3/12/2020

Learning Outcomes

* An understanding of hybrid approaches to thread
implementation

« A high-level understanding of scheduler activations, and how
they overcome the limitations of user-level and kernel-level
threads.

Scheduler Activations

Including some slides modified from Raymond Namyst, U. Bordeaux = UNswW UNSW

2
User-level Threads
* Thomas Anderson, Brian Bershad, Edward Lazowska, and User Mode
Henry Levy. Scheduler Activations: Effective Kernel Support
for the User-Level management of Parallelism. ACM Trans.
on Computer Systems 10(1), February 1992, pp. 53-79.
Process
Scheduler
Kernel Mode
£ UNSW | UNSW
4
User-level Threads Kernel-Level Threads
. . User Mod
vFast thread management (creation, deletion, seriode
switching, synchronisation...)
xBlocking blocks all threads in a process
« Syscalls
* Page faults
%xNo thread-level parallelism on multiprocessor
Scheduler
Kernel Mode
6

3/12/2020

Kernel-level Threads

xSlow thread management (creation, deletion,
switching, synchronisation...)
oSystem calls

v'Blocking blocks only the appropriate thread in a
process

v'Thread-level parallelism on multiprocessor

Performance

Table I: Thread Operation Latencies (psec)

Topaz Ultrix
Operation FastThreads threads processes
Null Fork 34 948 11300
Signal-Wait 37 / 41 1840
User-level Kernel-level
— ernel-level
threads

Hybrid Multithreading

User Mode

Scheduler

Scheduler

Procesy

Scheduler
Kernel Mode

Hybrid Multithreading

v/Can get real thread parallelism on multiprocessor
%xBlocking still a problem!!!

10

Scheduler Activations

« First proposed by [Anderson et al. 91]

* Idea: Both schedulers co-operate
* User scheduler uses system calls
* Kernel scheduler uses upcalls!

* Two important concepts

* Upcalls
* Notify user-level of kernel scheduling events

* Activations
* A new structure to support upcalls and execution

* approximately a kernel thread

« As many running activations as (allocated) processors
* Kernel controls activation creation and destruction

Upcalls

11

12

3/12/2020

14

. Upcalls to User-level scheduler
Scheduler Activations
* Instead of CPU time wasted * New (processor #)
— * Allocated a new virtual CPU
User Space _S\Lsrcaﬂ __________ — * Can schedule a user-level thread
10 request interrant * Preempted (act‘ivation # and its machine state)

Kernel Space === * Deallocated a virtual CPU
Hard \ ! * Can schedule one less thread

araware « Blocked (activation #)

* Notifies thread has blocked
th th f " . h * Can schedule another user-level thread
. .
-..rather use the iollowing scheme: * Unblocked (activation # and its machine state)
User Space - QPU used * Notifies a thread has become runnable
\. f f * Must decided to continue current or unblocked thread
\ [upcall upcall
Kernel Space \
Hardware ‘81
B usw B usw
16
Working principle Working principle
* Blocking syscall scenario on 2 processors * Blocking syscall scenario on 2 processors
Process Process
5 UNSW UNsW
18

3/12/2020

Working principle

* Blocking syscall scenario on 2 processors

Process

is

Working principle

* Blocking syscall scenario on 2 processors

Process

is

19 20
Working principle Working principle
* Blocking syscall scenario on 2 processors * Blocking syscall scenario on 2 processors
Process Process
Preempt
B usw B usw
21 22
Working principle Working principle
* Blocking syscall scenario on 2 processors « Blocking syscall scenario on 2 processors
Process
Blocking syscall
23 24

3/12/2020

Working principle

* Blocking syscall scenario on 2 processors

1/0 completion

Working principle

* Blocking syscall scenario on 2 processors

Process

25 26
Scheduler Activations
Working principle
. . *Thread management at user-level
* Blocking syscall scenario on 2 processors « Fast
Process * Real thread parallelism via activations
* Number of activations (virtual CPUs) can equal CPUs
*Blocking (syscall or page fault) creates new
activation
« User-level scheduler can pick new runnable thread.
* Fewer stacks in kernel
« Blocked activations + number of virtual CPUs
27 28
Performance Performance
(compute-bound)
-0~ Topaz threads
5 —& orig FastThrds
Table IV. Thread Operation Latencies (psec) : ¥ new FastThrds
FasiThreads on FastThreads on
Operation Topaz Threads Scheduler Activations Topaz threads Ultrix processes % 3
Null Fork 34 37 048 11300 § ,
Q
Signal-Wait 37 12 441 1840 8
1
0T T T T T 1
1 2 3 4 5 6
number of processors
Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.
29 30

3/12/2020

Performance
(1/0 Bound)

& Topaz threads
—* orig FastThrds
—* new FastThrds

1007
% 80
2
9 60
pel
i,
¢ 40
o
2
1 -
5 20
5
x
@ 0

Fig. 3. Execution time of N-Body application versus amount of available memory, 6

T T T T T T T

100% 90% 80% 70% 60% 50% 40%

% available memory

Adoption

* Adopters
« BSD “Kernel Scheduled Entities”
* Reverted back to kernel threads
 Variants in Research OSs: K42, Barrelfish
« Digital UNIX
« Solaris
*Mach
* Windows 64-bit User Mode Scheduling

«Linux -> kernel threads

UNSW

processors.

31

Time Time
b UssrFrogan s Progam i
r s
(3) (@)
User-Level /U” fll’\a 1 @] fs)',\(,
Runtime 4 3 3 4 i
System :] |.,i_] I:I :l
5 [CEE
Operating | [® (A) ‘
System Add Add A's thread
Kemel Processor | Processor has blocked
Time User Program User Program T
User-Level #N\ @@)
g |
Sysiem] L
oo
IC D)
Operating 1) @
$item
Kemel
- o0
Fig. 1. Example: I/0 request/completion
5 UNSW

33

32

