
1

Multiprocessor Systems

Chapter 8, 8.1

Learning Outcomes

• An understanding of the structure and limits of

multiprocessor hardware.

• An appreciation of approaches to operating

system support for multiprocessor machines.

• An understanding of issues surrounding and

approaches to construction of multiprocessor

synchronisation primitives.

2

CPU clock-rate increase slowing

3

0.10

1.00

10.00

100.00

1,000.00

10,000.00

1960 1970 1980 1990 2000 2010 2020

MHz

Year

4

Multiprocessor System

• We will look at shared-memory multiprocessors

– More than one processor sharing the same memory

• A single CPU can only go so fast

– Use more than one CPU to improve performance

– Assumes

• Workload can be parallelised

• Workload is not I/O-bound or memory-bound

• Disks and other hardware can be expensive

– Can share hardware between CPUs

Amdahl’s law

• Given a proportion P of a program that

can be made parallel, and the

remaining serial portion (1-P), speedup

by using N processors

50

Speedup = 1/(0.5 + 0.5/2) = 1.33…

50 50 25

Time Timenew

⇒

N

P
P +−)1(

1

Serial SerialParallel Parallel

1 Processor 2 Processors

Amdahl’s law

• Given a proportion P of a program that

can be made parallel, and the

remaining serial portion (1-P), speedup

by using N processors

50

Speedup = 1/(0.5 + 0) = 2

50 50

Time Timenew

⇒

N

P
P +−)1(

1

Serial SerialParallel

1 Processor ∞ Processors

• UMA MP

– Uniform Memory Access

• Access to all memory occurs at the same speed

for all processors.

• NUMA MP

– Non-uniform memory access

• Access to some parts of memory is faster for some

processors than other parts of memory

• We will focus on UMA

7

Types of Multiprocessors (MPs)

8COMP3231 04s1

Bus Based UMA

Simplest MP is more than one processor on
a single bus connect to memory (a)

– Bus bandwidth becomes a bottleneck with

more than just a few CPUs

9COMP3231 04s1

Bus Based UMA

• Each processor has a cache to reduce its
need for access to memory (b)

– Hope is most accesses are to the local cache

– Bus bandwidth still becomes a bottleneck with

many CPUs

10COMP3231 04s1

Cache Consistency

• What happens if one CPU writes to
address 0x1234 (and it is stored in its
cache) and another CPU reads from the
same address (and gets what is in its
cache)?

11COMP3231 04s1

Cache Consistency
• Cache consistency is usually handled by

the hardware.

– Writes to one cache propagate to, or

invalidate appropriate entries on other caches

– Cache transactions also consume bus

bandwidth

12COMP3231 04s1

Bus Based UMA
• To further scale the number processors, we give

each processor private local memory

– Keep private data local on off the shared memory bus

– Bus bandwidth still becomes a bottleneck with many

CPUs with shared data

– Complicate application development

• We have to partition between private and shared variables

Multi-core Processor

13

14

Bus Based UMA

• With only a single shared bus, scalability is
limited by the bus bandwidth of the single
bus

– Caching only helps so much

• Alternative bus architectures do exist.

15COMP3231 04s1

UMA Crossbar Switch

16

UMA Crossbar Switch

• Pro

– Any CPU can access any

available memory with

less blocking

• Con

– Number of switches

required scales with n2.

• 1000 CPUs need 1000000

switches

17

Summary

• Multiprocessors can
– Increase computation power beyond that available

from a single CPU

– Share resources such as disk and memory

• However
– Shared buses (bus bandwidth) limit scalability

• Can be reduced via hardware design

• Can be reduced by carefully crafted software behaviour

– Good cache locality together with private data where possible

Question

• How do we construct an OS for a
multiprocessor?
– What are some of the issues?

18

19COMP3231 04s1

Each CPU has its own OS
• Statically allocate physical memory to

each CPU

• Each CPU runs its own independent OS

• Share peripherals

• Each CPU (OS) handles its processes
system calls

20COMP3231 04s1

Each CPU has its own OS
• Used in early multiprocessor systems to

‘get them going’

– Simpler to implement

– Avoids concurrency issues by not sharing

– Scales – no shared serial sections

21COMP3231 04s1

Issues
• Each processor has its own scheduling queue

– We can have one processor overloaded, and the rest
idle

• Each processor has its own memory partition
– We can a one processor thrashing, and the others

with free memory
• No way to move free memory from one OS to another

• Consistency is an issue with independent disk
buffer caches and potentially shared files

22COMP3231 04s1

Master-Slave Multiprocessors
• OS (mostly) runs on a single fixed CPU

– All OS tables, queues, buffers are
present/manipulated on CPU 1

• User-level apps run on the other CPUs
– And CPU 1 if there is spare CPU time

• All system calls are passed to CPU 1 for
processing

23COMP3231 04s1

Master-Slave Multiprocessors

• Very little synchronisation required

– Only one CPU accesses majority of kernel data

• Simple to implement

• Single, centralised scheduler

– Keeps all processors busy

• Memory can be allocated as needed to all CPUs

24COMP3231 04s1

Issue

• Master CPU can become the bottleneck

• Cross CPU traffic is slow compare to local

25COMP3231 04s1

Symmetric Multiprocessors (SMP)
• OS kernel run on all processors

– Load and resource are balance between all processors

• Including kernel execution

• Issue: Real concurrency in the kernel

– Need carefully applied synchronisation primitives to avoid
disaster

26COMP3231 04s1

Symmetric Multiprocessors (SMP)
• One alternative: A single mutex that make the entire

kernel a large critical section

– Only one CPU can be in the kernel at a time

– Only slightly better solution than master slave

• Better cache locality

• The “big lock” becomes a bottleneck when in-kernel processing

exceed what can be done on a single CPU

27COMP3231 04s1

Symmetric Multiprocessors (SMP)
• Better alternative: identify largely independent parts of

the kernel and make each of them their own critical
section
– Allows more parallelism in the kernel

• Issue: Difficult task
– Code is mostly similar to uniprocessor code

– Hard part is identifying independent parts that don’t interfere with
each other

28COMP3231 04s1

Symmetric Multiprocessors (SMP)
• Example:

– Associate a mutex with independent parts of the kernel

– Some kernel activities require more than one part of the kernel

• Need to acquire more than one mutex

• Great opportunity to deadlock!!!!

– Results in potentially complex lock ordering schemes that must
be adhered to

29COMP3231 04s1

Symmetric Multiprocessors (SMP)
• Example:

– Given a “big lock” kernel, we divide the kernel into two
independent parts with a lock each

• Good chance that one of those locks will become the next

bottleneck

• Leads to more subdivision, more locks, more complex lock

acquisition rules

– Subdivision in practice is (in reality) making more code multithreaded

(parallelised)

30COMP3231 04s1

Real life Scalability Example

• Early 1990’s, CSE wanted to run 80 X-Terminals off one

or more server machines

• Winning tender was a 4-CPU bar-fridge-sized machine

with 256M of RAM

– Eventual config 6-CPU and 512M of RAM

– Machine ran fine in all pre-session testing

31COMP3231 04s1

Real life Scalability Example

• Students + assignment deadline = machine unusable

32COMP3231 04s1

Real life Scalability Example

• To fix the problem, the tenderer supplied more CPUs to

improve performance (number increased to 8)

– No change????

• Eventually, machine was replaced with

– Three 2-CPU pizza-box-sized machines, each with 256M RAM

– Cheaper overall

– Performance was dramatically improved!!!!!

– Why?

33COMP3231 04s1

Real life Scalability Example

• Paper:

– Ramesh Balan and Kurt Gollhardt, “A Scalable Implementation
of Virtual Memory HAT Layer for Shared Memory Multiprocessor
Machines”, Proc. 1992 Summer USENIX conference

• The 4-8 CPU machine hit a bottleneck in the single

threaded VM code

– Adding more CPUs simply added them to the wait queue for the
VM locks, and made others wait longer

• The 2 CPU machines did not generate that much lock

contention and performed proportionally better.

34COMP3231 04s1

Lesson Learned

• Building scalable multiprocessor kernels is
hard

• Lock contention can limit overall system
performance

SMP Linux similar evolution

• Linux 2.0 Single kernel big lock (1996)

• Linux 2.2 Big lock with interrupt handling locks

• Linux 2.4 Big lock plus some subsystem locks

• Linux 2.6 most code now outside the big lock,

data-based locking, lots of scalability tuning, etc,

etc..

• Removed in 2011 in kernel version 2.6.39

35

36COMP3231 04s1

Multiprocessor Synchronisation

• Given we need synchronisation, how can
we achieve it on a multiprocessor
machine?

– Unlike a uniprocessor, disabling interrupts

does not work.

• It does not prevent other CPUs from running in

parallel

– Need special hardware support

37COMP3231 04s1

Recall Mutual Exclusion

with Test-and-Set

Entering and leaving a critical region using the

TSL instruction

38COMP3231 04s1

Test-and-Set

• Hardware guarantees that the instruction
executes atomically.

• Atomically: As an indivisible unit.

– The instruction can not stop half way through

39COMP3231 04s1

Test-and-Set on SMP

• It does not work without some extra
hardware support

40COMP3231 04s1

Test-and-Set on SMP

• A solution:

– Hardware locks the bus during the TSL instruction to

prevent memory accesses by any other CPU

41

Test-and-Set on SMP

• Test-and Set is a busy-wait
synchronisation primitive

– Called a spinlock

• Issue:

– Lock contention leads to spinning on the lock

• Spinning on a lock requires bus locking which

slows all other CPUs down

– Independent of whether other CPUs need a lock or not

– Causes bus contention

42COMP3231 04s1

Test-and-Set on SMP
• Caching does not help reduce bus contention

– Either TSL still locks the bus

– Or TSL requires exclusive access to an entry in the

local cache

• Requires invalidation of same entry in other caches, and
loading entry into local cache

• Many CPUs performing TSL simply bounce a single
exclusive entry between all caches using the bus

43COMP3231 04s1

Reducing Bus Contention
• Read before TSL

– Spin reading the lock variable

waiting for it to change

– When it does, use TSL to acquire

the lock

• Allows lock to be shared read-only
in all caches until its released

– no bus traffic until actual release

• No race conditions, as acquisition
is still with TSL.

start:

while (lock == 1);

r = TSL(lock)

if (r == 1)

goto start;

44

Thomas Anderson, “The Performance of
Spin Lock Alternatives for Shared-Memory
Multiprocessors”, IEEE Transactions on
Parallel and Distributed Systems, Vol 1,
No. 1, 1990

45

Compares Simple Spinlocks

• Test and Set
void lock (volatile lock_t *l) {

while (test_and_set(l)) ;

}

• Read before Test and Set
void lock (volatile lock_t *l) {

while (*l == BUSY || test_and_set(l)) ;

}

46

Benchmark

for i = 1 .. 1,000,000 {

lock(l)

crit_section()

unlock()

compute()

}

• Compute chosen from uniform random
distribution of mean 5 times critical section

• Measure elapsed time on Sequent Symmetry
(20 CPU 30386, coherent write-back invalidate
caches)

47

48

Results

• Test and set performs poorly once there is enough
CPUs to cause contention for lock
– Expected

• Test and Test and Set performs better
– Performance less than expected

– Still significant contention on lock when CPUs notice release
and all attempt acquisition

• Critical section performance degenerates
– Critical section requires bus traffic to modify shared structure

– Lock holder competes with CPU that missed as they test and
set) lock holder is slower

– Slower lock holder results in more contention

49

• John Mellor-Crummey and Michael Scott,
“Algorithms for Scalable Synchronisation
on Shared-Memory Multiprocessors”, ACM
Transactions on Computer Systems, Vol.
9, No. 1, 1991

50COMP9242

MCS Locks
• Each CPU enqueues its own private lock variable into a queue and

spins on it

– No contention

• On lock release, the releaser unlocks the next lock in the queue

– Only have bus contention on actual unlock

– No starvation (order of lock acquisitions defined by the list)

51COMP9242

MCS Lock

• Requires

– compare_and_swap()

– exchange()

• Also called fetch_and_store()

52COMP9242

53COMP9242

54

55COMP9242

Selected Benchmark

• Compared

– test and test and set

– Others in paper

• Anderson’s array based queue

• test and set with exponential back-off

– MCS

56COMP9242

57COMP9242

Confirmed Trade-off

• Queue locks scale well but have higher
overhead

• Spin Locks have low overhead but don’t
scale well

58

Other Hardware Provided SMP

Synchronisation Primitives
• Atomic Add/Subtract

– Can be used to implement counting semaphores

• Exchange

• Compare and Exchange

• Load linked; Store conditionally

– Two separate instructions

• Load value using load linked

• Modify, and store using store conditionally

• If value changed by another processor, or an interrupt occurred,

then store conditionally failed

– Can be used to implement all of the above primitives

– Implemented without bus locking

59

Spinning versus Switching

• Remember spinning (busy-waiting) on a lock

made little sense on a uniprocessor

– The was no other running process to release the lock

– Blocking and (eventually) switching to the lock holder

is the only option.

• On SMP systems, the decision to spin or block is

not as clear.

– The lock is held by another running CPU and will be

freed without necessarily blocking the requestor

60

Spinning versus Switching
– Blocking and switching

• to another process takes time

– Save context and restore another

– Cache contains current process not new process

» Adjusting the cache working set also takes time

– TLB is similar to cache

• Switching back when the lock is free encounters the same again

– Spinning wastes CPU time directly

• Trade off

– If lock is held for less time than the overhead of switching

to and back

⇒It’s more efficient to spin

⇒Spinlocks expect critical sections to be short

61

Preemption and Spinlocks

• Critical sections synchronised via spinlocks are expected

to be short

– Avoid other CPUs wasting cycles spinning

• What happens if the spinlock holder is preempted at end

of holder’s timeslice

– Mutual exclusion is still guaranteed

– Other CPUs will spin until the holder is scheduled again!!!!!

⇒ Spinlock implementations disable interrupts in addition to

acquiring locks to avoid lock-holder preemption

62

Multiprocessor Scheduling

• Given X processes (or threads) and Y
CPUs,

– how do we allocate them to the CPUs

63COMP3231 04s1

A Single Shared Ready Queue

• When a CPU goes idle, it take the highest

priority process from the shared ready queue

64

Single Shared Ready Queue

• Pros
– Simple

– Automatic load balancing

• Cons
– Lock contention on the ready queue can be a

major bottleneck
• Due to frequent scheduling or many CPUs or both

– Not all CPUs are equal
• The last CPU a process ran on is likely to have

more related entries in the cache.

65

Affinity Scheduling

• Basic Idea

– Try hard to run a process on the CPU it ran

on last time

• One approach: Two-level scheduling

66

Two-level Scheduling

• Each CPU has its own ready queue

• Top-level algorithm assigns process to CPUs
– Defines their affinity, and roughly balances the load

• The bottom-level scheduler:
– Is the frequently invoked scheduler (e.g. on blocking

on I/O, a lock, or exhausting a timeslice)

– Runs on each CPU and selects from its own ready
queue

• Ensures affinity

– If nothing is available from the local ready queue, it
runs a process from another CPUs ready queue
rather than go idle

67

Two-level Scheduling

• Pros

– No lock contention on per-CPU ready queues

in the (hopefully) common case

– Load balancing to avoid idle queues

– Automatic affinity to a single CPU for more

cache friendly behaviour

