School of Computer Science & Engineering

COMP9242 Advanced Operating Systems

i
[-

University
. . blocked reempted
Real-Time Systems Basics Il preemp n

@GernotHeiser ! |) |] |) | >

2022 T2 Week 04 Part 2

Copyright Notice

These slides are distributed under the
Creative Commons Attribution 4.0 International (CC BY 4.0) License

* You are free:
* to share—to copy, distribute and transmit the work
* to remix—to adapt the work

 under the following conditions:

« Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

“Courtesy of Gernot Heiser, UNSW Sydney”

The complete license text can be found at
http://creativecommons.org/licenses/by/4.0/legalcode

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

2

Today’s Lecture

« Real-time systems (RTS) basics
« Types or RTS
» Basic concepts & facts

» Resource sharing in RTS
« Scheduling overloaded RTS
« Mixed-criticality systems (MCS)

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

© Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

3

Real-Time Basics

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

© Gernot Heiser 2019 — CC BY 4.0

UNSW

SYDNEY

containment
structure

steam line

control
rods

SYDNEY

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

5

What's a Real-Time System? Aka. events

A real-time system is a system that is required to react to stimuli from the
environment (including passage of physical time) within time intervals dictated by
the environment.

[Randell et al., Predictably Dependable Computing Systems, 1995]

Real-time systems have timing constraints, where the correctness of the
system is dependent not only on the results of computations, but on the time

at which those results arrive. [Stankovic, IEEE Computer, 1988]
Issues:
e Correctness: What are the temporal requirements?
e Criticality: What are the consequences of failure?

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV
el

6

Strictness of Temporal Requirements

« Hard real-time systems

» Weakly-hard real-time systems
* Firm real-time systems

« Soft real-time systems
 Best-effort systems

Strictness of temporal
requirements

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

© Gernot Heiser 2019 — CC BY 4.0 UNSW

%] VVVVVV
R

7

Real-Time Tasks Real-time tasks have deadlines

O * Usually stated relative to release time
* Frequently implicit: next release time

A t

-
-
@)
o
)
)
28
S

Q

)
To T1 T2 % Time
= o c ®© . . ;
T ® o O void main(void) {
> 8 S |
w = —= . i s
& g— init(); // initialise system
Q :
O while (1) {
T, ,wait(); // timer, device interrupt, signal
T, }. dodob();
}
COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Real Time # Real Fast

Combustion engine ignition 2.5 ms Catastrophic Engine damage
Industrial robot 5 ms Recoverable? Machinery damage
Air bag 20 ms Catastrophic Injury or death
Aircraft control 50 ms Recoverable Crash
Industrial process 100 ms Recoverable Lost production, plant/
environment damage

Pacemaker 100 ms Recoverable Death

Criticality

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

9

Example: Industrial Control
High speed PLC

Standard PLC
control

Simple PLC
Simple drives

Traffic lights
Home automation

10s 1s 100ms 10ms 1ms 100us

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

Standard motion

High end motion

control

10us

Interrupt
reaction time

ius 100ns

© Gernot Heiser 2019 — CC BY 4.0

ssssss

Hard Real-Time Systems

e Safety-critical: Failure = death, serious injury
* Mission-critical: Failure = massive financial damage

e Deadline miss is catastrophic
* Steep and real cost function

Cost Deadline

Triggering
Event

Time

10 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

11

Challenge: Execution-Time Variance

I
WCET/BCET

may be orders
of magnitude!

Longest observed time

|
* Data-dependent execution paths

* Microarchitecture (caches)

g Safe lower bound Safe upper bound
=
-
- BCET WCET
y
| Y
0 20 40 60 80 100

Execution time

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Weakly-Hard Real-Time Systems

Tolerate small fraction
of deadline misses

Most feedback control systems (incl life-support!)

Typically integrated with fault tolerance for HW issues

Control compensates for occasional miss
Becomes unstable if too many misses

Cost

Triggering
Event

12 COMP9242 2022 T2 W04 Part 2: Real-Time Systems

Deadline

In practice, certifiers treat
critical avionics as hard RT

Time

© Gernot Heiser 2019 — CC BY 4.0 {«] UNSW

vvvvvv

Firm Real-Time Systems

* Forecast systems
* Trading systems

Result obsolete if deadline
missed (loss of revenue)

Gain Deadline

Triggering
Event

Time

13 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

=

VVVVVV

GO g|e real-time systems

Soft Real-Time Systems

Q Al &) Images Q Shopping [Vi{ie

About 2,340,000,000 results (0.69 seconds)

* Media players

. . c . In computer science, real-time computi)
Dea d li Nne MiISS un dESI ra ble e We b services reactive computing describes hardware
svstems subiect to a "rgal-time constraf
but tolerable, affects QoS 4

Bounded
Tardiness

Cost Deadline

Cost Deadline

Triggering RN .
Event Tardiness Time

14 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

VVVVVV

Best-Effort Systems

In practice, duration is

) rarely totally irrelevant
No deadline

Cost

Triggering
Event

Time

15 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Real-Time Operating System (RTOS)

: . : Requi lysis of
» Designed to support real-time operation SR
: . _ worst-case execution
- Fast context switches, fast interrupt handling time (WCET)
« More importantly, predictable response time

* Main duty is scheduling tasks to meet their deadline

Traditional RTOS is very primitive
* single-mode execution
* no memory protection .
: YP : RT vs OS terminology:
* inherently cooperative

. e “task” =thread
all code is trusted * “job” =execution of thread

resulting from event

16 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

17

Real-Time Scheduling

* Ensuring all deadlines are met is harder than bin-packing
« Reason: time is not fungible

Deadline
missed!

A: needs 1

slot every 3

B: needs 3

slots every 9

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

Time

YYYYYY

Real-Time Scheduling

* Ensuring all deadlines are met is harder than bin-packing
« Time is not fungible

Terminology:

e Aset of tasks is feasible if there is a known algorithm that
will schedule them (i.e. all deadlines will be met).

* A scheduling algorithm is optimal if it can schedule all
feasible task sets.

18 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

P lBNEn

Cyclic Executives

 Very simple, completely static, scheduler is just table

« Deadline analysis done off-line
 Fully deterministic

Drawback: Latency of event handling is hyper-period

while (true) {
wait_tick();
job_10Q);
wait_tick();
job_L(0);
wait_tick();
job_10Q);
wait_tick();
job_30);

{

b

t

{

&y

t

wait_tick();
job_4(Q);

<€

Hyper-period (inverse base rate

19

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

>
)

© Gernot Heiser 2019 — CC BY 4.0

UNSW

el

Are Cyclic Executives Optimal?

 Theoretically yes if can slice (interleave) tasks
 Practically there are limitations:

« Might require very fine-grained slicing

« May introduce significant overhead

while (true) {
wait_tick();
job_10Q);
wait_tick();
job_L(0);
wait_tick();
job_10Q);
wait_tick();
job_30);

t t f t
t, t, t, t, t,

wait_tick();
job_4(Q);

< - > !
Hyper-period (inverse base rate)

20 COMP9242 2022 T2 W04 Part 2: Real-Time Systems

© Gernot Heiser 2019 — CC BY 4.0

UNSW

el

On-Line RT Scheduling

« Scheduler is part of the OS, performs scheduling decision on-demand
« Execution order not pre-determined
« Can be preemptive or non-preemptive

* Priorities can be

» fixed: assigned at admission time
» scheduler doesn’t change prios
« system may support dynamic adjustment of prios
« dynamic: prios potentially different at each scheduler run

21 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Fixed-Priority Scheduling (FPS)

* Classic L4 scheduling is a typical example:
« always picks highest-prio runnable thread
 round-robin within prio level
 will preempt if higher-prio thread is unblocked or time slice depleted

FPS is not optimal, i.e. cannot schedule some feasible sets

In general may or may not:
* preempt running threads

0 prio 255 . . .
L :\I\ : — i :\I\ —t * require unique prios

22 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

vvvvvv
el

Rate Monotonic Priority Assignment (RMPA)

* Higher rate = higher priority: T: period
« T<T; = P>P, 1/T: rate
P: priority
U: utilisation

« Schedulability test: Can schedule task set with periods {T,... T} if

Assumes “implicit” _
deadlines: release % U=} C/Ti<n(2""-1) RMPA is optimal for FPS

time of next job

U[%] 100 82.8 78.0 75.7 743 718 log(2)=69.3

23 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

Rate-Monotonic Scheduling Example

RMPA schedulability bound is
sufficient but not necessary

WCET

c/T
t, 20 3 10 50
t, 40 2 10 25
t, 80 1 20 25
100
24 COMP9242 2022 T2 W04 Part 2: Real-Time Systems

N " [

v v

blocked preempted q

© Gernot Heiser 2019 — CC BY 4.0 [«: UNSW

ssssss

Deadline

----h-

tt 3 5 20 20 25 5
t, 2 8 30,@ 27 < : >
t{, 1 15 50 50 30 0

Preemption Deadline 82

N Release | | |

Another RMPA Example

25 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 - CC BY 4.0 #8s) UNSW

YYYYYY

Dynamic Prio: Earliest Deadline First (EDF)

 Job with closest deadline executes
* priority assigned at job level, not task (i.e. thread) level

« deadline-sorted release queue

« Schedulability test: Can schedule task set with periods {T,... T} if

U=> C/T,<1
Preemptive EDF is optimal

26 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

FPS vs EDF
R e A N =

‘ z i | o
_rlrlkrlllllllilr.lrll,

EDF 4, l

27 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019~ CC BY 4.0 s UNSW

FPS vs EDF

RMPA t, | ; I | I

Misses
deadline!

t, 3 5 20 20 25
t, 2 8 30 20 27
t, 1 15 40 40 375
89.5
28 COMP9242 2022 T2 W04 Part 2: Real-Time Systems

YYYYYY

29

FPS vs EDF

RMPA t, | ; I

Misses
deadline!

EDF l

t;

'
'
' .
' il
‘' .
' '
1 .
M .
' .
‘' .
‘] ‘
" '
: - :
¢ ' :
' H : M
' N H .
H .

tllrl 17\1|,11

.

I

P
r.ll|ll,

EDF
schedules

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

YYYYYY

Resource Sharing

30 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

Challenge: Sharing

Sharing
introduces
dependencies

Vehicle control must @
see consistent state ® Updates

Vehicle Shared Data

: Navigation
Control (waypoints etc) vigatl

31 COMP9242 2022 T2 W04 Part 2: Real-Time Systems

Critical Sections: Locking vs Delegation

RT terminology:
Resource Server

Shared
Buffer Buffer

Lock()
Unlock()

CI|ent 3 v

Receive()
or Poll()

32 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 - CC BY 4.0 #8s) UNSW

@:eld Implementing Delegation

Server;

serv_local() { client() {

while (1) {

serv_remote() {
Wait(ep); while (1) {
while (1) { Call(ep); Wait(not_rq);
/* critical sectio% / /* critical section */
ReplyWait(ep); Signal(not_ry); Signal(not_ry);
}

33 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 - CC BY 4.0 #s) UNSW

Problem: Priority Inversion

* High-priority job is blocked by low-prio for a long time
* Long wait chain: t,>t,>t;>t,
* Worst-case blocking time of t, bounded by total WCET: C,+C,+C,

Critical Blocked!
TN I
4

\

!

Preempted

34 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

35

Solution 1: Priority Inheritance ("Helping”)
t,

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

YYYYYY

Solution 1: Priority Inheritance ("Helping”)
If t, blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P,
— when t; releases the resource, its priority reverts to P,

t

t3 3 3

t, l

t

36 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Solution 1: Priority Inheritance ("Helping”)

If t, blocks on a resource held by t,, and P,>P,, then
— 1, is temporarily given priority P4
— when t; releases the resource, its priority reverts to P,

Long blocking

Transitive chains!
Inheritance

t5

t

t

t, p

b

37 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

Solution 1: Priority Inheritance ("Helping”)

If t, blocks on a resource held by t,, and P,>P,, then
— t, is temporarily given priority P; Priority Inheritance:

— when t, releases the resource, its priority nggntt(i)atjzzadlocks
« Complex to implement

« Bad worst-case blocking times

Deadlock!

ts
t 4
N N

s 3 AN

.
2

Al

b -

38 COMP9242 2022 T2 W04 Part 2: Real-Time Systems

Solution 2: Priority Ceiling Protocol (PCP)

 Aim: Block at most once, avoid deadlocks

* |dea: Associate ceiling priority with each resource
« Ceiling = Highest prio of jobs that may access the resource
* On access, bump prio of job to celllng

Immediate prio ceiling
protocol (IPCP)

EmE
IPCP

2

vvvvvv

39 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

IPCP vs PIP

PIP

IPCP

S8 T S O S I B Y

40 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

ICPC Implementation With Delegation

Client, ?
E :
(_@ Immediate Priority Ceiling:
Client, 3 : :

» Requires correct prio config
P, » Deadlock-free

« Easy to implement

» (Good worst-case blocking times

Ps = max (P4, P,) + 1

EDF: Floor
of deadlines

Each task must declare all resources at admission time
« System must maintain list of tasks using resource
» Defines ceiling priority

Easy to enforce
with caps

41 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 U“N§EW

@seld Comparison of Locking Protocols

42

Original Priority-
Ceiling Protocol

Implementation Complexity

Immediate Priority-
Ceiling Protocol

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

Priority-Inheritance

Protocol

Non-Preemptible
Critical Sections

Priority Inversion Bound

YYYYYY

© Gernot Heiser 2019 — CC BY 4.0 UNSW

N

Scheduling Overloaded
RT Systems

022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW
=5

Gy

44

Nalve Assumption: Everything is Schedulable

Standard assumptions of classical RT systems:
« All WCETs known
* All jobs complete within WCET

 Everything is trusted Which job
will miss its
More realistic: Overloaded system: deadline?

» Total utilisation exceeds schedulability bound
« Cannot trust everything to obey declared WCET

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

VVVVVV

Overload: FPS
N e

v s | W | pm | od
u B EE
|J Ir. | r | . 1 . 1 . Ir |r. It .
Tk PoC T D UM
t, 3 5 20 20 25
t, 2 12 20 20 60 New

t, 1 15 50 50 30
115

45 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 - CC BY 4.0 #8s) UNSW

YYYYYY

Overload: FPS

t1l|. nlﬂ!%lal,_

46 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

ssssss

47

Overload: FPS vs EDF
t; | : I I

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

vvvvvv

48

Overload: ED

. »
. d 4 '
. - ' C . ' '
’ ’ ' N ’ . '
. ' ' » ™ '
. . . ' . . '
. . . M . M '
.] L . '
. . L . '
' M '
. . '
. . '
. . '

| iif | “EDF béh.aves

e L e | o b s 1 i 1 |%’ badly under
overload”

t | _—

= m - oo |

l { l L l ' l L l L l L l 1 l 1 l 1 l L -

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gemot Heiser 2019 - CCBY 40 # UNSW

VVVVVV

Mixed-Criticality Systems

49 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW

SYDNEY

50 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 {«: UNSW

vvvvvv

Mixed Criticality

Need temporal

isolation!

0 ®
NW driver must preempt control loop
* ... to avoid packet loss

* Driver must run at high prio (i.e. RMPA)
* Driver must not monopolise CPU

Runs frequently but for

Runs every 100 ms short time (order of ps)

for a few millisecods

Sensor Control NW 3 NW
readings loop driver D — interrupts

51 COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0 UNSW
=2

Mixed Criticality

NW driver must preempt control loop
* ... to avoid packet loss

* Driver must run at high prio (i.e. RMPA)
* Driver must not monopolise CPU

Certification requirement:
More critical components must

not depend on any less critical
ones! [ARINC-653]

52

COMP9242 2022 T2 W04 Part 2: Real-Time Systems

€

(¢ Critical system certification:

expensive
conservative assumptions

* eg highly pessimistic WCET y

© Gernot Heiser 2019 — CC BY 4.0

vvvvvv

53

Mixed-Criticality Support

For supporting mixed-criticality systems (MCS), OS must provide:
« Temporal isolation, to force jobs to adhere to declared WCET

* Mechanisms for safely sharing resources across criticalities

Will discuss selL4

approach next
week!

COMP9242 2022 T2 W04 Part 2: Real-Time Systems © Gernot Heiser 2019 — CC BY 4.0

YYYYYY

