
1 Paper 1

The first paper for 2012 Advanced Operating Systems exam is titled ‘ARMvisor:
System Virtualisation for ARM’ and was published in the 2012 Linux Sym-
posium; based on the submission deadlines the paper would have been sub-
mitted before June.

1.1 Summary

The paper presents an implementation of a type 2 hypervisor built on Linux’s
Kernel-based Virtual Machine (KVM) infrastructure and based on the KVM
for ARM project. The authors have implemented the hypervisor on a sin-
gle processor ARMv7 architecture and have performed micro-benchmarking
(with LMBench) of a single guest OS to compare their initial design, and
their subsequent improved designs.

The motivation for this paper seems to be that virtualisation is inher-
ently valuable, and current embedded systems built on earlier versions of
ARM are not able to be virtualised. In addition the authors argue that
existing hypervisors for ARM platforms are insu�cient: OKL4 is closed-
source, Xen for ARM uses para-virtualisation and requires maintenance to
operate on di↵erent guest-ISA-hypervisor combinations, and KVM for ARM
uses a costly memory virtualisation model that requires regular page table
flushes.1

Because versions of ARM prior to ARMv7-A lack hardware support for
virtualisation the authors have used para-virtualisation techniques to handle
sensitive instructions from guests. In particular the authors used the Linux
kernel’s reverse map on frames to manage shadow page table synchronisa-
tion. Additionally the authors have implemented two abstractions — Direct
Register File Access (DRFA) and Fast Instruction Trap (FIT) — to reduce
virtualisation CPU and memory overhead. In the paper, they clearly show
an improvement associated with these techniques over their initial design.

1.2 Critical Analysis

1.2.1 Strengths

Firstly in the paper’s defence, the authors have built a hypervisor for ARM
that seems to improve an existing system (KVM for ARM) and the im-
plementation details they focus on seem sensible. Specifically they manage
page-table synchronisation more sanely than KVM for ARM with a reverse

1
I am trusting the author’s assessment of KVM for ARM here. Also, I am not sure what

a page table flush is. I assume it is like a TLB flush — a costly, undesirable synchronisation

mechanism to ensure consistency — since the shadow page table has similar semantics to

a TLB.

2



map lookup between guest pages and the shadow page table and deliberate
protection faults on guest writes.

The authors have also implemented several other small optimisations.
The optimised system keeps a shadow register file and avoids trapping to the
host via software interrupts on several non-privileged sensitive instructions,
such as writes to the CPSR. The system also adds a faster instruction trap
to the guest OS’s address space to avoid unnecessary lightweight traps into
the host. Finally the authors have added some hyper-calls to give hints to
ARMvisor about the guest page table usage. These optimisations all seem
sensible and the tests prove that these improve on the author’s original
system.

In addition to their optimisations the authors have made their work
freely available to interested parties. Firstly, this means that the systems
the authors built is robust enough to be used in the wild. Secondly, their
work is open-sourced (via the GNU GPLv2 license) and available on Github.
There is also a user-guide to install ARMvisor (possibly on an emulated
ARM CPU on top of x86) for anyone who is interested.2

1.2.2 Weaknesses

The first criticism I have for this paper is that I feel its motivation and its
conclusion are weak. The authors begin by arguing that virtualisation for
older versions of ARM is worthwhile for its security benefits in the context
of embedded systems. This is a passing reference, and they do not treat
the topic in any depth; they even use a Ubuntu host and guest OS which
is probably the last choice for an embedded distribution of Linux. Finally,
at the end of the paper the authors conclude nothing about ARMvisor,
except that they improved its performance by focusing on two well known
bottlenecks of hypervisors. They implement optimisations which improve
the system, but they do not show that the system is practical or usable. I
honestly don’t see any significant point to this paper.

Closely related to the paper’s motivation is the author’s discussion of
related work. If we put aside the fact that they discount all commercial
solutions out of hand there are still two alternative projects: Xen on ARM
and KVM for ARM. Xen on ARM is discounted apparently due to the
maintenance cost of para-virtualised hypervisors. This seems particularly
hypocritical as ARMvisor handles non-privileged sensitive instructions with
para-virtualisation and implements custom fast instruction traps in the guest
OS’s address space3. In addition, as of the 7th of October Xen on ARM is
a part of upstream Linux and is the first hypervisor supported by Linux on

2
Neither of these facts reflect the quality of their work, but they are positive points in

the interests of collaboration and reproducibility.

3
The authors make a passing reference to research into pre-virtualisation as a solution

to the maintenance issue but it is not very convincing.

3



ARMv5 and upwards.4 Now obviously this occurred after the paper was sub-
mitted, but I think that it is unlikely the authors would have been unaware
of the development of Xen on ARM while writing their paper; basically I
think they may have deliberately avoided discussing Xen on ARM because
it makes their work on a hypervisor for ARM seem far less significant.

On the topic of discounting other similar systems, I think there is serious
issue with how the authors have discussed KVM for ARM. The authors
claim is that they based a hypervisor on KVM for ARM and improved
it, particularly with respect to page table synchronisation. Firstly they
do not clearly describe how much their of system is based on KVM for
ARM. Secondly they do not benchmark their system against KVM for
ARM, despite it being an open-source project. Their claim that they cannot
evaluate it because benchmarks and profiling results are not available seems
very weak; even if benchmarks were available they should have reproduced
them on their own experimental setup for an objective comparison. Their
design may be better, or it may in fact be worse. I don’t know and it was
the author’s job to convince me their design was better. On a last note, I
think the improvements the paper describes seems quite logical which makes
it hard to believe they’ve achieved something, or something that couldn’t
be achieved with minor changes to KVM for ARM.

The benchmarking in this paper is deeply flawed. My issues are as
follows.

• The authors only present the results of micro-benchmarks (LMBench).
They give no information about the overall system behaviour and ef-
ficiency.

• All the benchmarks compare the performance of di↵erent versions of
ARMvisor. I have little idea of how e↵ective the system really is.

• The benchmarking tool MiBench is mentioned but never used as far
as I can tell.

• The system seems similar to KVM for ARM, except that the authors
claim their design is better. Since KVM for ARM is also open-source,
I don’t see a reason not to include a comparison between these two
systems.

• All tests involve a single guest on a single CPU. I don’t feel this is a
reasonable test setup for virtualisation.

• Table 7 presents a trap count for a do nothing program in the guest.
Since these numbers are not referred to a native operating system, or
a similar hypervisor I don’t know what the numbers mean. Having
said this, 7000 traps for a do nothing program seems very high.

4
http://blog.xen.org/index.php/2012/10/08/xen-arm-in-linux/

4

http://blog.xen.org/index.php/2012/10/08/xen-arm-in-linux/


• Figure 6, which presents the performance slowdown ratio of ARMvisor
against a native system has so many problems. The extremely poor
performance of their unoptimised system (100 times slower!) makes
the slowdown of their optimisations seem much better (and much
harder to read). In reality a slowdown of five or ten times on a virtu-
alised system is abysmal.

Not only do the authors avoid macro benchmarks and real system per-
formance, they completely avoid a discussion of I/O virtualisation and op-
timisation. As far as I can tell the I/O path though the system is:

1. guest user calls guest driver,

2. guest driver traps into ARMvisor,

3. ARMvisor passes the request to a virtual device in QEMU,

4. QEMU passes the request to the host driver,

5. finally the host driver accesses the hardware.

If this is the case then I’m not surprised the authors have avoided macro-
benchmarks and discussing their virtualisation of I/O.

Finally, the paper’s cost model seems pointless. The authors break down
the emulation cost of running their system and use this model to conclude
that a better hypervisor will use fewer traps with shorter delays (a com-
pletely banal claim). I am not sure why they included this section, by I
feel like it was an attempt to add formality and gravitas to the paper for
the purposes of publication. Their final conclusion that the cost model is
a crucial tool to improve the performance of hypervisors is unfounded and
weak.

1.3 Errata

This section lists several small grievances with the paper that I feel are not
relevant to a technical criticism, but I found to be annoying. I appreciate
that marking an extra page of material isn’t appealing, so don’t feel obliged
to read this.

• Firstly the paper is a✏icted by generally poor English and grammar.
There are far too many examples to bother listing them all, but in
particular the authors frequently fail to use the singular and plural
forms of nouns and verbs correctly. In addition, their use of the word
vowing — admittedly only twice — was particularly annoying.

• In the cost model section, which I have already criticised, there are
several other minor issues. Firstly equation 3 is incorrect: it omits

5



T
io

and adds an undefined delay T
idle

. I think the correct equation
would replace T

idle

with T
io

. Secondly, several symbolic system delays
are not defined, such as: T

inst

, T
excpt

, T
abt

, T
shadow

, T
sync

, T
mmio

, and
T
portio

. Finally they neither define the trap counts, Cx, or the limits of
the summation, or what the terms of the summation, i and j, actually
refer to and why the delays depend on these terms. That was a long
sentence and I apologise.

• The authors use both the terms hypervisor and VMM. I am under
the impression these are synonyms, and I feel that using synonyms in
a technical paper is unnecessary and adds ambiguity.

• When reviewing alternative systems the authors phrase the commer-
cial success and support for security of OKL4 as ‘claims’. This ter-
minology may be innocent, but I feel that it is more likely a subtle
attempt to put down a competing system. Furthermore the authors
state that OKL4 has been ‘ported to millions of mobile handsets’?
A more appropriate description would be ‘hundreds of millions’, or
‘over a billion’ and again this feels like an attempt to misrepresent the
significance of a competing design.

• The choice to virtualise Ubuntu on top of Ubuntu is curious. The
authors do not specify what distribution they use in their benchmarks
and so I would guess that it is also Ubuntu. I’m not sure why the
authors made this decision (as opposed to a more light weight distri-
bution or one better suited to embedded or real time systems) and
they haven’t really o↵ered any explanation.

6


	Paper 1
	Summary
	Critical Analysis
	Strengths
	Weaknesses

	Errata

	Paper 2
	Summary
	Assumptions and Limitations
	Criticism
	Conclusion


