
1

Introduction to Operating Systems

Chapter 1 – 1.3

Chapter 1.5 – 1.9

Learning Outcomes

High-level understand what is an operating system
and the role it plays

A high-level understanding of the structure of
operating systems, applications, and the
relationship between them.

Some knowledge of the services provided by
operating systems.

Exposure to some details of major OS concepts.

2

What is an Operating System?

3 4
Block Diagram of Haswell Platform Architecture http://www.pcquest.com

Role 1: The Operating System is an
Abstract Machine
Extends the basic hardware with added functionality

Provides high-level abstractions
• More programmer friendly

• Common core for all applications
– E.g. Filesystem instead of just registers on a disk controller

It hides the details of the hardware
• Makes application code portable

5 6

UsersDisk

Memory

CPU

Network

Bandwidth

2

Role 2: The Operating System is
a Resource Manager
Responsible for allocating resources to users and

processes

Must ensure
• No Starvation

• Progress

• Allocation is according to some desired policy
– First-come, first-served; Fair share; Weighted fair share; limits

(quotas), etc…

• Overall, that the system is efficiently used

7

Structural (Implementation) View: the
Operating System is the Privileged
Component

8

Requests (System Calls)

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Operating System Kernel

Portion of the operating system that is running in privileged
mode

Usually resident (stays) in main memory

Contains fundamental functionality

• Whatever is required to implement other services

• Whatever is required to provide security

Contains most-frequently used functions

Also called the nucleus or supervisor

9

The Operating System is Privileged

Applications should not be able to interfere or bypass the
operating system

• OS can enforce the “extended machine”

• OS can enforce its resource allocation policies

• Prevent applications from interfering with each other

10

Operating System

Applications Applications Applications

Privileged Mode

User Mode

Hardware

Memory

Delving Deeper:
The Structure of a Computer System

11

Operating System

System Libraries

Application

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Memory

The Structure of a Computer System

12

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

OS interacts via load
and store instructions
to all memory, CPU
and device registers,
and interrupts

3

Memory

The Structure of a Computer System

13

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Applications interact with
themselves and via
function calls to library
procedures

Memory

The Structure of a Computer System

14

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Interaction via

System Calls

Privilege-less OS

Some Embedded OSs have no
privileged component

• e.g. PalmOS, Mac OS 9, RTEMS

• Can implement OS functionality, but
cannot enforce it.
– All software runs together

– No isolation

– One fault potentially brings down entire
system

15

A Note on System Libraries

System libraries are just that, libraries of support functions
(procedures, subroutines)

• Only a subset of library functions are actually systems calls

– strcmp(), memcpy(), are pure library functions
» manipulate memory within the application, or perform computation

– open(), close(), read(), write() are system calls
» they cross the user-kernel boundary, e.g. to read from disk device

» Implementation mainly focused on passing request to OS and returning result to application

• System call functions are in the library for convenience
– try man syscalls on Linux

16

Operating System Software

Fundamentally, OS functions the same
way as ordinary computer software

• It is a program that is executed (just like
applications)

• It has more privileges

Operating system relinquishes control
of the processor to execute other
programs

• Reestablishes control after

– System calls

– Interrupts (especially timer interrupts)

17

Memory

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

Major OS Concepts (Overview)

Processes

Concurrency and deadlocks

Memory management

Files

Scheduling and resource management

Information Security and Protection

18

4

Processes

A program in execution

An instance of a program running on a computer

The entity that can be assigned to and executed on a
processor

A unit of resource ownership

19

Process

Minimally consist of three segments
• Text

– contains the code (instructions)

• Data
– Global variables

• Stack
– Activation records of procedure/function/method

– Local variables

Note:
• data can dynamically grow up

– E.g., malloc()-ing

• The stack can dynamically grow down
– E.g., increasing function call depth or recursion

20

Stack

Gap

Data

Text

Memory

Process state

Consists of three components

• An executable program code

– text

• Associated data needed by the program

– Data and stack

• Execution context of the program

– Registers, program counter, stack pointer

– Information the operating system needs to manage the process

» OS-internal bookkeeping, files open, etc…

21

Multiple processes creates
concurrency issues

(a) A potential deadlock. (b) an actual deadlock.

22

Memory Management

The view from thirty thousand feet
• Process isolation

– Prevent processes from accessing each others data

• Automatic allocation and management
– Users want to deal with data structures
– Users don’t want to deal with physical memory directly

• Protection and access control
– Still want controlled sharing

• OS services
– Virtual memory
– File system

23

Virtual Memory

Allows programmers to address memory from a logical point of view

• Gives apps the illusion of having RAM to themselves

• Logical addresses are independent of other processes

• Provides isolation of processes from each other

Can overlap execution of one process while swapping in/out others to
disk.

24

5

Virtual Memory Addressing

25

Memory management unit
(hardware) translates program
memory addresses to main
memory addresses.

File System

Implements long-term store

Information stored in named objects called files

26

Example File System

27

Scheduling and Resource Management

Fairness

• give equal and fair access to all processes

Differential responsiveness

• discriminate between different classes of jobs

Efficiency

• maximize throughput, minimize response time, and accommodate as many
uses as possible

28

Operating System Internal Structure?

29

Classic Operating System
Structure

The layered approach

a) Processor allocation and
multiprogramming

b) Memory Management

c) Devices

d) File system

e) Users

– Each layer depends on
the inner layers

30

a b c d e

6

Operating System Structure

In practice, layering is only a guide

• Operating Systems have many interdependencies

– Scheduling on virtual memory

– Virtual memory (VM) on I/O to disk

– VM on files (page to file)

– Files on VM (memory mapped files)

– And many more…

31

The Monolithic Operating System Structure

Also called the “spaghetti nest” approach

• Everything is tangled up with everything
else.

Linux, Windows, ….

32

The Monolithic Operating System Structure

However, some
reasonable structure
usually prevails

33

Bowman, I. T., Holt, R. C., and Brewster, N. V. 1999. Linux as a case study: its extracted
software architecture. In Proceedings of the 21st international Conference on Software
Engineering (Los Angeles, California, United States, May 16 - 22, 1999). ICSE '99. ACM,
New York, NY, 555-563. DOI= http://doi.acm.org/10.1145/302405.302691

34

The End

35

