
1

Page Tables Revisited

1

Learning Outcomes

• An understanding of virtual linear array
page tables, and their use on the MIPS

R3000.

• Exposure to alternative page table
structures beyond two-level and inverted

page tables.

2

3 4

Two-level Translation

5

R3000 TLB Refill

• Can be optimised for TLB refill
only

– Does not need to check the
exception type

– Does not need to save any
registers

• It uses a specialised
assembly routine that only
uses k0 and k1.

– Does not check if PTE exists
• Assumes virtual linear array –

see extended OS notes

• With careful data structure
choice, exception handler can
be made very fast

• An example routine

mfc0 k1,C0_CONTEXT

mfc0 k0,C0_EPC # mfc0 delay

slot

lw k1,0(k1) # may double

fault (k0 = orig EPC)

nop

mtc0 k1,C0_ENTRYLO

nop

tlbwr

jr k0

rfe

How does this
work?

6

Virtual Linear Array page table

• Assume a 2-level PT

• Assume 2nd-level PT nodes are in virtual memory

• Assume all 2nd-level nodes are allocated contiguously ⇒
2nd-level nodes form a contiguous array indexed by page
number

2

7

Virtual Linear Array Operation

• Index into 2nd level page table without referring to root
PT!

• Simply use the full page number as the PT index!

• Leave unused parts of PT unmapped!

• If access is attempted to unmapped part of PT, a
secondary page fault is triggered
– This will load the mapping for the PT from the root PT

– Root PT is kept in physical memory (cannot trigger page faults)

8

9

Virtual Linear Array Page Table

PTEbase in virtual
memory in kseg2

• Protected from
user access

• Use Context register to simply
load PTE by indexing a PTE
array in virtual memory

• Occasionally, will get double
faults
– A TLB miss, while servicing a TLB

miss

– Handled by general exception
handler

10

c0 Context Register

• c0_Context = PTEBase + 4 * PageNumber
– PTEs are 4 bytes

– PTEBase is the base local of the page table array (note: aligned
on 4 MB boundary)

– PTEBase is (re)initialised by the OS whenever the page table
array is changed

• E.g on a context switch

– After an exception, c0_Context contains the address of the PTE
required to refill the TLB.

11

Code for VLA TLB refill handler
mfc0 k1,C0_CONTEXT

mfc0 k0,C0_EPC # mfc0 delay slot

lw k1,0(k1) # may double fault

(k0 = orig EPC)

nop

mtc0 k1,C0_ENTRYLO

nop

tlbwr

jr k0

rfe

Load PTE

address from
context register

Load the PTE.

Note: this load can cause a
TLB refill miss itself, but
this miss is handled by the

general exception vector.
The general exception
vector has to understand

this situation and deal with
in appropriately

Move the PTE

into EntryLo.

Write EntryLo

into random TLB
entry. Return from the

exception

Load address of

instruction to
return to

Software-loaded TLB

• Pros

– Can simplify hardware design

– provide greater flexibility in page table

structure

• Cons

– typically have slower refill times than

hardware managed TLBs.

12

3

Design Tradeoffs for Software-Managed TLBs
David Nagle, Richard Uhlig, Tim Stanley, Stuart Sechrest Trevor

Mudge & Richard Brown

ISCA '93 Proceedings of the 20th annual international symposium on computer

architecture

13

Trends at the time

• Operating systems

– moving functionality into user processes

– making greater use of virtual memory for mapping data

structures held within the kernel.

• RAM is increasing

– TLB capacity is relatively static

• Statement:

– Trends place greater stress upon the TLB by increasing miss

rates and hence, decreasing overall system performance.

– True/False? How to evaluate?

14

15 16

17

Note the TLB miss costs

• What is expected to be the common case?

18

4

19 20

21

Measurement Results

22

Specialising the L2/L1K miss vector

23

Other performance

improvements?
• In Paper

– Pinned slots

– Increased TLB size

– TLB associativity

• Other options

– Bigger page sizes

– Multiple page sizes

24

5

Itanium Page Table

• Takes a bet each way

• Loading

– software

– two different format hardware walkers

• Page table

– software defined

– Virtual linear array

– Hashed

25 26

what about the P4?
• i.e. 32-bit x86 architecture.

P4
• Sophisticated, supports:

– demand paging

– pure segmentation
– segmentation with paging

• Heart of the VM architecture
– Local Descriptor Table (LDT)
– Global Descriptor Table (GDT)

• LDT
– 1 per process

– describes segments local to each process (code, stack,
data, etc.)

• GDT
– shared by all programs
– describes system segments (including OS itself)

P4

• To access a segment P4

– loads a selector in 1 of the segment registers

– …

P4

• a P4 selector:

6

P4
• a P4 selector:

• when selector is in register, corresponding
segment descriptor is

– fetched by MMU

– loaded in internal MMU registers

• Next, segment descriptor is used to handle

memory reference (discussed later)

1 1 1

determine LDT
or GDT (and

privilege level)
P4

0 0 0 zero these 3 bits
and add the 16b to

base address of
LDT or GDT

LDT GDT

P4

0 0 0

LDT GDT

• finds a a P4 code segment descriptor

P4

• calculating a linear address from
selector+offset

P4

IF no paging used: we are done

� this is the physical address

ELSE

� linear address interpreted as virtual address

� paging again!

P4 with paging
• every process has page directory

– 1024 32bit entries

– each entry points to page table

– page table contains 1024 32bit entries

– each entry points to page frame

mapping
linear
address to
physical
address
with paging

7

P4

• Many OSs:

–BASE=0

–LIMIT=MAX

• � no segmentation at all

That is it!

