
1

Processes and Threads

1

Learning Outcomes

•An understanding of fundamental concepts of 
processes and threads

2

Major Requirements of an
Operating System
• Interleave the execution of several processes to maximize 

processor utilization while providing reasonable response 
time

• Allocate resources to processes
• Support interprocess communication and user creation of 

processes

3

Processes and Threads

• Processes:
• Also called a task or job
• Execution of an individual program
• “Owner” of resources allocated for program execution
• Encompasses one or more threads 

• Threads:
• Unit of execution
• Can be traced

• list the sequence of instructions that execute
• Belongs to a process

• Executes within it.

4

Execution snapshot of 
three single-threaded 
processes (No Virtual 
Memory)

Logical Execution Trace



2

Combined Traces

(Actual CPU Instructions)

What are the shaded 
sections?

Summary: The Process Model

•Multiprogramming of four programs
•Conceptual model of 4 independent, sequential processes 

(with a single thread each)
•Only one program active at any instant

8

Process and thread models of selected OSes

•Single process, single thread
• MSDOS

•Single process, multiple threads 
• OS/161 as distributed

•Multiple processes, single thread
• Traditional unix

•Multiple processes, multiple threads
• Modern Unix (Linux, Solaris), Windows

Note: Literature (incl. Textbooks) often do not cleanly 
distinguish between processes and threads (for 
historical reasons)

10

Process Creation

Principal events that cause process creation
1. System initialization

• Foreground processes (interactive programs)
• Background processes 

• Email server, web server, print server, etc.
• Called a daemon (unix) or service (Windows)

2. Execution of a process creation system call by a running 
process
• New login shell for an incoming telnet/ssh connection

3. User request to create a new process
4. Initiation of a batch job

Note: Technically, all these cases use the same system 
mechanism to create new processes. 

11

Process Termination

Conditions which terminate processes
1. Normal exit (voluntary)
2. Error exit (voluntary)
3. Fatal error (involuntary)
4. Killed by another process (involuntary)

12



3

Process/Thread States

• Possible process/thread states
• running
• blocked
• ready

• Transitions between states shown

13

Some Transition Causing Events

Running → Ready
• Voluntary Yield()
• End of timeslice

Running → Blocked
• Waiting for input

• File, network, 
• Waiting for a timer (alarm signal)
• Waiting for a resource to become available

14

Scheduler

• Sometimes also called the dispatcher
• The literature is also a little inconsistent on with terminology.

• Has to choose a Ready process to run
• How?
• It is inefficient to search through all processes

15

The Ready Queue

16

What about blocked processes?

• When an unblocking event occurs, we also wish to avoid 
scanning all processes to select one to make Ready

17

Using Two Queues

18



4

Implementation of Processes 

• A processes’ information is stored in a 
process control block (PCB)

• The PCBs form a process table
• Sometimes the kernel stack for each process is 

in the PCB
• Sometimes some process info is on the kernel 

stack
• E.g. registers in the trapframe in OS/161

• Reality is much more complex (hashing, 
chaining, allocation bitmaps,…)

20

P0

P1

P2

P3

P4

P5

P6

P7

Implementation of Processes

Example fields of a process table entry
21

Threads
The Thread Model

(a) Three processes each with one thread
(b) One process with three threads

22

The Thread Model – Separating execution from 
the environment.

• Items shared by all threads in a process
• Items private to each thread

23

Threads Analogy

The Hamburger Restaurant

24



5

Single-Threaded Restaurant

25

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger CooksBurger
Finished

Start Burger

Wait for
Customer

Blocking 
operations delay 
all activities

Multithreaded Restaurant

26

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger CooksBurger
Finished

Start Burger

Wait for
Customer

Note: Ignoring synchronisation issues for now

Multithreaded Restaurant
with more worker threads

27

Customer
Arrives

Take Order

Assemble
Order

Serve
Customer

Wait for
Customer

Fries Cook

Fries Finish

Start Fries

Burger CooksBurger
Finished

Start Burger

Burger CooksBurger
Finished

Start Burger

Fries Cook

Fries Finish

Start Fries

Burger CooksBurger
Finished

Start Burger

Finite-State Machine Model
(Event-based model)

28

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger Cooks

Burger
Finished

Start Burger

Wait for
Customer

Input
Events Non-Blocking 

actions

External
activities

Observation: Computation State 

Thread Model

• State implicitly stored on the 
stack.

Finite State (Event) Model

• State explicitly managed by 
program

29

Customer
Arrives

Take Order

Assemble
Order

Serve
Customer

Wait for
Customer

Fries Cook

Fries Finish

Start Fries

Burger Cooks
Burger
Finished

Start Burger

Burger Cooks
Burger
Finished

Start Burger

Fries Cook

Fries Finish

Start Fries

Burger CooksBurger
Finished

Start Burger

Customer
Arrives

Take Order

Fries Cook

Assemble
Order

Fries Finish

Start Fries

Serve
Customer

Burger Cooks

Burger
Finished

Start Burger

Wait for
Customer

The Thread Model

Each thread has its own stack

30



6

Thread Model

• Local variables are per thread
• Allocated on the stack

•Global variables are shared between all threads
• Allocated in data section
• Concurrency control is an issue

•Dynamically allocated memory (malloc) can be 
global or local
• Program defined (the pointer can be global or local)

31

Thread Usage

A word processor with three threads

32

Thread Usage

A multithreaded Web server

33

Thread Usage

• Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread – can overlap disk I/O with execution of other threads

34

Thread Usage 

Three ways to construct a server

35

Summarising “Why Threads?”

• Simpler to program than a state machine
• Less resources are associated with them than a complete 

process
• Cheaper to create and destroy
• Shares resources (especially memory) between them

• Performance: Threads waiting for I/O can be overlapped 
with computing threads
• Note if all threads are compute bound, then there is no performance 

improvement (on a uniprocessor)

• Threads can take advantage of the parallelism available on 
machines with more than one CPU (multiprocessor)

36


