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Learning Outcomes

* An understanding of hybrid approaches to thread
implementation

« A high-level understanding of scheduler activations, and how
they overcome the limitations of user-level and kernel-level
threads.

Scheduler Activations

Including some slides modified from Raymond Namyst, U. Bordeaux = UNswW UNSW
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User-level Threads
* Thomas Anderson, Brian Bershad, Edward Lazowska, and User Mode
Henry Levy. Scheduler Activations: Effective Kernel Support
for the User-Level management of Parallelism. ACM Trans.
on Computer Systems 10(1), February 1992, pp. 53-79.
Process
Scheduler
Kernel Mode
£ UNSW | UNSW
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User-level Threads Kernel-Level Threads
. . User Mod
vFast thread management (creation, deletion, seriode
switching, synchronisation...)
xBlocking blocks all threads in a process
« Syscalls
* Page faults
%xNo thread-level parallelism on multiprocessor
Scheduler
Kernel Mode
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Kernel-level Threads

xSlow thread management (creation, deletion,
switching, synchronisation...)
oSystem calls

v'Blocking blocks only the appropriate thread in a
process

v'Thread-level parallelism on multiprocessor

Performance

Table I: Thread Operation Latencies (psec)

Topaz Ultrix
Operation FastThreads threads processes
Null Fork 34 948 11300
Signal-Wait 37 / 41 1840
User-level Kernel-level
— ernel-level
threads

Hybrid Multithreading

User Mode

Scheduler

Scheduler

Procesy

Scheduler
Kernel Mode

Hybrid Multithreading

v/Can get real thread parallelism on multiprocessor
%xBlocking still a problem!!!
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Scheduler Activations

« First proposed by [Anderson et al. 91]

* Idea: Both schedulers co-operate
* User scheduler uses system calls
* Kernel scheduler uses upcalls!

* Two important concepts

* Upcalls
* Notify user-level of kernel scheduling events

* Activations
* A new structure to support upcalls and execution

* approximately a kernel thread

« As many running activations as (allocated) processors
* Kernel controls activation creation and destruction

Upcalls
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. Upcalls to User-level scheduler
Scheduler Activations
* Instead of CPU time wasted * New (processor #)
— * Allocated a new virtual CPU
User Space _S\Lsrcaﬂ __________ — * Can schedule a user-level thread
10 request  interrant * Preempted (act‘ivation # and its machine state)

Kernel Space === * Deallocated a virtual CPU
Hard \ ! * Can schedule one less thread

araware « Blocked (activation #)

* Notifies thread has blocked
th th f " . h * Can schedule another user-level thread
. .
-..rather use the iollowing scheme: * Unblocked (activation # and its machine state)
User Space - QPU used * Notifies a thread has become runnable
\. f f * Must decided to continue current or unblocked thread
\ [ upcall upcall
Kernel Space \
Hardware ‘81
B usw B usw
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Working principle Working principle
* Blocking syscall scenario on 2 processors * Blocking syscall scenario on 2 processors
Process Process
5 UNSW UNsW
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Working principle

* Blocking syscall scenario on 2 processors

Process

is

Working principle

* Blocking syscall scenario on 2 processors

Process

is
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Working principle Working principle
* Blocking syscall scenario on 2 processors * Blocking syscall scenario on 2 processors
Process Process
Preempt
B usw B usw
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Working principle Working principle
* Blocking syscall scenario on 2 processors « Blocking syscall scenario on 2 processors
Process
Blocking syscall
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Working principle

* Blocking syscall scenario on 2 processors

1/0 completion

Working principle

* Blocking syscall scenario on 2 processors

Process
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Scheduler Activations
Working principle
. . *Thread management at user-level
* Blocking syscall scenario on 2 processors « Fast
Process * Real thread parallelism via activations
* Number of activations (virtual CPUs) can equal CPUs
*Blocking (syscall or page fault) creates new
activation
« User-level scheduler can pick new runnable thread.
* Fewer stacks in kernel
« Blocked activations + number of virtual CPUs
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Performance Performance
(compute-bound)
-0~ Topaz threads
5 —& orig FastThrds
Table IV. Thread Operation Latencies (psec) : ¥ new FastThrds
FasiThreads on FastThreads on
Operation Topaz Threads  Scheduler Activations Topaz threads  Ultrix processes % 3
Null Fork 34 37 048 11300 § ,
Q
Signal-Wait 37 12 441 1840 8
1
0T T T T T 1
1 2 3 4 5 6
number of processors
Fig. 2. Speedup of N-Body application versus number of processors, 100% of memory available.
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Performance
(1/0 Bound)

& Topaz threads
—* orig FastThrds
—* new FastThrds
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Fig. 3. Execution time of N-Body application versus amount of available memory, 6
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Adoption

* Adopters
« BSD “Kernel Scheduled Entities”
* Reverted back to kernel threads
 Variants in Research OSs: K42, Barrelfish
« Digital UNIX
« Solaris
*Mach
* Windows 64-bit User Mode Scheduling

«Linux -> kernel threads

UNSW

processors.
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Fig. 1. Example: I/0 request/completion
5 UNSW
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