack/Mask interrupt controller, re-enable other interrupts
– What does this imply?
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Interrupt Handler Steps
• Run interrupt service procedure

– Acknowledges interrupt at device level
– Figures out what caused the interrupt

• Received a network packet, disk read finished, UART transmit queue 
empty

– If needed, it signals blocked device driver

• In some cases, will have woken up a higher priority 
blocked thread

– Choose newly woken thread to schedule next.

– Set up MMU context for process to run next

– What if we are nested?

• Load new/original process' registers
• Re-enable interrupt; Start running the new process
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Sleeping in Interrupts

• An interrupt generally has no context (runs on current kernel stack)

– Unfair to sleep on interrupted process (deadlock possible)

– Where to get context for long running operation?

– What goes into the ready queue?

• What to do?

– Top and Bottom Half

– Linux implements with tasklets and workqueues

– Generically, in-kernel thread(s) handle long running kernel 
operations.

Top/Half Bottom Half
• Top Half

– Interrupt handler

– remains short

• Bottom half

– Is preemptable by top half 

(interrupts)

– performs deferred work (e.g. IP 

stack processing)

– Is checked prior to every kernel exit

– signals blocked processes/threads to 
continue

• Enables low interrupt latency

• Bottom half can’t block
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Top Half (Interrupt

Handler)

Bottom Half

Higher Software 

Layers

Stack Usage

• Upper software

• Interrupt (interrupts 

disabled)

• Deferred processing 

(interrupt re-
enabled)

• Interrupt while in 
bottom half
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Kernel Stack

H

HT

HB

HBT
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Deferring Work on In-kernel 

Threads 
• Interrupt

– handler defers work 
onto in-kernel thread

• In-kernel thread 
handles deferred 
work (DW)

– Scheduled normally

– Can block

• Both low interrupt 
latency and blocking 

operations 
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In-kernel thread 

stack

Normal 

process/thread 
stack
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Device Drivers
• Logical position of device drivers 

is shown here

• Drivers (originally) compiled into 
the kernel

– Including OS/161

– Device installers were 
technicians

– Number and types of devices 
rarely changed

• Nowadays they are dynamically 
loaded when needed

– Linux modules

– Typical users (device installers) 
can’t build kernels

– Number and types vary greatly

• Even while OS is running (e.g 

hot-plug USB devices)
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Device Drivers

• Drivers classified into similar categories
– Block devices and character (stream of data) device

• OS defines a standard (internal) interface to 
the different classes of devices
– Device specs often help, e.g. USB

USB Device Classes
Base 

Class

Descriptor 

Usage

Description

00h Device Use class information in the Interface Descriptors

01h Interface Audio

02h Both Communications and CDC Control

03h Interface HID (Human Interface Device)

05h Interface Physical

06h Interface Image

07h Interface Printer

08h Interface Mass Storage

09h Device Hub

0Ah Interface CDC-Data

0Bh Interface Smart Card

0Dh Interface Content Security

0Eh Interface Video

0Fh Interface Personal Healthcare

10h Interface Audio/Video Devices

DCh Both Diagnostic Device

E0h Interface Wireless Controller

EFh Both Miscellaneous

FEh Interface Application Specific

FFh Both Vendor Specific
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Device Drivers

• Device drivers job
– translate request through the device-independent 

standard interface (open, close, read, write) into 
appropriate sequence of commands (register 
manipulations) for the particular hardware

– Initialise the hardware at boot time, and shut it down 
cleanly at shutdown 
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Device Driver

• After issuing the command to the device, the 
device either
– Completes immediately and the driver simply returns 

to the caller

– Or,  device must process the request and the driver 
usually blocks waiting for an I/O complete interrupt.

• Drivers are re-entrant (or thread-safe) as they 
can be called by another process while a 
process is already blocked in the driver.
– Re-entrant: Mainly no static (global) non-constant 

data.
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Device-Independent I/O 

Software
• There is commonality between drivers of 

similar classes

• Divide I/O software into device-dependent 

and device-independent I/O software

• Device independent software includes

– Buffer or Buffer-cache management

– Managing access to dedicated devices

– Error reporting
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Device-Independent I/O Software 

(a) Without a standard driver interface

(b) With a standard driver interface
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Driver ⇔ Kernel Interface
• Major Issue is uniform interfaces to devices and 

kernel
– Uniform device interface for kernel code

• Allows different devices to be used the same way

– No need to rewrite file-system to switch between SCSI, IDE or 
RAM disk 

• Allows internal changes to device driver with fear of breaking 
kernel code

– Uniform kernel interface for device code
• Drivers use a defined interface to kernel services (e.g. 

kmalloc, install IRQ handler, etc.)

• Allows kernel to evolve without breaking existing drivers

– Together both uniform interfaces avoid a lot of 
programming implementing new interfaces 

Buffering
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Device-Independent I/O Software

(a) Unbuffered input
(b) Buffering in user space
(c) Single buffering in the kernel followed by copying to user 

space
(d) Double buffering in the kernel
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No Buffering

• Process must read/write a device a 
byte/word at a time

– Each individual system call adds significant 

overhead

– Process must what until each I/O is complete

• Blocking/interrupt/waking adds to overhead.

• Many short runs of a process is inefficient (poor 
CPU cache temporal locality)
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User-level Buffering
• Process specifies a memory buffer that incoming 

data is placed in until it fills

– Filling can be done by interrupt service routine

– Only a single system call, and block/wakeup per data 

buffer

• Much more efficient
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User-level Buffering
• Issues

– What happens if buffer is paged out to disk

• Could lose data while buffer is paged in

• Could lock buffer in memory (needed for DMA), however 
many processes doing I/O reduce RAM available for paging. 

Can cause deadlock as RAM is limited resource

– Consider write case

• When is buffer available for re-use?

– Either process must block until potential slow device drains 
buffer

– or deal with asynchronous signals indicating buffer drained 
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Single Buffer

• Operating system assigns a buffer in kernel’s 
memory for an I/O request

• In a stream-oriented scenario

– Used a line at time

– User input from a terminal is one line at a time with 

carriage return signaling the end of the line

– Output to the terminal is one line at a time
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Single Buffer

• Block-oriented

– Input transfers made to buffer

– Block copied to user space when needed

– Another block is written into the buffer

• Read ahead
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Single Buffer

– User process can process one block of data 

while next block is read in

– Swapping can occur since input is taking 

place in system memory, not user memory

– Operating system keeps track of assignment 

of system buffers to user processes
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Single Buffer Speed Up

• Assume 

– T is transfer time for a block from device

– C is computation time to process incoming block

– M is time to copy kernel buffer to user buffer

• Computation and transfer can be done in parallel

• Speed up with buffering

MCT

CT

+

+

),max(

No Buffering

Cost

Single

Buffering
Cost
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Single Buffer

• What happens if kernel buffer is full, the 
user buffer is swapped out, and more data 

is received???

– We start to lose characters or drop network 

packets
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Double Buffer

• Use two system buffers instead of one

• A process can transfer data to or from one 

buffer while the operating system empties 

or fills the other buffer
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Double Buffer Speed Up

• Computation and Memory copy can be done in 

parallel with transfer

• Speed up with double buffering

• Usually M is much less than T giving a 

favourable result

),max( MCT

CT

+

+

No Buffering

Cost

Double

Buffering
Cost
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Double Buffer

• May be insufficient for really bursty traffic

– Lots of application writes between long 

periods of computation

– Long periods of application computation while 

receiving data

– Might want to read-ahead more than a single 

block for disk
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Circular Buffer

• More than two buffers are used

• Each individual buffer is one unit in a circular 

buffer

• Used when I/O operation must keep up with 

process
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Important Note

• Notice that buffering, double buffering, and 
circular buffering are all

Bounded-Buffer 

Producer-Consumer 

Problems
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Is Buffering Always Good?

• Can M be similar or greater than C or T?

),max( MCT

CT

+

+

MCT

CT

+

+

),max(
Single Double
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Buffering in Fast Networks

• Networking may involve many copies

• Copying reduces performance

– Especially if copy costs are similar to or greater than computation or 
transfer costs

• Super-fast networks put significant effort into achieving zero-copy

• Buffering also increases latency
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I/O Software Summary

Layers of the I/O system and the main 
functions of each layer


