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Concurrency and 

Synchronisation
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Learning Outcomes

• Understand concurrency is an issue in operating 
systems and multithreaded applications

• Know the concept of a critical region.

• Understand how mutual exclusion of critical 
regions can be used to solve concurrency issues
– Including how mutual exclusion can be implemented 

correctly and efficiently.

• Be able to identify and solve a producer 
consumer bounded buffer problem.

• Understand and apply standard synchronisation 
primitives to solve synchronisation problems.
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Textbook

• Sections 2.3 - 2.3.7 & 2.5

Concurrency Example
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void decrement ()

{

int t;

t = count;

t = t - 1;

count = t;

}

void increment ()

{

int t;

t = count;

t = t + 1;

count = t;

}

count is a global variable shared between two threads. 

After increment and decrement complete, what is the value of 
count?
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Inter- Thread and Process 

Communication

Two processes want to access shared memory at same 
time

We have a 
race 

condition
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Making Single-Threaded Code Multithreaded

Conflicts between threads over the use of a 
global variable
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Critical Region

• We can control access to the shared 
resource by controlling access to the code 
that accesses the resource.

⇒ A critical region is a region of code where 
shared resources are accessed.
– Variables, memory, files, etc…

• Uncoordinated entry to the critical region 
results in a race condition
⇒ Incorrect behaviour, deadlock, lost work,…
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Critical Regions

Mutual exclusion using critical regions

Identifying critical regions

• Critical regions are regions of code that:

– Access a shared resource,

– And correctness relies on the shared resource 

not being concurrently modified by another 

thread/process/entity.
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Example critical regions

struct node {

int data;

struct node *next;

};

struct node *head;

void init(void)

{

head = NULL;

}

• Simple last-in-first-out queue 
implemented as a linked list.

void insert(struct *item)

{

item->next = head;

head = item;

}

struct node *remove(void)

{

struct node *t;

t = head;

if (t != NULL) {

head = head->next;

}

return t;

}

Example Race
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void insert(struct *item)

{

item->next = head;

head = item;

}

void insert(struct *item)

{

item->next = head;

head = item;

}
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Example critical regions

struct node {

int data;

struct node *next;

};

struct node *head;

void init(void)

{

head = NULL;

}

• Critical sections

void insert(struct *item)

{

item->next = head;

head = item;

}

struct node *remove(void)

{

struct node *t;

t = head;

if (t != NULL) {

head = head->next;

}

return t;

}



3

Critical Regions Solutions

Also called critical sections
Conditions required of any solution to the critical region 

problem
� Mutual Exclusion:

� No two processes simultaneously in critical region

� No assumptions made about speeds or numbers of CPUs

� Progress
� No process running outside its critical region may block another 

process

� Bounded
� No process waits forever to enter its critical region
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A solution?

• A lock variable

– If lock == 1, 

• somebody is in the critical section and we must 
wait

– If lock == 0, 

• nobody is in the critical section and we are free to 
enter
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A solution?

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}
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A problematic execution 

sequence
while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}

while(TRUE) {

while(lock == 1);

lock = 1;

critical();

lock = 0

non_critical();

}
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Observation

• Unfortunately, it is usually easier to show 
something does not work, than it is to 

prove that it does work.

– Easier to provide a counter example

– Ideally, we’d like to prove, or at least 

informally demonstrate, that our solutions 

work.
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Mutual Exclusion by Taking Turns

Proposed solution to critical region problem
(a) Process 0.        (b) Process 1.
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Mutual Exclusion by Taking Turns

• Works due to strict alternation

– Each process takes turns

• Cons

– Busy waiting

– Process must wait its turn even while the other 
process is doing something else.

• With many processes, must wait for everyone to have a turn

– Does not guarantee progress if a process no longer needs a 
turn.

• Poor solution when processes require the critical section at 

differing rates
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Peterson’s Solution

• See the textbook
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Mutual Exclusion by Disabling 

Interrupts
• Before entering a critical region, disable 

interrupts

• After leaving the critical region, enable interrupts

• Pros
– simple

• Cons
– Only available in the kernel

– Blocks everybody else, even with no contention
• Slows interrupt response time

– Does not work on a multiprocessor
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Hardware Support for mutual 

exclusion
• Test and set instruction

– Can be used to implement lock variables correctly

• It loads the value of the lock

• If lock == 0, 

– set the lock to 1

– return the result 0 – we acquire the lock

• If lock == 1

– return 1 – another thread/process has the lock 

– Hardware guarantees that the instruction executes 

atomically.

• Atomically: As an indivisible unit.

24

Mutual Exclusion with Test-and-Set

Entering and leaving a critical region using the 

TSL instruction
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Test-and-Set
• Pros

– Simple (easy to show it’s correct)

– Available at user-level 
• To any number of processors

• To implement any number of lock variables

• Cons
– Busy waits (also termed a spin lock)

• Consumes CPU

• Livelock in the presence of priorities

– If a low priority process has the lock and a high priority process 
attempts to get it, the high priority process will busy-wait 
forever.

• Starvation is possible when a process leaves its critical 
section and more than one process is waiting.
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Tackling the Busy-Wait Problem

• Sleep / Wakeup

– The idea

• When process is waiting for an event, it calls sleep 
to block, instead of busy waiting.

• The event happens, the event generator (another 

process) calls wakeup to unblock the sleeping 
process.

• Waking a ready/running process has no effect.
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The Producer-Consumer 

Problem
• Also called the bounded buffer problem

• A producer produces data items and stores the 
items in a buffer

• A consumer takes the items out of the buffer and 
consumes them.

X X X

Producer

Consumer
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Issues
• We must keep an accurate count of items in buffer

– Producer 

• can sleep when the buffer is full,

• and wakeup when there is empty space in the buffer

– The consumer can call wakeup when it consumes the first entry of the 

full buffer

– Consumer 

• Can sleep when the buffer is empty

• And wake up when there are items available

– Producer can call wakeup when it adds the first item to the buffer

X X X

Producer

Consumer
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Pseudo-code for producer and 

consumer
int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep();

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

}
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Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep();

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

} Concurrent 

uncontrolled 

access to the 

buffer
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Problems

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

insert_item();

count++;

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep();

remove_item();

count--;

if (count == N-1)

wakeup(prod);

}

} Concurrent 

uncontrolled 

access to the 

counter
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Proposed Solution

• Lets use a locking primitive based on test-
and-set to protect the concurrent access
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Proposed solution?

int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

acquire_lock()

insert_item();

count++;

release_lock()

if (count == 1)

wakeup(con);

}

}

con() {

while(TRUE) {

if (count == 0) 

sleep();

acquire_lock()

remove_item();

count--;

release_lock();

if (count == N-1)

wakeup(prod);

}

}
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Problematic execution sequence

prod() {

while(TRUE) {

item = produce()

if (count == N)

sleep();

acquire_lock()

insert_item();

count++;

release_lock()

if (count == 1)

wakeup(con);

con() {

while(TRUE) {

if (count == 0) 

sleep();

acquire_lock()

remove_item();

count--;

release_lock();

if (count == N-1)

wakeup(prod);

}

}

wakeup without a 

matching sleep is 

lost

Problem

• The test for some 
condition and actually 
going to sleep needs 
to be atomic

• The following does 
not work:

acquire_lock()

if (count == N)

sleep();

release_lock()

The lock is held while 

asleep ⇒ count will 
never change

acquire_lock()

if (count == 1)

wakeup();

release_lock()
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Semaphores

• Dijkstra (1965) introduced two primitives 
that are more powerful than simple sleep 

and wakeup alone.

– P(): proberen, from Dutch to test.

– V(): verhogen, from Dutch to increment.

– Also called wait & signal, down & up.
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How do they work

• If a resource is not available, the corresponding 
semaphore blocks any process waiting for the resource

• Blocked processes are put into a process queue 
maintained by the semaphore (avoids busy waiting!)

• When a process releases a resource, it signals this by 
means of the semaphore

• Signalling resumes a blocked process if there is any

• Wait and signal operations cannot be interrupted

• Complex coordination can be implemented by multiple 
semaphores

38

Semaphore Implementation

• Define a semaphore as a record

typedef struct {

int count;
struct process *L;

} semaphore;

• Assume two simple operations:
– sleep suspends the process that invokes it.

– wakeup(P) resumes the execution of a blocked 
process P.
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• Semaphore operations now defined as 

wait(S):
S.count--;

if (S.count < 0) { 

add this process to S.L;
sleep;

}

signal(S): 
S.count++;

if (S.count <= 0) {

remove a process P from S.L;
wakeup(P);

}

• Each primitive is atomic
– E.g. interrupts are disabled for each

40

Semaphore as a General 

Synchronization Tool

• Execute B in Pj only after A executed in Pi

• Use semaphore count initialized to 0

• Code:

Pi Pj

⁞  ⁞

A wait(flag)

signal(flag) B
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Semaphore Implementation of a 

Mutex
• Mutex is short for Mutual Exclusion

– Can also be called a lock
semaphore mutex;

mutex.count = 1; /* initialise mutex */

wait(mutex); /* enter the critcal region */

Blahblah();

signal(mutex); /* exit the critical region */

Notice that the initial count determines how many 
waits can progress before blocking and requiring 
a signal ⇒ mutex.count initialised as 1
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Solving the producer-consumer 
problem with semaphores

#define N = 4

semaphore mutex = 1;

/* count empty slots */

semaphore empty = N;

/* count full slots */

semaphore full = 0; 



8

43

Solving the producer-consumer 
problem with semaphores

prod() {

while(TRUE) {

item = produce()

wait(empty);

wait(mutex)

insert_item();

signal(mutex);

signal(full);

}

}

con() {

while(TRUE) {

wait(full);

wait(mutex);

remove_item();

signal(mutex);

signal(empty);

}

}
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Summarising Semaphores

• Semaphores can be used to solve a 
variety of concurrency problems

• However, programming with then can be 

error-prone

– E.g. must signal for every wait for mutexes

• Too many, or too few signals or waits, or signals 
and waits in the wrong order, can have 

catastrophic results
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Monitors
• To ease concurrent programming, Hoare (1974) 

proposed monitors.
– A higher level synchronisation primitive

– Programming language construct

• Idea
– A set of procedures, variables, data types are 

grouped in a special kind of module, a monitor.
• Variables and data types only accessed from within the 

monitor

– Only one process/thread can be in the monitor at any 
one time

• Mutual exclusion is implemented by the compiler (which 
should be less error prone) 

46

Monitor

• When a thread 
calls a monitor 

procedure that 

has a thread 
already inside, it 

is queued and it 

sleeps until the 
current thread 

exits the monitor.
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Monitors

Example of a monitor
48

Simple example

monitor counter {

int count;

procedure inc() {

count = count + 1;

}

procedure dec() {

count = count –1;

}

}

Note:  “paper” language

• Compiler guarantees 
only one thread can 
be active in the 
monitor at any one 
time

• Easy to see this 
provides mutual 
exclusion
– No race condition on 
count. 
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How do we block waiting for an 

event?
• We need a mechanism to block waiting for 

an event (in addition to ensuring mutual 

exclusion)

– e.g., for producer consumer problem when 

buffer is empty or full

• Condition Variables

50

Condition Variable
• To allow a process to wait within the monitor, a condition

variable must be declared, as

condition x, y;

• Condition variable can only be used with the operations 
wait and signal.

– The operation

x.wait();

means that the process invoking this operation is suspended until 

another process invokes

x.signal();

– The x.signal operation resumes exactly one suspended process.  If 

no process is suspended, then the signal operation has no effect.
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Condition Variables

52

Monitors

• Outline of producer-consumer problem with monitors
– only one monitor procedure active at one time

– buffer has N slots
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OS/161 Provided Synchronisation 

Primitives

• Locks

• Semaphores

• Condition Variables

54

Locks

• Functions to create and destroy locks

struct lock *lock_create(const char *name);

void         lock_destroy(struct lock *);

• Functions to acquire and release them

void         lock_acquire(struct lock *);

void         lock_release(struct lock *);
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Example use of locks

int count;

struct lock *count_lock

main() {

count = 0;

count_lock = 

lock_create(“count 

lock”);

if (count_lock == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

lock_acquire(count_lock);

count = count + 1;

lock_release(count_lock);

}

procedure dec() {

lock_acquire(count_lock);

count = count –1;

lock_release(count_lock);

}
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Semaphores

struct semaphore *sem_create(const char *name, int 

initial_count);

void              sem_destroy(struct semaphore *);

void              P(struct semaphore *);

void              V(struct semaphore *);
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Example use of Semaphores

int count;

struct semaphore 

*count_mutex;

main() {

count = 0;

count_mutex = 

sem_create(“count”, 

1);

if (count_mutex == NULL)

panic(“I’m dead”);

stuff();

}

procedure inc() {

P(count_mutex);

count = count + 1;

V(count_mutex);

}

procedure dec() {

P(count_mutex);

count = count –1;

V(count_mutex);

}
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Condition Variables

struct cv *cv_create(const char *name);

void       cv_destroy(struct cv *);

void       cv_wait(struct cv *cv, struct lock *lock);

– Releases the lock and blocks

– Upon resumption, it re-acquires the lock
• Note: we must recheck the condition we slept on

void       cv_signal(struct cv *cv, struct lock *lock);

void       cv_broadcast(struct cv *cv, struct lock *lock);

– Wakes one/all, does not release the lock

– First “waiter” scheduled after signaller releases the lock will re-
acquire the lock 

Note: All three variants must hold the lock passed in.

59

Condition Variables and Bounded 

Buffers
Non-solution

lock_acquire(c_lock) 

if (count == 0) 

sleep();

remove_item();

count--;

lock_release(c_lock);

Solution
lock_acquire(c_lock) 

while (count == 0) 

cv_wait(c_cv, c_lock);

remove_item();

count--;

lock_release(c_lock);
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A Producer-Consumer Solution 

Using OS/161 CVs
int count = 0;

#define N 4 /* buf size */

prod() {

while(TRUE) {

item = produce()

lock_aquire(l) 

while (count == N)

cv_wait(full,l);

insert_item(item);

count++;

if (count == 1)
cv_signal(empty,l);

lock_release(l)

}

}

con() {

while(TRUE) {

lock_acquire(l)

while (count == 0) 

cv_wait(empty,l);

item = remove_item();

count--;

if (count == N-1)

cv_signal(full,l);

lock_release(l);

consume(item); 

}

}
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Dining Philosophers

• Philosophers eat/think

• Eating needs 2 forks

• Pick one fork at a time 

• How to prevent deadlock 
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Dining Philosophers

Solution to dining philosophers problem (part 1)
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Dining Philosophers

A nonsolution to the dining philosophers problem
64

Dining Philosophers

Solution to dining philosophers problem (part 2)

65 66

The Readers and Writers Problem

• Models access to a database
• E.g. airline reservation system

– Can have more than one concurrent reader

• To check schedules and reservations

– Writers must have exclusive access

• To book a ticket or update a schedule
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The Readers and Writers Problem

A solution to the readers and writers problem


