
1

Introduction to Operating

Systems

Chapter 1 – 1.3

Chapter 1.5 – 1.9

Learning Outcomes

• High-level understand what is an operating

system and the role it plays

• A high-level understanding of the structure of
operating systems, applications, and the
relationship between them.

• Some knowledge of the services provided by
operating systems.

• Exposure to some details of major OS
concepts.

2

What is an Operating

System?

3 4

Block Diagram of Haswell Platform Architecture http://www.pcquest.com

Role 1: The Operating System is

an Abstract Machine

• Extends the basic hardware with added

functionality

• Provides high-level abstractions

– More programmer friendly

– Common core for all applications

• E.g. Filesystem instead of just registers on a disk
controller

• It hides the details of the hardware

– Makes application code portable

5 6

UsersDisk

Memory

CPU

Network

Bandwidth

2

Role 2: The Operating System

is a Resource Manager

• Responsible for allocating resources to users

and processes

• Must ensure

– No Starvation

– Progress

– Allocation is according to some desired policy

• First-come, first-served; Fair share; Weighted fair share;
limits (quotas), etc…

– Overall, that the system is efficiently used

7

Structural (Implementation) View: the

Operating System is the Privileged

Component

8

Requests (System Calls)

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Operating System Kernel

• Portion of the operating system that is
running in privileged mode

• Usually resident (stays) in main memory

• Contains fundamental functionality
– Whatever is required to implement other

services

– Whatever is required to provide security

• Contains most-frequently used functions

• Also called the nucleus or supervisor
9

The Operating System is

Privileged

• Applications should not be able to interfere or bypass
the operating system

– OS can enforce the “extended machine”

– OS can enforce its resource allocation policies

– Prevent applications from interfering with each other

10

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Memory

Delving Deeper:

The Structure of a Computer System

11

Operating System

System Libraries

Application

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Memory

The Structure of a Computer System

12

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

OS interacts via load

and store instructions
to all memory, CPU
and device registers,

and interrupts

3

Memory

The Structure of a Computer System

13

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Applications interact with

themselves and via
function calls to library
procedures

Memory

The Structure of a Computer System

14

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Interaction via

System Calls

Privilege-less OS

• Some Embedded OSs have
no privileged component

– e.g. PalmOS, Mac OS 9,

RTEMS

– Can implement OS

functionality, but cannot

enforce it.
• All software runs together

• No isolation

• One fault potentially brings down

entire system

15

A Note on System Libraries

System libraries are just that, libraries of support
functions (procedures, subroutines)

– Only a subset of library functions are actually systems calls

• strcmp(), memcpy(), are pure library functions
– manipulate memory within the application, or perform computation

• open(), close(), read(), write() are system calls
– they cross the user-kernel boundary, e.g. to read from disk device

– Implementation mainly focused on passing request to OS and returning
result to application

– System call functions are in the library for convenience
• try man syscalls on Linux

16

Operating System Software

• Fundamentally, OS functions the
same way as ordinary computer

software

– It is a program that is executed
(just like applications)

– It has more privileges

• Operating system relinquishes

control of the processor to execute
other programs

– Reestablishes control after

• System calls

• Interrupts (especially timer

interrupts)

17

Memory

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Major OS Concepts

(Overview)

• Processes

• Concurrency and deadlocks

• Memory management

• Files

• Scheduling and resource management

• Information Security and Protection

18

4

Processes
• A program in execution

• An instance of a program running on a computer

• The entity that can be assigned to and executed on a
processor

• A unit of resource ownership

19

Process
• Minimally consist of three segments

– Text

• contains the code (instructions)

– Data

• Global variables

– Stack

• Activation records of
procedure/function/method

• Local variables

• Note:
– data can dynamically grow up

• E.g., malloc()-ing

– The stack can dynamically grow down
• E.g., increasing function call depth or recursion

20

Stack

Gap

Data

Text

Memory

Process state

• Consists of three components
– An executable program code

• text

– Associated data needed by the program
• Data and stack

– Execution context of the program
• Registers, program counter, stack pointer

• Information the operating system needs to
manage the process

– OS-internal bookkeeping, files open, etc…

21

Multiple processes creates

concurrency issues

(a) A potential deadlock. (b) an actual deadlock.
22

Memory Management
• The view from thirty thousand feet

– Process isolation
• Prevent processes from accessing each others data

– Automatic allocation and management
• Users want to deal with data structures

• Users don’t want to deal with physical memory directly

– Protection and access control
• Still want controlled sharing

– OS services
• Virtual memory

• File system

23

Virtual Memory

• Allows programmers to address
memory from a logical point of view
– Gives apps the illusion of having RAM to

themselves

– Logical addresses are independent of
other processes

– Provides isolation of processes from each
other

• Can overlap execution of one process
while swapping in/out others to disk.

24

5

Virtual Memory Addressing

25

Memory management unit
(hardware) translates program

memory addresses to main
memory addresses.

File System

• Implements long-term store

• Information stored in named objects

called files

26

Example File System

27

Scheduling and Resource

Management

• Fairness

– give equal and fair access to all processes

• Differential responsiveness

– discriminate between different classes of jobs

• Efficiency

– maximize throughput, minimize response time,

and accommodate as many uses as possible

28

Operating System Internal

Structure?

29

Classic Operating System

Structure

• The layered approach

a) Processor allocation
and multiprogramming

b) Memory Management

c) Devices

d) File system

e) Users

– Each layer depends on

the inner layers

30

a b c d e

6

Operating System

Structure

• In practice, layering is only a guide

– Operating Systems have many

interdependencies

• Scheduling on virtual memory

• Virtual memory (VM) on I/O to disk

• VM on files (page to file)

• Files on VM (memory mapped files)

• And many more…

31

The Monolithic Operating

System Structure

• Also called the
“spaghetti nest”

approach

– Everything is

tangled up with

everything else.

• Linux, Windows,

….

32

The Monolithic Operating

System Structure
• However, some

reasonable structure

usually prevails

33

Bowman, I. T., Holt, R. C., and Brewster, N. V. 1999. Linux as a case study: its extracted
software architecture. In Proceedings of the 21st international Conference on Software

Engineering (Los Angeles, California, United States, May 16 - 22, 1999). ICSE '99. ACM,
New York, NY, 555-563. DOI= http://doi.acm.org/10.1145/302405.302691

34

The End

35

