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Multiprocessor Systems

Chapter 8, 8.1



Learning Outcomes

• An understanding of the structure and limits of 

multiprocessor hardware.

• An appreciation of approaches to operating 

system support for multiprocessor machines.

• An understanding of issues surrounding and 

approaches to construction of multiprocessor 

synchronisation primitives.
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CPU clock-rate increase slowing
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Multiprocessor System

• We will look at shared-memory multiprocessors

– More than one processor sharing the same memory

• A single CPU can only go so fast

– Use more than one CPU to improve performance

– Assumes

• Workload can be parallelised

• Workload is not I/O-bound or memory-bound

• Disks and other hardware can be expensive

– Can share hardware between CPUs



Amdahl’s law

• Given a proportion P of a program that 

can be made parallel, and the 

remaining serial portion (1-P), speedup 

by using N processors 
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• UMA MP

– Uniform Memory Access 

• Access to all memory occurs at the same speed 

for all processors.  

• NUMA MP

– Non-uniform memory access

• Access to some parts of memory is faster for some 

processors than other parts of memory

• We will focus on UMA
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Types of Multiprocessors (MPs)
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Bus Based UMA

Simplest MP is more than one processor on 
a single bus connect to memory (a)

– Bus bandwidth becomes a bottleneck with 

more than just a few CPUs
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Bus Based UMA

• Each processor has a cache to reduce its 
need for access to memory (b)

– Hope is most accesses are to the local cache

– Bus bandwidth still becomes a bottleneck with 

many CPUs
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Cache Consistency

• What happens if one CPU writes to 
address 0x1234 (and it is stored in its 
cache) and another CPU reads from the 
same address (and gets what is in its 
cache)?
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Cache Consistency
• Cache consistency is usually handled by 

the hardware.

– Writes to one cache propagate to, or 

invalidate appropriate entries on other caches

– Cache transactions also consume bus 

bandwidth 
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Bus Based UMA
• To further scale the number processors, we give 

each processor private local memory

– Keep private data local on off the shared memory bus

– Bus bandwidth still becomes a bottleneck with many 

CPUs with shared data

– Complicate application development

• We have to partition between private and shared variables



Multi-core Processor
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Bus Based UMA

• With only a single shared bus, scalability is 
limited by the bus bandwidth of the single 
bus

– Caching only helps so much

• Alternative bus architectures do exist.
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UMA Crossbar Switch
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UMA Crossbar Switch

• Pro

– Any CPU can access any 

available memory with 

less blocking

• Con

– Number of switches 

required scales with n2.

• 1000 CPUs need 1000000 

switches
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Summary

• Multiprocessors can
– Increase computation power beyond that available 

from a single CPU

– Share resources such as disk and memory

• However
– Shared buses (bus bandwidth)  limit scalability

• Can be reduced via hardware design

• Can be reduced by carefully crafted software behaviour

– Good cache locality together with private data where possible



Question

• How do we construct an OS for a 
multiprocessor?
– What are some of the issues?
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Each CPU has its own OS
• Statically allocate physical memory to 

each CPU

• Each CPU runs its own independent OS

• Share peripherals

• Each CPU (OS) handles its processes 
system calls 
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Each CPU has its own OS
• Used in early multiprocessor systems to 

‘get them going’

– Simpler to implement

– Avoids concurrency issues by not sharing

– Scales – no shared serial sections
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Issues
• Each processor has its own scheduling queue

– We can have one processor overloaded, and the rest 
idle

• Each processor has its own memory partition
– We can a one processor thrashing, and the others 

with free memory
• No way to move free memory from one OS to another

• Consistency is an issue with independent disk 
buffer caches and potentially shared files
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Master-Slave Multiprocessors
• OS (mostly) runs on a single fixed CPU

– All OS tables, queues, buffers are 
present/manipulated on CPU 1

• User-level apps run on the other CPUs
– And CPU 1 if there is spare CPU time

• All system calls are passed to CPU 1 for 
processing
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Master-Slave Multiprocessors

• Very little synchronisation required

– Only one CPU accesses majority of kernel data

• Simple to implement

• Single, centralised scheduler

– Keeps all processors busy

• Memory can be allocated as needed to all CPUs
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Issue

• Master CPU can become the bottleneck

• Cross CPU traffic is slow compare to local
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Symmetric Multiprocessors (SMP)
• OS kernel run on all processors

– Load and resource are balance between all processors

• Including kernel execution

• Issue: Real concurrency in the kernel

– Need carefully applied synchronisation primitives to avoid 
disaster
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Symmetric Multiprocessors (SMP)
• One alternative: A single mutex that make the entire 

kernel a large critical section

– Only one CPU can be in the kernel at a time

– Only slightly better solution than master slave

• Better cache locality

• The “big lock” becomes a bottleneck when in-kernel processing 

exceed what can be done on a single CPU
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Symmetric Multiprocessors (SMP)
• Better alternative: identify largely independent parts of 

the kernel and make each of them their own critical 
section
– Allows more parallelism in the kernel

• Issue: Difficult task
– Code is mostly similar to uniprocessor code

– Hard part is identifying independent parts that don’t interfere with 
each other
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Symmetric Multiprocessors (SMP)
• Example:

– Associate a mutex with independent parts of the kernel

– Some kernel activities require more than one part of the kernel

• Need to acquire more than one mutex

• Great opportunity to deadlock!!!! 

– Results in potentially complex lock ordering schemes that must 
be adhered to
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Symmetric Multiprocessors (SMP)
• Example:

– Given a “big lock” kernel, we divide the kernel into two 
independent parts with a lock each

• Good chance that one of those locks will become the next 

bottleneck

• Leads to more subdivision, more locks, more complex lock 

acquisition rules

– Subdivision in practice is (in reality) making more code multithreaded 

(parallelised) 



30COMP3231 04s1

Real life Scalability Example

• Early 1990’s, CSE wanted to run 80 X-Terminals off one 

or more server machines

• Winning tender was a 4-CPU bar-fridge-sized machine 

with 256M of RAM

– Eventual config 6-CPU and 512M of RAM

– Machine ran fine in all pre-session testing
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Real life Scalability Example

• Students + assignment deadline = machine unusable
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Real life Scalability Example

• To fix the problem, the tenderer supplied more CPUs to 

improve performance (number increased to 8)

– No change????

• Eventually, machine was replaced with

– Three 2-CPU pizza-box-sized machines, each with 256M RAM

– Cheaper overall

– Performance was dramatically improved!!!!!

– Why?
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Real life Scalability Example

• Paper:

– Ramesh Balan and Kurt Gollhardt, “A Scalable Implementation 
of Virtual Memory HAT Layer for Shared Memory Multiprocessor 
Machines”, Proc. 1992 Summer USENIX conference

• The 4-8 CPU machine hit a bottleneck in the single 

threaded VM code

– Adding more CPUs simply added them to the wait queue for the 
VM locks, and made others wait longer

• The 2 CPU machines did not generate that much lock 

contention and performed proportionally better.
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Lesson Learned

• Building scalable multiprocessor kernels is 
hard

• Lock contention can limit overall system 
performance



SMP Linux similar evolution

• Linux 2.0 Single kernel big lock (1996)

• Linux 2.2 Big lock with interrupt handling locks

• Linux 2.4 Big lock plus some subsystem locks

• Linux 2.6 most code now outside the big lock, 

data-based locking, lots of scalability tuning, etc, 

etc..

• Removed in 2011 in kernel version 2.6.39
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Multiprocessor Synchronisation

• Given we need synchronisation, how can 
we achieve it on a multiprocessor 
machine?

– Unlike a uniprocessor, disabling interrupts 

does not work.

• It does not prevent other CPUs from running in 

parallel

– Need special hardware support
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Recall Mutual Exclusion 

with Test-and-Set

Entering and leaving a critical region using the 

TSL instruction
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Test-and-Set

• Hardware guarantees that the instruction 
executes atomically.

• Atomically: As an indivisible unit.

– The instruction can not stop half way through
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Test-and-Set on SMP

• It does not work without some extra 
hardware support
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Test-and-Set on SMP

• A solution:

– Hardware locks the bus during the TSL instruction to 

prevent memory accesses by any other CPU
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Test-and-Set on SMP

• Test-and Set is a busy-wait 
synchronisation primitive

– Called a spinlock

• Issue:

– Lock contention leads to spinning on the lock

• Spinning on a lock requires bus locking which 

slows all other CPUs down 

– Independent of whether other CPUs need a lock or not 

– Causes bus contention
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Test-and-Set on SMP
• Caching does not help reduce bus contention

– Either TSL still locks the bus

– Or TSL requires exclusive access to an entry in the 

local cache

• Requires invalidation of same entry in other caches, and 
loading entry into local cache

• Many CPUs performing TSL simply bounce a single 
exclusive entry between all caches using the bus 
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Reducing Bus Contention
• Read before TSL

– Spin reading the lock variable 

waiting for it to change

– When it does, use TSL to acquire 

the lock

• Allows lock to be shared read-only 
in all caches until its released 

– no bus traffic until actual release

• No race conditions, as acquisition 
is still with TSL.

start:

while (lock == 1);

r = TSL(lock)

if (r == 1) 

goto start;



44

Thomas Anderson, “The Performance of 
Spin Lock Alternatives for Shared-Memory 
Multiprocessors”, IEEE Transactions on 
Parallel and Distributed Systems, Vol 1, 
No. 1, 1990
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Compares Simple Spinlocks

• Test and Set
void lock (volatile lock_t *l) {

while (test_and_set(l)) ;

}

• Read before Test and Set
void lock (volatile lock_t *l) {

while (*l == BUSY || test_and_set(l)) ;

}
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Benchmark

for i = 1 .. 1,000,000 {

lock(l)

crit_section()

unlock()

compute()

}

• Compute chosen from uniform random 
distribution of mean 5 times critical section

• Measure elapsed time on Sequent Symmetry 
(20 CPU 30386, coherent write-back invalidate 
caches)
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Results

• Test and set performs poorly once there is enough 
CPUs to cause contention for lock
– Expected

• Test and Test and Set performs better
– Performance less than expected

– Still significant contention on lock when CPUs notice release 
and all attempt acquisition

• Critical section performance degenerates
– Critical section requires bus traffic to modify shared structure

– Lock holder competes with CPU that missed as they test and 
set ) lock holder is slower

– Slower lock holder results in more contention
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• John Mellor-Crummey and Michael Scott, 
“Algorithms for Scalable Synchronisation 
on Shared-Memory Multiprocessors”, ACM 
Transactions on Computer Systems, Vol. 
9, No. 1, 1991
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MCS Locks
• Each CPU enqueues its own private lock variable into a queue and 

spins on it

– No contention

• On lock release, the releaser unlocks the next lock in the queue

– Only have bus contention on actual unlock

– No starvation (order of lock acquisitions defined by the list)
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MCS Lock

• Requires 

– compare_and_swap() 

– exchange() 

• Also called fetch_and_store()
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Selected Benchmark

• Compared

– test and test and set

– Others in paper

• Anderson’s array based queue

• test and set with exponential back-off

– MCS
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Confirmed Trade-off

• Queue locks scale well but have higher 
overhead 

• Spin Locks have low overhead but don’t 
scale well
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Other Hardware Provided SMP 

Synchronisation Primitives
• Atomic Add/Subtract

– Can be used to implement counting semaphores

• Exchange

• Compare and Exchange

• Load linked; Store conditionally

– Two separate instructions

• Load value using load linked

• Modify, and store using store conditionally

• If value changed by another processor, or an interrupt occurred, 

then store conditionally failed

– Can be used to implement all of the above primitives

– Implemented without bus locking
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Spinning versus Switching

• Remember spinning (busy-waiting) on a lock 

made little sense on a uniprocessor

– The was no other running process to release the lock

– Blocking and (eventually) switching to the lock holder 

is the only option.

• On SMP systems, the decision to spin or block is 

not as clear.

– The lock is held by another running CPU and will be 

freed without necessarily blocking the requestor
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Spinning versus Switching
– Blocking and switching

• to another process takes time

– Save context and restore another

– Cache contains current process not new process

» Adjusting the cache working set also takes time

– TLB is similar to cache

• Switching back when the lock is free encounters the same again

– Spinning wastes CPU time directly

• Trade off

– If lock is held for less time than the overhead of switching 

to and back

⇒It’s more efficient to spin

⇒Spinlocks expect critical sections to be short
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Preemption and Spinlocks

• Critical sections synchronised via spinlocks are expected 

to be short

– Avoid other CPUs wasting cycles spinning

• What happens if the spinlock holder is preempted at end 

of holder’s timeslice

– Mutual exclusion is still guaranteed

– Other CPUs will spin until the holder is scheduled again!!!!!

⇒ Spinlock implementations disable interrupts in addition to 

acquiring locks to avoid lock-holder preemption
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Multiprocessor Scheduling

• Given X processes (or threads) and Y
CPUs,

– how do we allocate them to the CPUs
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A Single Shared Ready Queue 

• When a CPU goes idle, it take the highest 

priority process from the shared ready queue
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Single Shared Ready Queue

• Pros
– Simple

– Automatic load balancing

• Cons
– Lock contention on the ready queue can be a 

major bottleneck
• Due to frequent scheduling or many CPUs or both

– Not all CPUs are equal
• The last CPU a process ran on is likely to have 

more related entries in the cache.
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Affinity Scheduling

• Basic Idea

– Try hard to run a process on the CPU it ran 

on last time

• One approach: Two-level scheduling
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Two-level Scheduling

• Each CPU has its own ready queue

• Top-level algorithm assigns process to CPUs
– Defines their affinity, and roughly balances the load

• The bottom-level scheduler:
– Is the frequently invoked scheduler (e.g. on blocking 

on I/O, a lock, or exhausting a timeslice)

– Runs on each CPU and selects from its own ready 
queue

• Ensures affinity

– If nothing is available from the local ready queue, it 
runs a process from another CPUs ready queue 
rather than go idle
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Two-level Scheduling

• Pros

– No lock contention on per-CPU ready queues 

in the (hopefully) common case

– Load balancing to avoid idle queues

– Automatic affinity to a single CPU for more 

cache friendly behaviour


