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Abstract

Ripple Down Rules (RDR) were developed in answer to the problem of maintaining medium to

large rule-based knowledge systems. Traditional approaches to knowledge-based systems gave

little thought to maintenance as it was expected that extensive upfront domain analysis involving a

highly trained specialist, the knowledge engineer, and the time-poor domain expert would produce

a complete model capturing what was in the expert’s head. The ever-changing, contextual and

embrained nature of knowledge were not a part of the philosophy upon which they were based.

RDR was a paradigm shift, which made knowledge acquisition and maintenance one and the same

thing by incrementally acquiring knowledge as domain experts directly interacted with naturally

occurring cases in their domain. Cases played an integral part of the acquisition process by

motivating the capture of new knowledge, framing the context in which new knowledge would

apply and ensuring that previously correctly classified cases remained so by requiring that the

classification of the new case distinguish it from the system’s classification and be justified by

features of the new case. RDR has moved beyond its first representation which handled single

classification tasks within the domain of pathology to support multiple conclusions across a wide

range of domains such as help-desk support, email classification and RoboCup and problem types

including configuration, simulation, planning and natural language processing. This paper reviews

the history of RDR research over the past two decades with a view to its future.

1 Introduction, background and philosophy

Traditional knowledge-based systems (KBS), in past times better known as expert systems (ES),

promised to be the next big thing following the progress made into database and information

systems. With expertise always in short supply, the ability to capture what experts ‘knew’ and have

other people or computers reuse that knowledge was clearly appealing. In addition to offering

a system that could support or even do decision making, ES offered the ability to ask ‘why’ the

system had given a particular conclusion by reviewing the rule and ‘how’ by providing a trace of

the rule pathway leading to that conclusion (Ignizio, 1991). However, ES failed to take into

account two very important features of knowledge that have clearly emerged from ES research

and practice: the contextual and evolving nature of knowledge (Agnew et al., 1997; Clancey, 1997).

If knowledge was in fact something that could be unequivocally stated and remains true over time

and across individuals, then the declaration of rules and facts would result in a body of knowledge

that could be acquired and utilized without major concern for maintenance of that knowledge. But

as they say, ‘rules are made to be broken’ or at least in the case of Ripple Down Rules (RDR),

rules are made to be corrected.

The philosophy underlying RDR distinguishes it from much other work, particularly the views

prevailing at the time of its inception. Rather than view knowledge as an artifact that could be



collected, stored and used by others, it argues from a situated cognition perspective that experts

never explain how they reach a conclusion, rather they justify that a conclusion is correct, and

provide this justification in a particular context (Compton & Jansen, 1988, 1990). The ramifica-

tions of the view that knowledge is made up to fit each context is that all knowledge acquisition

(KA) must be incremental and captured within the context in which it holds. The result is a

combined rule-based and case-based reasoning approach where the cases provide the context for

when the rules are valid and the rules provide the index by which the cases can be retrieved. Thus,

the approach seeks to combine the strengths of case- and rule-based reasoning (Kang & Compton,

1994). As will be described in greater detail later, regardless of whether the cases are historical,

occurring naturally in the domain, or hypothetical, the cases provide: grounding in the real world,

automated validation and guidance for the direct acquisition of knowledge from domain experts.

This latter point is another key distinguishing feature of RDR. The simplicity of the KA

approach is the result of observing the natural behaviour of experts at the Garvan Institute which

typically involved looking at a case/problem, making a recommendation, and then, if prompted,

providing some features of the situation to account for their conclusion. As shown in Figure 1, KA

using RDR follows this same cycle and is performed by the domain expert, not the knowledge

engineer (KE) (Compton et al., 1991). In contrast, most ES approaches required a KE to conduct

various KA activities and analyses such as structured interviews, protocol analysis, repertory

grids, laddered grids and card sorts involving the domain expert from which knowledge would be

elicited and encoded by the KE.

A number of knowledge engineering approaches based on Newell’s (1982) Knowledge Level

emerged to address the recognized KA bottleneck, that is, the difficulty in acquiring knowledge

from experts due to their unavailability, unwillingness or inability to articulate all that is relevant

of what they know or how they reason. Note that RDR does not see this situation as a short-

coming of the expert, but due to the nature of expertise. RDR resolves this problem by shifting the

focus to validation of cases (including the identification of the correct conclusion and salient

features), not the KE process. These knowledge level approaches included knowledge analysis and

design support (Schreiber et al., 1993, 1999) and generic tasks (Chandrasekaran, 1986), which

provided a more structured methodology for acquiring knowledge and sought to reduce the KA

effort by restricting the KA focus to a specific problem type and/or problem-solving method (PSM).

Figure 1 The KA process in RDR
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In the 1990s, the use of ontologies (e.g. Grosso et al., 1999) were promoted as a way of providing

structure and a shared set of terms and relationships for the concepts within the domain of interest.

Reuse was seen as a key way to maximize the usage of knowledge, which had been effort-intensively

acquired. Despite the benefits that these approaches bring, the RDR approach provides a counter-

example to the view that complex descriptive models are necessary prerequisites for building KBS.

Many of the problems identified with knowledge-level PSMs, ontologies and generic models are

related to the inherent limits of descriptive models and the effort needed to interpret those models

when they are applied. This situation is summed up by Chapman when he states:

Representation is generally thought to make problems easy; if a problem seems hard, you probably

need more representation. In concrete activity, however, representation mostly just gets in the way.

(Chapman, 1989: 48)

A useful description of the types of models that are involved in capturing conceptual models is

provided by Shaw and Woodward (1989). It is possible that experts have their own internalized model

known as the mental model. When the expert articulates that model it becomes the conceptual model

and the model that is developed from that is a model of the conceptual model, not the internalized

model. To add to the difficulty in achieving a model that is truly representative of the expertise, the

mental model may not correspond to how the problem is really being solved, the expert may be unable

to articulate their mental model into a conceptual one and the KE may not interpret or represent

accurately the conceptual model into the final developed model. Norman (1986) explains that when

the developers’ conceptual model of the users’ mental models do not match, the design model will

conflict with how the user expects to use the system. The key is to make the mental model explicit so

that it is clear what the design model should be. This is an argument for building KBS using the RDR

approach, that is, capture knowledge in the way the expert exercises their knowledge and then look at

the models that underlie the knowledge. In this way RDR KBS becomes a mediating representation

taking the user from what they do to how they think (Catlett, 1992).

By allowing the expert to incrementally acquire knowledge bounded by the case at hand as a

simple extension to their normal work (Edwards & Compton, 1993), we address the KA bottle-

neck, together with maintenance and validation issues. It is for these reasons that RDR, unlike

many ES approaches of the 1980s and 1990s, achieved commercial success.

It is not surprising that RDR has achieved user acceptance since it has been driven by its potential

users. RDR were born out of the frustration experienced by KEs and pathologists seeking to

maintain a traditional rule-based system known as Garvan ES1 (Compton & Jansen, 1988). Garvan

ES1 was identified by Buchanan (1986) as one of the first four medical ES to reach routine use and

was continuously maintained from 1984 until at least 1989. The goal of the system was to add clinical

comments to patient biochemistry reports to assist general practitioners (GPs) in patient manage-

ment. Experience with Garvan ES1 led to the development of the first RDR system in routine use

known as Pathology Expert Interpretative Reporting System (PEIRS) (Edwards & Compton, 1993).

RDR has evolved significantly since PEIRS, particularly with respect to the introduction of multiple

classification RDR (MCRDR) and improvements to the human–computer interface.

In the next section we describe the two major RDR-based representations. In Section 3 we look

at numerous implementations, applications and variations of the RDR theme and conclude with

final remarks in Section 4.

2 The RDR approach

RDR uses a failure-driven approach to KA, where knowledge found to be incorrect by the domain

expert, is patched locally within the context of the case on hand at the point where the knowledge

was in error.

The most important resource for knowledge maintenance is a data base of cornerstone cases. These

are cases which at some stage have required a change in the system’s knowledge. Every time the
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system’s knowledge is changed the interpretations for all the cornerstone cases are checked to

see that the additions to the system’s knowledge have been incremental and have not corrupted the

knowledge.

(Compton & Jansen, 1990: 244)

Almost paradoxically, the RDR engine reasons non-monotonically over the knowledge by

allowing exception rules to be added to override, and thus update, previous knowledge. In RDR,

rules are never deleted or changed, at least in its purer implementations. Although RDR has

undergone a number of transformations driven by the application and/or problem domain the

variations are based on either single classification RDR (SCRDR) or MCRDR. Both repre-

sentations allow a knowledge base (KB) containing exception rules to be built by a domain expert

by interacting with cases with little or no involvement of a specialist KE. While at the outset a KE

will probably assist with: determining the initial attribute–value (A–V) space, the structure of

cases, preprocessing of the data if necessary and provide some training, the domain expert will

become their own KE as they interact with the system specifying conclusions, cases and/or

heuristics similar to the activities they perform in their role as a domain expert.

When we compare the manual acquisition of knowledge using RDR with the automated

capture of knowledge via machine learning (ML), we see that RDR has a number of strengths.

When we use the RDR KA cycle to classify cases and create rules, we are essentially identifying the

salient features in the domain, the associated classes and the relationships between these, and

getting classified cases whose classification has been validated by a human for free as part of the

process. Supervised ML algorithms require cases to be classified upfront. In many domains this

must be done manually and is prone to error and inconsistency simply due to human fatigue,

memory limitations, emotions and so on (Wang et al., 1996). By classifying cases whilst incre-

mentally acquiring rules, we are forcing experts to check each classification against previous

decisions they have made and justify why they were either wrong before or why this new case

deserves a different classification. We discuss RDR and machine learning further in Section 3.6.

The following subsections introduce basic SCRDR and MCRDR and conclude with a sum-

mary of the key commercializations of RDR.

2.1 Single classification RDR

Single classification RDR (Compton & Jansen, 1988) has been likened to the animal game. Think

of an animal (e.g. frog). Think of one or more features that identify that animal (e.g. makes

croaking sound). Then think of another animal (e.g. a leopard with black spots). Along comes

another animal that croaks and has black spots. What is it a leopard or a frog? It’s neither, it’s a

toad. The current KA task is to determine what is different about a toad when compared to a frog

or a leopard. This failure-driven process of acquiring knowledge within the context of the current

case and past cases can be structured into a SCRDR KB as shown in Figure 2.

We begin with the situation where nothing is known, the empty KB, and define a default rule

(rule 0), which is always true as indicated by the dummy rule condition 15 1 in Figure 2. To speed

up KA this can be the default or most common conclusion. For example, in the pathology domain

the most frequent conclusion given is ‘no conclusion’ meaning that the pathology results indicate

nothing abnormal and no further action. As an alternative to building a conceptual model or

trying to articulate ‘what we know’ in the form of facts and rules about the domain, we instead

acquire knowledge by interacting with examples or situations. Also in contrast to many other case-

based techniques such as Case-Based Reasoning (CBR), the use of formal contexts in Formal

Concept Analysis (FCA) (Wille, 1992) or Repertory Grids (Gaines & Shaw, 1993), RDR are

designed to acquire knowledge incrementally as cases are seen or situations arise rather than

identifying hypothetical or stereotypical cases through which knowledge can be uncovered or

structured. The cases used in the SCRDR and first MCRDR examples are given in Table 1.

Figure 2 reveals a representation containing true (except) branches and false (if-not) branches.

The inference engine starts at the top node (rule 0) and tests whether the next rule node is true
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or false. If it is true it tests whether any child nodes are true or false and so on. The last true rule is

the conclusion given. As indicated in the name, SCRDR only allows one conclusion. Referring to

Figure 2, if we imagine that only cases 1 and 2 have been seen (and thus only rules 0, 1 and 2 exist),

when we encounter a toad (case 3) that both croaks and has black spots, rule 0 is tested and fires,

then rule 1 is tested and fires; rule 2 and any lower rules are not tested. Since the conclusion

animal5frog is not considered by our domain expert to be true, an exception rule (rule 3) is

added to rule 1 which overrides rule 1. To achieve this, the expert indicates that the correct

conclusion is animal5toad and selects some differentiating feature between the current case

(the toad) and the case associated with rule 1 (the frog case). Comparison is possible because each

time a new rule is added the case that prompted the rule to be added is stored in association with

that rule and becomes known as the rule’s cornerstone case. The conditions of all rules on the

pathway are to be included in the explanation of the conclusion. For example, rule 5 can be read

as IF NOT sound5croaks AND marking5black spots AND colour5black THEN

animal5panther. Ensuring that the two cases are differentiated ensures that the previous

knowledge remains valid within the context it was acquired. In this way the whole KB does not

need to be reevaluated and potentially modified as the new knowledge only patches the rule it

extends. In early systems, such as Garvan ES1 discussed below, to assist with the validation

process the user was provided with a list of differences between the current and cornerstone cases.

2.2 Multiple classification Ripple Down Rules

For some domains, if not most, one case may lead to a number of conclusions. To allow multiple

conclusions for a given case, MCRDR has been developed (Kang et al., 1995). Despite the name,

a conclusion can represent a recommendation, classification, state, intermediate conclusions/

classification and/or action. For example, we might conclude that our animal is a vertebrate, a

tiger, an endangered species and in need of further treatment or testing. The conclusion can even

be to ask for further information or to rerun a case.

Figure 2 An SCRDR for our animal domain

Table 1 Cases in our animal domain

Case 1 Sound5 croaks Reproduces5 in_water

Case 2 Marking5 black spots Sound5 growl Suckles_young

Case 3 Sound5 croaks Back_legs5 short Marking5 black spots Reproduces5 in_water

Case 4 Sound5 growl Marking5 stripes Suckles_young

Case 5 Marking5 black spots Colour5 black Suckles_young
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In MCRDR there are only true (exception) branches. If a node evaluates to true, all children

of that node are tested and so on. The last true node at the end of each pathway provides the set of

conclusions given to the user. The justification for a conclusion is comprised of the conjunctions of

all conditions on the pathway leading to the final true rule. Scheffer (1996) offers the following

distinction between SCRDR and MCRDR, which he refers to as RDR and RDR-sets, respectively,

in RDR-sets:

rules in a list of successors may fire synchronously, while in a RDR, each rule suppresses its

successors. Decision Lists contain rules that suppress their successor – hence negation and exceptions

can be expressed – but there is no distinction between rules, the instances of which are proper subsets,

and rules that partially overlap (p. 279).

Even for single classification domains, MCRDR has been shown to allow coverage of the

domain quicker (Kang, 1996). We can see even in this small animal example that more knowledge

has been acquired using MCRDR as compared with SCRDR. In Figure 3 the domain expert has

seen the same number and set of cases (Table 1) as in Figure 2 but the end result is eight rules in

MCRDR compared with five rules, one per case, in SCRDR. However the two KBs do not

produce the same conclusions. The sample SCRDR only answers which animal has been found

(frog, toad, leopard, panther or tiger). As only one conclusion can be given for each case in

SCRDR, it is not possible to add one rule which classifies a particular case as a toad and a separate

rule which classifies the same case as an amphibian as is possible in the MCRDR KB. In MCRDR

it is possible to focus on different parts of the case to provide different rules and conclusions and

create new rules for each area of focus or subdomain. For example, rules 1 and 2 use the same case, as

do rules 3 and 4. Comparing the KBs in Figures 2 and 3, we see that rules 2 and 4 in the MCRDRKB

use conditions (reproduces5in_water, suckles_young) not used in the SCRDR KB. These

conditions could have been chosen to provide the same conclusions given in the MCRDR KB

(AnimalType5Amphibian, AnimalType5Mammal) but it would not have been possible

to also enter separate rules for those cases concluded (Animal5Frog, Animal5Leopard).

To provide the same conclusions the SCRDR would have to provide compound conclusions

based on a mix of conditions (for e.g., If sound5croaks and reproduces5in_water,

Figure 3 An MCRDR for our animal domain
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Then Animal5Frog and AnimalType5Amphibian). However, this would mean that it is

not possible to add one rule to cover all cases of amphibians as can be done in the MCRDR

example. Instead every rule conclusion would need to contain the animal and animal type

classification. Even less satisfactory with the compound conclusion solution is the explanation

provided by the system as it does not clearly link which attributes result in which conclusion.

Further, while the use of a compound conclusion to provide multiple conclusions is a viable

alternative for this set of cases as every animal also has an animal type (i.e., Animal IS_A subclass of

the AnimalType parent class), in another domain, set of cases (for e.g., where information regarding

Animal Type is missing) or class type (such as what food the animal should eat or whether the

animal is a herbivore, carnivore or omnivore which is not a sub or superclass of mammal but

potentially a subclass of many animal types), it may not be possible to provide a conclusion which

covers the classification for all the classes being considered. One alternative is to have a different set of

cases to those given in Table 1 which include A–V pairs relating to either the animal or animal type,

but not both. However, as RDR is an incremental technique which expects to handle cases as they

arise in the real world, structuring cases so that some of the case information goes into one type of case

and other information goes into another type of case would probably be unsatisfactory and artificial.

For the SCRDR example given in Figure 2, if the domain expert later decided to update the KB

to provide a classification for both animal and animal type they would need to override each of the

five rules, with a compound conclusion resulting in a KB with 10 rules. The MCRDR KB only

required eight rules to provide the same classifications. If more new classifications are required

in these examples, the size of redundancy in SCRDR increases exponentially. MCRDR thus

produces more compact KB with less redundancy and requires fewer cases to be seen to cover

multiple subdomains.

However, MCRDR is not always better than SCRDR, particularly for single classification

domains. In the examples given if we begin KA with the goal to provide a classification that

includes both animal and animal type, we only need five rules in the SCRDR KB and six rules in

the MCRDR KB. Note that if the order of cases were changed and the toad case (case 3) was

tested before the leopard cases (case 2) or if the expert selected two conditions in rule 3 (e.g.

marking5black_spots and sound5growl) to distinguish this animal, rule 6 would not

have been needed and MCRDR would also require five rules to cover the same set of cases and

produce the same set of compound conclusions.

We can see that the parent rule (rule 3) relating to the leopard case (case 2) is an over-

generalization. The exception rule (rule 6) in Figure 3 attempts to correct this in light of a case

for a toad (case 3). A number of other alternatives were available to the expert to correct the

overgeneralization. One likely method is for the expert to decide they made a mistake in the first

place and had not been specific enough. Rather than add the exception rule 6 in Figure 3, which

results in the definition of a leopard as having black spots and not having short back legs, they

may choose to stop the conclusion given by rule 3 by adding a stopping rule (rule 9) as shown

in Figure 4. In this example, when a case for toads appears (now case 5 as shown in Table 2), the

toad will be correctly classified because of exception rules 7, 8 and 9 overriding rules 1, 3 and 5 in

Figure 4.

Not illustrated, alternatively, the domain expert may decide that they want to undo their

overgeneralization error in rule 3 and start again by making rule 9 an unconditional stopping rule,

that is a rule that has no conditions or a dummy condition (such as 15 1 in the default rule root

node 0) and a STOP conclusion which is equivalent to conclusion5no_conclusion. This

would mean that the leopard case (case 2) would receive no conclusion by the system and thus the

case needs to be reclassified. To rectify this, a new rule can be added at the top level (i.e., as

an exception to rule 0) which states marking5black spots and sound5growl Then

Animal5leopard. When the panther case is encountered it is likely that an exception rule is

added to the leopard parent rule which states colour5black Then Animal5panther.

Note that in order to demonstrate another feature of MCRDR in Figure 4 a new case

containing the feature eats5flies (but not the A–V pair sound5croak) has replaced the
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previous case 3, the toad case has moved to case 5 and the panther case has become case 6. As

shown in Table 2, we now have two frog cases (cases 1 and 3) that contain different features thus

requiring the two different rules we see in rules 1 and 5. When the toad case comes along, rules 1

and 5 both need patching (i.e. an exception rule needs to be added). We can see that rules 7 and 8

are added to fix the two incorrect frog conclusions, which the system provided for the toad case.

Patching in more than one place to correct the same conclusion can occur in MCRDR because

multiple true pathways are possible. To reduce the repeated KA effort to correct the same error, in

commercial implementations automated patching is provided that allows the user to define the

first patch and the system to automatically add exception rules to any other rules that would give

the same misclassification (Compton et al., 2006). Despite this seeming inefficiency, empirical and

simulation studies have shown that the depth of correction is usually two or three rules, or

conversely a sufficiently precise rule is provided by the expert after seeing two to three cases (Kang

et al., 1995), so repetition is in practice not a major problem.

Figure 4 An MCRDR for our animal domain using a conditional STOPPING rule

Table 2 Alternative set of cases in our animal domain

Case 1 Sound5 croaks Reproduces5 in_water

Case 2 Marking5 black

spots

Sound5 growl Suckles_young

Case 3 Eats5 flies Reproduces5 in_water

Case 4 Sound5 growl Marking5 stripes Suckles_young

Case 5 Sound5 croaks Back_legs5 short Marking5 black spots Eats5 flies Reproduces5

in_water

Case 6 Marking5 black

spots

Colour5 black Suckles_young
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The use of a difference list in early SCRDR was adapted for use in the first MCRDR system as

the Garvan ES1 data was used for development and testing and because the difference list was

useful to automatically generate new rules in the simulation studies used to evaluate MCRDR.

Many RDR systems do not use the difference list as part of KA as the many combinations of

differences resulted in a list that was very long and therefore too difficult for the expert to review.

Fundamentally, SCRDR/MCRDR focuses on how to validate systems with cases by comparing

the current case with associated cornerstone cases and thus difference lists are not critical.

2.3 Commercial implementations of Ripple Down Rules

RDR in some form has been in routine use in an industrial setting since the development of PEIRS

in 1989. Today the most noteworthy fruit of this work can be found in the Labwizard commercial

RDR system by Pacific Knowledge Systems1. Recent communications estimate that to date about

30 million patient reports have been processed by Labwizard, and about 100 KBs have been built

by 14 chemical pathology laboratories2. In contrast to traditional rule-based systems, where there

is a noteworthy increase in KA time as the KB grows due to the need to ensure that inconsistencies

are not introduced in other parts of the rule tree, in Labwizard a rule takes on average about

1minute of expert time and is independent of KB size, even with KBs of thousands of rules

(Compton et al., 2006). This is considerably less time than when the interpretations had to be

written on each report, and also ensures greater consistency in the interpretations. Effectively, the

GP receives an interpreted report that has been reviewed by two experts, one human and one

machine, the former high in commonsense and deep smarts, the latter not prone to boredom,

fatigue or mood changes with more reliable memory and computational ability. The value of RDR

to the GP was validated in an initial independent survey report by Illawarra Regional Information

Service (IRIS) Ltd research and is further confirmed in the fact that the KBs continue to grow

despite the change to a per-usage pricing model.

However, RDR has moved beyond both the research and pathology laboratory and can be

found in a number of other commercial products. The RDR research led by Byeong Ho Kang,

currently at the University of Tasmania, resulted in the spinoff company KMAgent3 which uses

RDR to add intelligence to Web browsers. Kang has also introduced a number of Korean firms to

RDR for applications such as Help Desk Systems. Further systems using RDR technology and

concepts are underway with various large commercial partners in a range of fields including

medical applications besides pathology and email management (see the EMail Management

Assistant (EMMA) system in Section 3.5).

RDR techniques are provided by a number of consulting and professional services companies

such as Ucube4 which offers ‘a very rich rule engine component, developed based on the RDR

algorithm’ and SriCom offers the Likewise5 Proforma Tool which assists decision making by using

a series of items to prompt the user for relevant information following the RDR approach to KA

and exception representation.

On a larger and more international scale, the Sonetto system6 has been developed by the Ivis

Group7 for Tesco.com, the world’s largest on-line grocer with a turnover exceeding $2B. RDR has

been used to create hundreds of thousands of business rules, a more popular term in industry, to

manage product knowledge which is being used by affiliate sites (e.g. Kelkoo) and as a product

1 http://ww.pks.com.au/
2 http://www.cse.unsw.edu.au/ , compton/commercial_RDR.html
3 http://www.kmagent.com/
4 http://www.ucube.net.au/Products/tabid/119/Default.aspx
5 http://likewize.com/about.html
6 http://www.eurobizrules.org/Uploads/Files/Sarraf_2c_20Q_2.pdf, accessed February 20,

2008.
7 http://www.ivisgroup.com/
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recommendation system to their customers. The Ivis Sonnetto product has won two Microsoft

Awards, including one for innovation8 and a 2006 award for Retail Affiliate Management9.

The Yawl Group, which stand for Yet Another Workflow Language, have incorporated

RDR into their workflow management system which they use in their consultancy and training

services for companies developing business process management. The product is the outcome

of a collaborative research effort between QUT’s Business Process Management research group

and Eindhoven University of Technology. In addition to a number of other techniques such as

petri-nets, RDR are used to provide a ‘unique solution to dynamic workflow’10.

The impact of RDR in the commercial world is not always easy to identify as it tends to be a

component within a larger system and the ideas have been available in the public domain since the

1980s. One example is a system known as Erudine11 which sounds like RDR in the description

contained in one of its whitepapers12 and was previously known as Rippledown Solutions13.

Among the uses of Erudine, is the re-engineering of legacy systems where the legacy system acts as

a case base from which a new system is developed.

3 Variations, extensions and implementations

Over the past two decades many variations and extensions to SCRDR and MCRDR have been

developed, particularly to the inferencing cycle, according to the problem domain and depending

on the system and other techniques and technologies being used. While there have been numerous

implementations of RDR, each one has essentially acquired knowledge in the same manner, by

presenting cases to an expert who accepts a conclusion or creates a new rule with the correct

conclusion attached as an exception to the incorrect rule. Standard tools included in most

implementations of RDR were the ability to browse and visualize the tree, browse individual

traces and examine rules and their status based on the current case. Various statistics were

computed and stored such as a count of the number of times a conclusion is used, the complexity

of individual rules (the number of conditions in the antecedent), the frequency that whole con-

ditions occur, the full complexity of a path, the number of rules in spine subtrees and a list

of conclusions and which rules use them. Numerous other statistics, debugging, browsing and

evaluation features and functions were added to prototype systems according to the issues under

consideration. The research in this section is presented in rough chronological order but also

grouped thematically resulting in some loss in historical sequence.

3.1 Early systems

As introduced earlier, the first RDR system PEIRS was created for the pathology domain around

1990. This was the first of a number of systems based on SCRDR, such as the XRDR general

purpose classification system. Noteworthy SCRDR extensions are Time Course RDR (TCRDR)

which was used by PEIRS and Recursive RDR (RRDR) (Mulholland et al., 1993). TCRDR used

various functions and features to handle time course data. For example, if there were data

covering five time periods the user could define a function CURR to determine which A–V pair

would be used in evaluations of the current value of that attribute. This type of preprocessing

of the input data is typical of many of the implementations of RDR and does not affect the way

8 http://www.microsoft.com/emea/presscentre/pressreleases/rad2006win-

nerspr_1522006.mspx
9 http://www.nabble.com/CG%3A-Sonetto-CG-based-rule-and-search-engine-wins-

awards-for-Retail-Affiliate-Management-to3086701.html
10 http://www.yawl-system.com/
11 http://www.erudine.com/
12 http://www.erudine.com/downloads/whitepaper_tacit.pdf
13 http://web.archive.org/web/20051222121140/www.rippledownsolutions.com/

page.aspx?id527
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KA or inferencing is performed. On the other hand, RRDR did require a modification to the

inferencing process involving repeated inference cycles and using multiple machine-learnt

SCRDR, one for each component of the ion chromatography method (Mulholland et al., 1996).

On each cycle the last true conclusion at the end of each SCRDR path were returned. A heuristic

was then used to choose which conclusions to accept and these were used as inputs and inferencing

commenced from the beginning again. Another implementation combined RRDR with Possible

RDR (PRDR) (Mulholland et al., 1993) and reported all last true conditions after taking any

branches that might possibly be true. PRDR considers a subset of the branches used in RRDR.

Both of these techniques can be difficult to manage as often too many alternatives are provided

and it is hard to determine the useful ones.

Interactive RDR (IRDR) is a technique that allows the RDR system to prompt the user for more

information when required (personal communication, Quoc Thong Le Gia). The user may enter a

value or indicate that the value is ‘unavailable’. The response is added to the case, which is then

reevaluated. When changes are made to the case, no matter how small, it is possible that another path

will be found through the tree. Some, unpublished, simulation studies have been done using IRDR

that yielded poor results. It is conjectured that it is very difficult for the user to anticipate how the

path will change. Therefore determining the appropriate change to an A–V pair to test out predic-

tions is very complex. Later work involved the use of rules that are added by the expert to state what

A–V pair should be requested next when the value of a certain attribute is known. A further

suggested refinement was to use information gain to interactively compute the key attributes that

should be queried. Another alternative to using information gain alone would be to use the rules as

the input cases and the statistics collected by credentials (described later in this section) to weight each

rule according to the number of times the rule has correctly fired. Use of these statistics is important

because, unlike the use of algorithms like C4.5 with examples, there is only one of each rule and the

importance of one rule over another cannot be determined without some measure of usage. Rules

whose conclusion is to ask a question, like the approach used in Collaborative RDR (CRDR) in

Section 3.7, can also be incorporated to override the suggestions made by ML.

Another implementation (Edwards, 1996; Kang, 1996), known as WISE, first determined the

conclusion of a case using standard RDR and then found all other branches that gave the same

conclusion. The goal of the study was to determine the usefulness of storing the history of

corrections, provided in an RDR KBS structure. The pathways below each satisfied rule node

were compared (normally only one pathway is traversed and kept in SCRDR). These multiple

pathways postulated four possible patterns of knowledge correction and could be used to suggest

that a conclusion may be wrong. This would add even further to the explanatory power of the

knowledge and allow comparison between alternative classifications of the data.

As a follow-on from WISE, Edwards looked at building RDR KBS that use reflective learning

through what is termed prudence and credentials (Edwards, 1996). The idea behind prudence was to

reduce some of the brittleness problem that ES suffer from when they reach the limits of their

knowledge. This was achieved by altering the behaviour of the ES rather than the knowledge

contained therein. WISE developed into Feature Recognition Prudence, which was implemented to

see whether a different conclusion could have been reached by an alternative path by checking the

children of other nodes with the same conclusion. Another approach was termed Feature Exception

Prudence, which allowed the system to know when it was reaching its boundaries. This was achieved

by keeping a context profile containing the permissible features for each interpretation. When an

inference was performed all A–V combinations (features) in the case, not just the rule conditions,

could be evaluated against the permissible range of values for each attribute in the context profile.

If a feature was not found in the context profile the pathologist was warned that the conclusion may

be incorrect. In the exceptions study it was found that knowledge in the form of filters was needed so

that in certain circumstances data would not be checked, such as checking the value of the attribute

ovulatory when the patient is a male. One alternative to the use of filters is to provide a secondary

KBS that contains rules with valid combinations and other knowledge required to support reflection

to be used in conjunction with the primary KBS containing the main RDR rules.
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The other method of reflection was the use of credentials much in the same way as we may

seek the qualifications of an expert before deciding to accept their advice. Credentials kept track

of various statistics such as how many times a rule had fired and how many of these had been

accepted by the pathologist. With these statistics the user can determine how the accuracy of

knowledge in this rule can be compared to the accuracy of the total system and decide whether to

accept or reject the system’s recommendation.

3.2 Acquiring control knowledge

RDR have been successfully extended to acquire complex control knowledge needed for a flight

simulator (Shiraz & Sammut, 1997). Much of the knowledge required for this task is subconscious

or tacit and cannot be acquired through techniques such as interviews. By reasoning about cases

the operator is able to evaluate and modify the KBS. Dynamic RDR (DRDR) was developed

based on SCRDR. However, unlike SCRDR, DRDR handles four KBS concurrently and

produces multiple conclusions one for each of the four conclusions regarding Elevator, Flaps, Roll

and Throttle. To further assist the dynamic system with learning, ML was used to modify and

complement the rules created by the flight operator using the flight log. The algorithm was known

as Learning Dynamic RDR (LDRDR) and unlike most ML algorithms it learns incrementally by

determining when an action was performed and using the action and attributes that caused the

action to form a new rule. This work had begun while MCRDR was still under development and it

would be interesting to compare the benefits of DRDR compared to MCRDR for the same task.

More recent work also involving the incremental acquisition of control and parametric

knowledge is in the field of lung boundary extraction from High Resolution Computed Tomo-

graphy scans (Misra et al., 2004). Scan imaging involves multiple possible procedures that vary

according to the quality of the image, type of image, particular domain or other circumstance. To

address the need to acquire procedural knowledge ProcessRDR was proposed. In contrast to the

work of Park et al. (2001) using MCRDR for feature extraction in this domain, ProcessRDR was

designed to manage the knowledge related to the process of feature extraction where separate and

multiple ProcessRDR were used to carry out some specific image processing. The ProcessRDR

were connected in a sequence and thus impacted on one another. The technique addresses the

problem of ad hoc procedures and would be applicable to other processing system domains. The

key open issues being explored were the dependence between ProcessRDRs and how to handle the

large number of cornerstone cases which occurred in some worst-case scenarios.

3.3 Hierarchies of RDR: Nested Ripple Down Rules

Nested RDR (NRDR) (Beydoun & Hoffmann, 1997, 2000) allows multiple SCRDR trees to be

combined into a hierarchical conceptual structure. The initial work was concerned with capturing

search knowledge and allows concepts and rules at various levels of abstraction to be defined and

reused. NRDR makes use of cases and cornerstone cases but does not create a difference list

to assist with feature/condition selection. The chess domain was used as the testbed for this work

but the work was concerned with human search knowledge in general. For every concept to be

defined, a simple SCRDR tree is used. Rule conclusions within a concept definition are Boolean

and can be used as conditions in other concept definitions to form a hierarchy of concepts. Similar

to the earlier work by Mulholland, multiple reasoning cycles are used to traverse the multiple

SCRDR trees to provide conclusions based on the set of trees. Realizing the importance of

providing the user with a visual representation of the rules the system developed, SMS1.2 allowed

the user to view the rules as a tree structure similar to those provided in other implementations

of RDR. Figure 5 shows three SCRDR trees that form part of a concept hierarchy relevant to the

Animal domain, which given a case {hasPlacenta, noFeathers, noScales, warmBlooded} will first

conclude {Mammal} then {hasHair) and finally {Mammal}.

The ability to share and reuse simple SCRDR KB to provide a structured knowledge repre-

sentation at multiple levels of abstraction is its key strength. It is noted that ‘this hierarchical
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structure of the knowledge base causes problems for keeping the entire knowledge base consistent

when a single concept needs to be altered’ and ‘a more profound update problem is dealing

with inconsistencies due to localized updates in the hierarchical knowledge base’ (Beydoun &

Hoffmann, 1997: 7). While they provide some solutions to these problems it appears that the

imposition of more structure and levels have impacted on the ease of maintenance in standard

RDR. Also, as can be seen from Figure 5, a change in one concept can change another concept

and thus navigating around concepts and also keeping in mind the overall interrelationships is

quite different to the simply looking at a sequential pathway of rules. To take some of the

cognitive load from the user, the user interface plays an important role in assisting the user with

navigation and the management of the hierarchies and interrelationships.

3.4 The role of ontologies and the reuse of RDR knowledge

Nested RDR, as described earlier, provided a means of reusing RDR concept hierarchies. An

alternative ontological approach to KA using RDR can be found in the system known as Ripple

down rule-Oriented Conceptual Hierarchies (ROCH) (Martinez-Bejar et al., 1997, 1998a). Using

ROCH the expert defines a conceptual hierarchy of the domain from which cases are first

developed followed by rules to cover those cases. The hierarchy includes IS-A and PART-OF

relationships and is verified by the system and validated by the user as it is developed. ROCH was

extended to cover fuzzy domains with the development of fuzzy ROCH (Martinez-Bejar et al.,

1998b). As with NRDR, but unlike mainstream approaches, ROCH is an incremental technique

allowing rules and/or the conceptual hierarchy to be developed on a case-by-case basis by the

domain expert.

The work by Lee and Compton (1995) considers whether knowledge in an existing RDR KBS

could be reused to find causal links to support causal modelling. In this approach it was found that

additional knowledge from the expert, in the form of causal links, was often required. The work of

Richards (1998, 2000) explored a wider range of potential activity-reuses of RDR knowledge to

support critiquing, user modelling, explanation, tutoring, what-if analysis and hypothesis testing.

This was achieved in a number of different ways involving the use of a nearest-neighbour

Figure 5 A subset of animal-related SCRDR showing how knowledge can be structured and reused in NRDR
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algorithm to identify similar concepts and the use of FCA (Wille, 1992) to automatically generate

conceptual hierarchies of the RDR KB. The work was further applied to compare and reconcile

multiple sources of expertise contained in multiple KB (Richards &Menzies, 1998) and to multiple

stakeholder viewpoints in requirements engineering (Richards, 2003). The technique offered an

alternative to labour-intensive specification of ontologies that combined rapid, incremental and

manual KA using RDR with automatic generation of ontologies using FCA to enable reverse

engineering of ontologies (Richards, 2004). Suryanto and Compton (2000) took this work further

to allow learning of classification taxonomies and the relations of mutual-exclusivity and

similarity between classes in addition to the subsumption relation provided by FCA.

3.5 RDR, the Internet and text classification

The Internet has brought with it some new challenges and opportunities for extending RDR. The

challenges often relate to the effective and efficient utilization of the vast amount of resources now

accessible. A number of approaches have been developed to support retrieval of Web-based

documents. Kang et al. (1997) integrated key word searching with CBR indexing to provide a filter

and guide searching. Kim et al. (1999) developed a prototype to assist the expert to create a KB of

keywords (rule conditions) linked to documents (conclusions). To further improve searching, Kim

and Compton (2004) used FCA to generate a browsable hierarchical conceptual clustering of

documents. To improve the user’s query, Cho and Richards (2006) developed an algorithm known as

Admixture MCRDR and FCA which incorporated the creation of rules using MCRDR and FCA

and achieved better precision results compared to some common information retrieval techniques

such as support vector machines (SVM), term frequency-inverse document frequency (TFIDF) and

naı̈ve Bayesian with Threshold. The call centre prototype CRDR system (Vazey & Richards, 2006a),

described in Section 3.7, offered a Web-based solution to bring together knowledge in the form of

URLs, documents, databases, technical specification, etc., from many vendors and sources.

Personalized retrieval of Web information has been explored in the work of Park et al. (2004).

This work seeks to overcome the cognitive, linguistic and knowledge representation barriers,

which occur when there is: a lack of structure and context, and communication difficulties and

mismatches between domain experts, KEs and between the ways that different people represent

and use knowledge. Similar to Catlett’s (1992) claim over a decade ago that RDR provide a

mediating representation to bridge some of this gap, Park et al. (2004) use a ‘folder structure user

interface y as a mediating representation method and difference lists and cornerstone cases as

[an] intermediating representation’ (p. 64). An MCRDR based algorithm is used to incrementally

classify documents using the typical RDR failure-driven KA process, which is triggered when the

classifier suggests a folder deemed inappropriate by the user. Usability experiments have shown

the technique to be simple, yet robust, and to work well in domains where machining learning

training sets are hard to create and knowledge is constantly increasing.

Email management has been the focus of a number of RDR projects. Cho and Richards (2004)

have used a combination of the naı̈ve Bayesian with Threshold algorithm with MCRDR

(BayesTh–MCRDR) achieving a 3% improvement over the Bayesian with Threshold algorithm

alone. This is achieved by constructing a related word KB to guide classification. A similar but

more comprehensive approach to email management which includes message sorting into virtual

folders, prioritizing, reading, replying, archiving and deleting emails has been developed in the

EMMA by Ho et al. (2003). As in the BayesTh–MCRDR approach, EMMA uses MCRDR for

classification but offers three alternative uses of naı̈ve Bayesian classification to enhance coverage

and usability. This work has been evaluated with users and achieved accuracy between 95% and

99% during the trial period. As mentioned in Section 2.3, the system is being commercialized and

a patent for the work has been lodged.

Another email system called Intelligent Electronic Mail (IEMS) (McCreath et al., 2006) com-

bined handcrafted rules in the form of decision lists which was a modification of basic MCRDR

(i.e. inferencing continued instead of stopping after a stopping rule was found) with machine learnt
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rules using an approach which generates an explicit hypothesis based on an instance-based

learning technique. The handcrafted rules were found to be more precise though make fewer

predictions, whereas, the learnt rules were less precise but were able to make predictions on a

larger percentage of incoming messages. Hence by considering the handcrafted rules first and the

learnt rules second, they were able to improve the overall performance.

Many of the Web-technology approaches described earlier have moved RDR beyond case

classification into text classification (e.g. EMMA), information extraction and natural language

processing. An example of the latter is the use of language technology techniques such as tokenizers,

part-of-speech tagging and semantic tagging, together with RDR to extract positive attributions from

scientific papers (Pham & Hoffmann, 2004a), thus reducing some of the information overload facing

scientists. The work builds on RDR concepts such as incremental acquisition of rules in response to

misclassified text segments (which take the place of cases) but extends the representation significantly

with a rule annotation language used to specify the rule conditions of the exception rule covering that

segment. Alternatively a new rule may be added for the segment if no inconsistencies are introduced.

When compared against gold standard text mining algorithms (that is, C4.5, Naı̈ve Bayes and SVM),

the KB created achieved far superior results for sentence classification of the same sentences. For

information retrieval, the initial experiments yielded precision rates of at least 74% and recall rates of

more than 88% on unseen corpora. To support the rapid prototyping of language technology

systems, KAFTIE (Knowledge Acquisition Framework for Text classification and Information

Extraction) has been developed, which in addition to the annotation-based rule language includes a

customizable Shallow Parser (Pham & Hoffmann, 2004b).

Further language technology research using RDR is in the area of text summarization. The

Knowledge Acquisition Framework for DIScourse processing (KAFDIS) assists in the acquisition

of the knowledge needed for the reliable construction of the discourse structure graph and the

level-of-detail tree based on cue phrases (Hoffmann & Pham, 2003). The expert uses KAFDIS to

identify and justify, thus indirectly developing rules, the relationships between two sentences. The

reasonably simple process outputs an annotated training corpus including a complex discourse

structure graph built up through elaboration of various subgraphs in the form of level-of-detail

trees. The goal is to develop an interactive document viewer incorporating more extensive KBs for

the automatic processing of scientific papers.

3.6 RDR and machine learning

As we saw earlier, RDR has frequently been used in conjunction with machine learning (ML)

approaches. Earlier work connecting RDR and ML involved the use of ML to produce RDRs,

mainly due to the compactness of the knowledge representation (Catlett, 1992; Gaines &

Compton, 1992; Kivinen et al., 1993; Siromoney & Siromoney, 1993; Scheffer, 1996). Scheffer’s

(1996) work is of particular importance as it does not simply employ exceptions or RDR as an

alternative representation, but the work provides an algebraic foundation for RDR and includes a

comparison with a number of similar algorithms (Vere, 1980; Wrobel, 1988; Helmbold et al., 1989;

Bain & Muggleton, 1991; Kivinen et al., 1993) used to induce exceptions or which use counter-

examples. Scheffer describes SCRDR as a list of rules in which each rule may be associated with

another list of (exception) rules with the following advantages.

The implied concept of locality (an exception is applicable only if its next-general rule is applicable)

makes RDRs comfortable for human needs: rough rules can be expressed first, the exceptions of

which can be modelled as a refinement of the hypothesis later.

(Scheffer, 1996: 279)

To achieve even smaller KB size and handle continuous attribute domains, Scheffer offers the

Cut95 algorithm that rewrites a given RDR and a new example, where rules are conjunctions

of interval constraints to yield a classifier through bottom-up generalization of examples and

top-down specialization of exceptions, according to the RDR manner.
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As pointed out by Scheffer (1996), the exception structure which inherits the conditions of

parent rules, provides a shorter description length than an equivalent decision list or traditional

production rules which could be termed ‘flat’ rules. A number of ML researchers have recognized

this strength of RDR. Early work includes Gaines and Compton (1995) which used the Induct

algorithm to automatically generate compact RDR rules from cases. Yao et al. (2005) have also

used RDR together with the Prism and Induct algorithms to produce a binary tree for the purpose

of security information analysis. Pham and Sammut (2005) have used the Cut95 (Scheffer, 1996)

algorithm to acquire domain specific object recognition rules based on inputs from the vision

systems in the Aibo soccer robots with results comparable to handcrafted rules but with the

advantages of KA being incremental, automatic and up to date.

The combination of RDR with ML makes a lot of sense. In many cases, manual KA using

RDR is replaced by a machine learner, which outputs knowledge in the form of RDR exceptions.

These supervised ML techniques tend to be batch processors such as the RIDOR RDR learner

available in WEKA. The manual acquisition of rules by humans in most RDR approaches is

sometimes seen as a weakness that could be overcome by using automated ML techniques.

However, in supervised ML, humans are typically required to classify the cases or annotate the

text. As was found by Pham and Hoffmann (2004a), the KB they produced using manual RDR

was far superior to the ML approaches they evaluated on the same text. They found that time

taken to add rules was a small fraction of the time when compared to the time needed to classify

the sentences as rules may cover many sentences. They conjecture,

This suggests that our approach uses the expert’s time much more economically than supervised

machine learning approaches which only utilize the class label as the indication of what to do

with a sentence.

(Pham & Hoffmann, 2004a: 181)

Pham and Hoffmann see real benefit in a mixed initiative approach, where the system may

suggest rules that can be modified by the experts. As many RDR researchers have found, the

inclusion of the human in the loop at optimal times can greatly reduce the search space and

overcome some of the brittleness problem as humans bring their commonsense and experience to

bear on the problem at hand. Also by working with the human, the amount of training data can

often be greatly reduced thus reducing the number of cases which need to be classified (Pham &

Hoffmann, 2004a).

A body of work has considered the combination of manual KA using standard RDR and a

human with automated KA using ML. The work sees a synergy between RDR and ML as both

approaches seek to express a minimum description to cover the knowledge in the domain. The

initial work by Wada et al. (2001) was motivated to incorporate ML with RDR to address the

limitations of human expertise, capture up to date knowledge in changing environments and take

advantage of large datasets available in many domains. They suggest that the proper balance is to

use humans in the early development of the system when fewer cases can be found and to use ML

to refine the system when sufficient cases exist. The Minimum Description Length Principle

(MDLP) algorithm is used in conjunction with RDR to provide a more structured and common

strategy for integrating machine and human KA. By using the description length, data can be used

to supplement human expertise, particularly important where expertise may be inadequate.

In general the technique developed a KB equivalent to the rules that can be produced using C4.5

from the same amount of data. The approach produced SCRDR binary trees but the authors

suggested that the technique could also be used with MCRDR and might be useful to provide

guidance in making the decision of where to place new rules in an RDR, such as at the end of a

rule pathway or placed higher up the tree as a new rule pathway (Yoshida et al., 2004). The study

by Yoshida and Motoda (2005) conducted a performance evaluation of the method involving (1)

switching the knowledge source from expert to data and vice versa at any time and (2) additionally

changing the environment, that is, the class distribution. The results were better for all methods

except the use of data only when compared with the results for C4.5. MDLP was found to work
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very well in general as a unifying principle, and timely use of a human expert was found to help

reduce the search space. Further, the studies showed that knowledge deletion and pruning are

shown to be very effective when an environment changes over time.

3.7 Collaborative RDR (CRDR)

CRDR14 has been proposed to address the volatility and complexity of the call centre domain. In

the call centre, cases are worked up by multiple people around the world and around the clock.

Cases continue to change until the recommendations or answers offered to the client result in a

satisfactory outcome. Given the complex interactions between products, platforms and vendors

and the large range of solutions including URLS, databases, documents, hints, patches, etc., in the

call centre of the multinational research partner, weeks or even months may pass before a par-

ticular course of action may be confirmed. Thus CRDR allows rules and cases to change and

multiple people to work on the same parts of the KB. While standard MCRDR allowed change to

rules by adding exception rules and change to cases by entering a modified case, which was then

treated as a new case, CRDR actually allows the original rule or case to be modified. To support

collaborative KA and maintenance, multiple views of the knowledge are allowed. Inconsistency is

managed via extensive tracking of the states (‘live’, ‘registered’, ‘pending’, ‘accepted’ or ‘rejected’

(Vazey & Richards, 2004)) and relationships between the various elements in the CRDR KB. Any

detected conflicts will be brought to the attention of one or more domain experts and reconciled

collaboratively. To support reuse and incrementally acquire cases over time various new functions

can be used in conclusions and rule conditions (such as the getAttribute(attrName) conclusion

type15 to request information from the user) (Figure 6).

To minimize redundancy and encourage reuse, CRDR offers a new representation, which

resembles a network rather than a tree or set of decision lists. In SCRDR a node can have one

parent and up to two children (a true and false branch). In MCRDR a node can only have one

parent but multiple children who in turn can have multiple children. In the CRDR representation,

a node can additionally have multiple parents (see Figure 6). Further, SCRDR or MCRDR do not

explicitly distinguish the type of conclusion being provided even though implicitly the type of

Figure 6 A partial CRDR for our animal domain

14 To reflect how rules and cases are ‘worked-up’, the approach was initially called Interactive Recursive

RDR (Vazey & Richards, 2004). That name reflected that it shared the goals of earlier separate work into

interactivity and recursion, which were described under early systems. Most recently the technique has

become known as 7Cs as it supports Collaborative Configuration and Classification of a stream of incoming

problem Cases via a set of ConditionNodes, that is, rulenodes, linked to their Classes and associated Con-

clusions. Here for simplicity the technique is referred to as CRDR.
15 The implementation of CRDR includes several conclusion types (e.g. stop, getAttribute(attrName’),

showfile(fileName), advise(errorCodeNNN), refer(RuleNodeID)) and attribute types (e.g. Text, URI,

combo, imageURI, case(), file(), image(), refer()).
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conclusion could differ (e.g. an action or classification). CRDR allows conclusions that are

classifications to be identified as such and reused or ‘referred to’ in other rules. Data structures

have been created and changes have been made to allow: multiple parents; the labelling of nodes as

classes; reuse of nodes; the use of intermediate conclusions; the order of rules to be changed and

thus the order of conclusions presented to the user to be changed. Also standard MCRDR

inferencing has been enhanced to also allow recursive evaluation and backtracking as in the case of

intermediate conclusion rule nodes, which allow the engine to jump to a rule in another part of the

KB and backtrack to the root node. This is similar to the inferencing mechanism used with

multiple SCRDR KB for configuring an ion chromatographer (Mulholland et al., 1993).

The ability to change rules and cases is a major departure from the underlying RDR philosophy

to provide intuitive and low-maintenance incremental KA. While, in practice, commercial systems

may relax the RDR philosophy to allow variations such as occasional editing of rules, automatic

patching of all affected rules or non-differentiation of cases, in general, such practices are avoided

as they add to the user’s cognitive load and introduce potential maintenance problems. To handle

this, CRDR checks for conflicts or inconsistencies that may arise.

We can report that after 1 hour of training, domain users were able to use the prototype system

to collaboratively acquire knowledge to cover about 15% of the 5000 daily cases after a total of

7 hours of KA (Vazey & Richards, 2006b). This conservatively represents a savings of at least

4.5 hours trouble shooting per day, and thus in less than two days the effort invested was returned.

The cases being solved represent 27% of a subdomain with estimated direct labour costs globally

of approximately $3.3 million per annum.

It is still early days for this work and the practicality of the approach on a large scale is yet

untested. From the studies to date, the approach appears to have a greater need for KE support

with rule forming due to the increased number of choices and functions. The lesser emphasis on

case-driven bottom-up KA in favour of rule-driven top-down KA raises questions regarding

validation of the knowledge. While many mechanisms have been put in place to identify and

resolve inconsistencies that might arise, scalability may be an issue as it is still unknown whether

CRDR systems will get increasingly harder to maintain as the KB grows, which was the key

problem in conventional KBS that SCRDR and MCRDR sought to address.

3.8 Other extensions to and applications of RDR

The early work begun by Mulholland in the area of Ion Chromatography using multiple machine

learnt SCRDR and reasoning cycles has been extended further to support manual KA using

MCRDR (Ramadan et al., 1998). Unlike SCRDR, MCRDR provides an ‘n-ary tree structure

with no false branches [which] more transparently supported the possible requirement to hypo-

thesize conclusions’ (Compton et al., 1998: 10). Following standard RDR, KA is required if any

component or solution is wrong or missing. As in the early work, to allow the ion chromato-

grapher to be configured, repeated inference and KA cycles are used. In the approach, once all

errors from the first inference pass are corrected, that is rule addition is complete, the case is rerun,

together with the conclusions from the first pass. If a single value is proposed for any unassigned

attribute, the A–V pair is added to working memory. Inference is performed repeatedly with the

revised set of values until no more single values for remaining attributes can be found. Then the

user is asked to select a single value for each attribute that has received multiple possible values

and the inference cycle is repeated. The approach differs from typical propose and revise methods

in that rather than moving to a different part of the search space by modifying the values to an

unsatisfactory solution, the domain knowledge is revised through additional manual KA to

improve the local search (Compton et al., 1998). This work was an example of how the MCRDR

classification PSM can be extended to handle a configuration or parametric design task.

We consider this further in the section regarding the generality of RDR.

Drake and Beydoun (2000) have considered the incorporation of predicate logic into NRDR

using situation theory to model domain instances as situations. This step takes RDR beyond
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propositional logic and offers a means to handle the combinatorial explosion inherent in many

problem domains as identified in the use of RDR for the SISYPHUS I room allocation problem

(Richards & Compton, 1999). Again, more difficult maintenance and KA are the key issues that

arise in supporting this additional expressivity and the need to provide a good interface and

assistance to the user were seen as critical features in any system allowing predicates.

To tackle some of the NRDR maintenance issues, Beydoun et al. (2000) have modified the

standard SCRDR update and maintenance algorithms so that incremental KA is more order-

independent. Classical SCRDR typically produces KB with most rules attached to the false

branch. Two variations of the standard RDR algorithm are provided. The first seeks to make the

most of each case by allowing more than one rule to be acquired due to the same misclassification,

thereby allowing for faster convergence and less dependency on the order of cases. The second

algorithm allows restructuring of the tree with a single list of exceptions (only else-if branches),

which produces more compact SCRDR KBs. These extensions offer potential improvements over

standard SCRDR, but as the authors point out, the algorithms allow SCRDR to achieve some of

the benefits offered by MCRDR but with greater effort.

Nested RDR have been the basis of work in the area of channel routing and switchbox routing

in VLSI design (Bekmann & Hoffmann, 2004). An approach known as HeurEAKA has been

designed, to handle complex combinatorial problems by incrementally introducing domain

knowledge in order to make the search tractable. Unlike standard deterministic RDR, the NRDR

in HeurEAKA are probabilistic, incorporate genetic algorithms (GA) and an action can be a

reference to an NRDR leading to further actions. The goal is to support ‘probably approximately

correct’ problem-solving rather than optimal or classification-focused problem-solving. This is

achieved by first identifying parameters such as the appropriate fitness functions to constrain the

GAs search space. The HeurEAKA framework (Bekmann & Hoffmann, 2005) is a knowledge

management tool which includes advanced techniques such as the use of trigger functions, NRDR

usage profiles and weightings, mutation look-aheads, automatic case identification and the

mutation history of a genome to bias the search into more recent areas of exploration. When tested in

the domain of VLSI design, HeurEAKA was able to solve accepted benchmarks competitively and

more efficiently than conventional algorithms.

Typical of many ES approaches, the RDR engine has been embedded within larger systems

in a range of application domains. One example is the use of an RDR KA module within a

conversational agent (Mak et al., 2004). The component was introduced to allow the domain

knowledge of the agent to be customized. The Probot agent unusually does not perform any

language processing. Turn-taking is used to alternate conversation between the system and the

user and is achieved via pattern matching of the user’s input with scripts divided into topics. The

approach is particularly interesting because it combines the use of frames, which share many

features and benefits in common with objects, to structure knowledge together with the rule-based

approach of RDR.

Finlayson and Compton (2004) have explored the use of RDR for soccer simulation, which can

be seen as a cooperation and planning task, in a complex and interactive multiagent environment.

Seeking to build on the strengths of RDR in capturing knowledge directly from a domain expert,

the research provides a user interface to monitor and gradually refine strategies of soccer. The

framework seeks to build RDR soccer Agents (RDRAs). The knowledge contained in an RDRA

may be the conditions under which a particular action is taken, for example, the location and role

of the agent and the status of the ball may indicate that the ball should be passed to a particular

type of player. While the soccer expert watches the game simulation, the expert is able to stop play

to enter new knowledge. A similar approach has been proposed in Richards and Szilas (2006)

for the acquisition of knowledge for training simulations for risk situations such as customs

control. The preliminary results for soccer have been promising showing the approach to be worth

exploring further. The issues being grappled with include how to provide an appropriate set of

features and behaviours that are structured at the right level of abstraction and comprehensive

modelling of the domain.
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A number of RDR researchers, such as Kang and Compton (1994), have espoused the benefits

of RDR as a type of CBR system which addresses the key problems faced by CBR systems: how to

retrieve the appropriate case/s for a particular situation and then how to adapt the case to fit.

Hoffmann and Khan (2006) have taken an approach in line with the techniques used in the field of

CBR, namely the use of a distance metric such as a k-nearest neighbour algorithm to determine the

distance between two cases. Hoffmann and Khan (2006) use RDR to incrementally capture the

knowledge representing a complex distance function. In the approach, they begin with a ‘default’

distance function, which is refined when found to be inadequate. Exception rules are added to the

default rule to build up a KBS defining a set of distance functions for the set of cases in the system.

Fujiwara et al. (2002) also incorporate ideas from CBR, this time to assist with KA in RDR.

This work is based on the premise that KA in RDR involves two key tasks: (1) identify the correct

class label of a case and (2) select features in the case, which distinguish the two class labels. Task 2

is seen as the more difficult one. In this work they induce an approximate case base (Satoh &

Nakagawa, 2000) using a negative case (the current case incorrectly classified) and its nearest

neighbour positive case (the cornerstone case) to construct a lattice based on their differences. The

expert is asked to classify the cases in the lattice. Through gradual refinement, the boundary

distinguishing the positive and negative cases is defined. The work suggests and compares six

different algorithms for generating cases. Experiments showed that the case generation method

produces an RDR KB as good as one constructed which requires the expert to define the dis-

tinguishing conditions. The claim is by reducing all KA to class labelling (task 1), the cognitive

load of the expert is reduced (Fujiwara et al., 2002).

3.9 The generality of the RDR paradigm

As we can see, over its history RDR has been applied to a wide range of problem-types. RDR has

most widely been used for classification tasks but its ability to be used to control a flight simulator,

capture search knowledge for chess or to configure an ion chromatographer using basically the

same structure indicates that RDR constitute a family of PSMs that can be used to handle multiple

types of problems. In the 1990s there was a major focus by KA researchers on PSMs or generic

tasks. Domain knowledge was seen to be another issue that received less attention. In contrast, the

major focus of RDR has been on facilitating acquisition of domain knowledge, so that a domain

expert is able to add the bulk of the knowledge without formal knowledge engineering support or

skills. The key difference between RDR and other approaches seems to be that RDR research is

working towards an approach which supports the addition of domain knowledge specifically to

overcome the limitations of the problem solver (Compton et al., 1998). This raises the question (or

rather returns to one of the earliest questions for KBS) of whether PSM reuse may be better

achieved by facilitating KA with a few coarse-grained PSMs rather than developing libraries of

highly specific PSMs. It also leads to the further suggestion that modelling should be secondary to

KBS development rather than being a necessary precursor.

The use of a simple, ‘one size fits all’, generic KA approach is quite unusual and contrary to

much mainstream KBS research, where knowledge level modelling has been the driver for KA.

This notion of generalized RDR, while never given a name, has been specifically explored in

Compton and Richards (2000) and described in a provisional patent lodged in 1999. Generalized

RDR seeks to handle construction type problems, and thus classification problems which can be

seen to be a simple construction problem that can be solved in one inference cycle, where the

solution has a finite number of components and relationships between components without

the need for searching, backtracking or changing parts of the solution already developed. The

motivation behind this is that while experts do propose and revise, essentially backtracking

indicates an error and shortcoming of the expert, which we do not want to emulate. Through

repeated inferencing cycles the solution case is added to working memory until the correct solution

is established. These cycles allow the order of rule evaluation and activation to follow what would

have been the expert’s ‘ideal’ sequence of problem resolution. However, the benefit is that the
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expert was not required to come up with this specific order, but their role was to perform the more

manageable and concrete task of identifying the presence or absence of relevant features.

Compton et al. (2004) take the generalization of RDR further to consider how all KA could be

reduced to application of the relations of sequence and correction. Using these relations,

knowledge components, including other KBS or non-rule-based programs, can be added and

linked together. KA becomes a generic process using the basic concepts of inputs, outputs,

primary rules, an RDR agent and a control mechanism. The ideas have been applied to develop an

image processing system where decision trees created via ML have been linked in a refinement

structure (Kerr & Compton, 2003).

A body of work has considered more general issues such as simulating expertise and modelling

KA (e.g. Compton et al., 1995; Hoffmann et al., 2001; Compton et al., 2004; Cao & Compton,

2005; Vazey, 2006). Compton (2000) reports development of a simulator for SCRDR KBS, which

tests, when KBS are at their limits, using a number of parameters and measures including levels

of expertise, correction of errors and types of errors. The simulation technique developed by

Cao and Compton (2005) offers a way of evaluating KA which was tested with three variants of

RDR so that levels of expertise could be quantified and the effects of overgeneralization and

overspecialization errors modelled. Dazeley and Kang (2004) have sought to build KBS, which

predict the error that occurs with incomplete knowledge and results in the brittleness problem.

An augmented hybrid system known as Rated MCRDR (RM) passes as input the MCRDR

conclusions and justification (i.e., the rule conditions) into a resource-allocating radial basis

function (RBF) neural network that has been trained using a single-step-D-update-rule. Like

Edward’s (1996) earlier mentioned work involving exceptions, prudence and credentials, these

explorations seek to provide a framework for understanding and modelling the process of KA

itself which could be extended to other KA techniques beyond RDR. Most recently, the prudence

work has been extended (Prayote & Compton, 2006) to detect when a case is beyond the limits of

the current KB by using RDR to incrementally create homogenous partitions within the domain

in conjunction with simple statistical methods. Using minimal data, the statistical methods detect

anomalies within a partition to suggest the creation of a new RDR partition. The approach has

been applied to the detection of network intrusion.

4 Conclusion and final remarks

The various representations, implementations and extensions described in this paper indicate the

versatility of the RDR structure. The features common in general to each approach include:

> cases to provide context, assist in forming rules and for validation;
> an exception structure for knowledge representation;
> the use of some form of preprocessor of the raw data;
> incremental KA and maintenance performed primarily by the domain expert; and
> the development of a simple model in terms of A–V pairs and conclusions.

The differences tended to concern: how the knowledge was being presented and manipulated;

the systems and/or other techniques being combined with RDR; or the inferencing strategy.

Deviations varied according to the domain or problem type. Following best practice, most of the

RDR research reported outlines future work and directions. Again, according to the domain or

problem type these directions will differ. While some of the work seeks greater structure, for

example NRDR, some work seeks greater flexibility in changing previous knowledge, for example

CRDR. A common concern was greater expressivity. For example, Pham and Sammut (2005)

would like to expand the expressiveness of the RDR rules so that a library of background

knowledge can be called upon to select appropriate features together with a more expressive

language for representing conditions. However, it is well accepted within knowledge representa-

tion circles that increased expressivity leads to greater complexity. As we have seen when the

underlying philosophy of RDR, which mandates simple and incremental KA, is violated there is a
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cost to be borne usually in the areas of cognitive and time effort, verification, validation and

maintenance.

An experience report on the commercial use of RDR in one pathology laboratory conducted

over a 29-month period, involving over 16 000 rules, six million cases and 323 hours of KA

confirmed that RDR does offer a simple, practical and yet scalable approach (Compton et al.,

2006). Despite the large number and diverse range of RDR-related research projects being con-

ducted and the commercial success of RDR, the uptake of RDR technology is mostly limited to

research groups and companies within Australia. It is hoped that this article will allow greater

dissemination of knowledge regarding the breadth of RDR research since its conception nearly

two decades ago with a view to the possibilities ahead in decades to come.
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