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Introduction  
The difficulties in building expert systems led to a philosophical and cognitive science 
analysis of why it was so difficult obtaining knowledge from experts, largely from a 
situated cognition perspective (Winograd and Flores 1987; Clancey 1997).  Situated 
cognition offers a broad-ranging perspective, applying particularly to education, but the 
key idea in relation to expert systems, can probably be summarised as simply that experts 
never describe how they reach a conclusion, rather the knowledge they express is a 
justification for their conclusion created for the particular context.  In the late 80s and 
early 90s there was intense discussion about situated cognition at the knowledge 
acquisition workshops but this largely philosophical discussion soon faded.  As Menzies 
comments: 
 

It could also be argued that a philosophical perspective on human reasoning has 
little relevance for tool builders such as pragmatic knowledge engineers. (Menzies 
1998) 

 
The consequent history of the knowledge acquisition workshops and conferences has 
been largely and appropriately a history of trying to develop engineering approaches.  
The intention of this paper is to briefly consider some of the major strands of this 
research and the impact or lack of impact of a situated cognition perspective on this 
research. 

Situated Cognition 
I was involved in the development of one of the first medical expert systems to be in 
routine clinical use and had the task of maintaining it – and in four years the knowledge 
base doubled in size while the accuracy went from 96% to 99.7% (Compton, Horn et al. 
1989).  Encouraged by Mildred Shaw whom I met at the 1988 5th Generation Conference 
in Tokyo and Bill Clancey’s keynote on situated cognition at the Australian AI 
conference that year, I submitted a paper to the 1989 EKAW which was an attempt at a 
philosophical analysis of the difficulties of maintaining an expert system, and took a 
broadly situated cognition position (Compton and Jansen 1990).  For me the 1989 EKAW 
was largely a debate about situated cognition.  It was a delight and the debate continued 
at the 1989 Banff KAW and the next few KAW but then gradually died out.  In 1998 
there was a special issue of this journal on situated cognition and knowledge-based 
systems, but it was no longer an area of active interest for this community, although of 



 
 

significance elsewhere.  Clancey for example had moved to a study of activities and 
influences in the workplace as critical factors in designing human-computer systems 
(Clancey, Sachs et al. 1998).  
 
The 1991 paper by Sandberg and Wielinga summarises what was probably the general 
view (Sandberg and Wielinga 1991):  that the ideas of situated cognition are interesting, 
but the attack on the conventional paradigm of cognitive science and AI is overstated and 
there is no need to change the paradigm.  In particular they stated: 
 

An expert system that solves problems through behaviour similar to that of a 
human expert, can be viewed as a theory of the problem-solving behaviour of that 
expert.  However, good fit between model and data does not necessarily mean that 
all underlying machinery (representations, processes, hard - wetware) is identical. 

 
That is, the emphasis in situated cognition on the inability of experts to articulate their 
knowledge is misplaced, because the aim is not to capture knowledge, but to model 
problem-solving.  The resulting emphasis on modelling problem-solving rather than 
capturing the expert’s problem-solving knowledge, is probably partly a result of the 
situated cognition debate, but can there be another impact?   

Situated cognition as a positive statement 
The ideas of situated cognition have largely been presented as stating what people can’t 
do, but it is probably more useful to re-express this as what situated cognition has to say 
about what people can do.  Situated cognition suggests that people never explain the 
process of how they reach a conclusion; rather they create explanations to justify their 
decision in the particular context of the decision.  Clancey went as far as saying that there 
is no knowledge in the mind, knowledge only comes into existence in its expression in a 
context (Clancey 1997).  But situated cognition does not deny that people are able to 
make sound decisions and  do justify these decisions in context, so putting this more 
positively: 
 

1. Any rule or knowledge statement a person provides will apply to the current 
situation, but will be over-general, as it will not identify all the features that 
distinguish this context from all possible contexts.   

 
The second issue is the nature of the concepts people use when identifying features.   
 

2. A concept used in a rule or knowledge statement, will point to some feature in the 
data, but this feature may not have a well-defined meaning which applies outside 
the context. 

 
A radiologist might say a patient has asbestosis because the image of the lung shows a 
honeycomb pattern.  But there is no definition of a honeycomb pattern; it is the name the 
radiologist is using when pointing to part of an image.  If one asks for a definition it is 
very difficult to obtain a precise definition which applies to all contexts.  
 



 
 

Although stating what people cannot do or have difficulty with (according to situated 
cognition), these two statements are also positive statements as to what people are able to 
do.  The first statement implies that people do identify features that distinguish the case – 
although not in all possible contexts, while the second statement emphasizes that people 
do identify features in the data – although unable to give definitions of the features that 
are always applicable.  Combining these two statements of situated cognition as a 
positive statement of a minimum of what people can do, we come up with something 
like: 
 

If a person states that a different decision should be made in two different 
situations, then they can identify features in the data that do actually distinguish the 
two situations.   

 
Perhaps the person is wrong, and the same decision should be made for both situations, or 
perhaps both decisions are wrong, but if a person is rational and states that two different 
decisions should be made then they have identified some difference in the two situations.  
They may also misname or make up a name for the difference, but if they are rational 
they will only claim the situations should be treated differently if they believe they have 
identified some difference in the data.  This is essentially the Principle of Rationality: 
 
The remainder of this paper (briefly) considers some of the major themes in the 
knowledge acquisition workshops and conferences in relation to situated cognition, and 
in particular the idea that at a minimum people can identify features that differentiate 
cases they claim are different.   

Software Engineering and Modelling 
A central theme at the workshops through much of the 90s was the notion of modelling 
problem solving.  Rather than simply asking the expert for their knowledge, research 
focussed on identifying the types of problems that occurred and the different problem-
solving methods that could be applied to problems.  The ideas was that the knowledge 
engineer would come to a problem armed with a library of re-useable methods (whether 
fully specified and coded or not).  Chandrasekaran initially suggested identifying tasks 
independent of the domain knowledge (Chandrasekaran 1983) while Clancey suggested 
there were broad classes of problem solving methods such as heuristic classification 
(Clancey 1985).  A wide range of research emerged based on the idea that such 
knowledge level modelling would enable an engineer to approach building a knowledge-
based system in a much more systematic way.   
 
It is impossible to review all this work, so I will refer only to CommonKADS (Schreiber, 
Akkermans et al. 1999).  This provided a comprehensive and systematic approach to 
developing a knowledge-based system.  There is no doubt that the systematization that 
came through CommonKADS and other modelling work, has made a fundamental 
contribution to the understanding and overall software engineering of knowledge based 
systems.  (Schreiber, Akkermans et al. 1999) also includes a section on eliciting 
knowledge as the authors are well aware of the problems of eliciting knowledge from 
experts, but this section of their work essentially outlines previous techniques such as 
card sorting, laddering and repertory grids (discussed further below).  However, this does 



 
 

not remove the problem identified by situated cognition; as the CommonKADS authors 
note elsewhere: 
 

Although methodologies such as CommonKADS support the knowledge 
acquisition process in a number of ways (e.g. by providing modelling constructs 
and template models) experience shows that conceptual modelling remains a 
difficult and time-consuming activity (Speel, Schreiber et al. 2001).   

 
They note further: 
 

This is not to say that it is impossible in principle to make tacit knowledge 
explicit, but it is difficult and the standard knowledge engineering repertoire does 
not include techniques to support this (Speel, Schreiber et al. 2001). 

 
This is the problem identified by situated cognition: that experts do not provide 
knowledge that covers all possible contexts. I think it is probably fair to say that 
methodologies like CommonKADS provide enormous assistance in providing resources 
in framing and focussing the particular elicitation task, but the problems identified by 
situated cognition still remain. 
 
Although not specifically assessing the impact of methodologies like CommonKADS, it 
is interesting to note the 2008 survey of Zacharias (Zacharias 2008). 64 developers with 
an average of 6.6 years of experience answered most of the survey questions.  60% 
indicated their knowledge bases frequently gave the incorrect answer and 34% indicated 
that sometimes they gave incorrect results.  The biggest need was identified as 
debugging/verification tools.  Debugging here means adding and modifying knowledge to 
get the knowledge base to give the correct answers in all circumstances.  Although the 
survey asked about process, it did not specifically seek information about whether better 
processes such as CommonKADS were perceived as a need. 
	
In summary, the value of modelling and software engineering approaches is to ensure that 
one gets to the point of acquiring knowledge from experts in a reliable and systematic 
way – but the challenge of over generalised knowledge remains. 

Ontologies and the Semantic Web 
The idea of a library of problem-solving methods went hand in hand with a more 
systematic approach to knowledge representation independent of any particular domain, 
and this became a dominant theme at the workshops.  One concern has been the 
theoretical bases for ontologies and metadata and more generally for logically sound 
reasoning and representation and Gaines predicts advance here will be of major 
importance in the development of the semantic web (Gaines 2012).  Of more immediate 
concern here are practical tools such Protégé (Gennari, Musen et al. 2003) which has 
200,000 registered users according to its website. Although Protégé is a general 
framework and toolkit the emphasis in Protégé has moved to a primary focus on 
developing ontologies, now particularly for the semantic web.  They key question is again 
how such technologies relate to ideas of situated cognition.  It seems there is little 
relation, for example although Protégé provides a very powerful environment it does not 



 
 

itself address knowledge elicitation questions, with standard elicitation technology being 
provided by plug-ins e.g (Wang, Sure et al. 2006) as well as rule technology (O'Connor, 
Knublauch et al. 2005).   
 
It seems that since the central concern is to provide a principled approach to representing 
domain knowledge there is little direct concern with the issues raised by situated 
cognition – a different problem is being addressed.  However, the problems of situated 
cognition still seem likely to arise with respect to useability, merging and alignment of 
ontologies.  Ontology merging is a major research issue, but the challenge is not simply 
that different terminologies have emerged, but that people disagree even on ontology 
alignment (Tordai, van Ossenbruggen et al. 2011).  Tordai et al. also also comment: 
“Humans rarely have problems with disambiguating the meaning of words in a discourse 
context”.  To develop large ontologies requires collaborative work (Konstantinou, Spanos 
et al. 2010) and there has been a wide range of research on this topic, but it is unclear 
whether a consensus amongst ontology developers is sufficient to provide useability.  
UMLS the well-established unified medical language system has over one million 
concepts, five million synonyms and hundreds of terminologies.  As pointed out by 
Rosenbloom et al. the issue is not how complete UMLS might be, but how end-users can 
be supported in using it (Rosenbloom, Miller et al. 2006).   

Knowledge Creation and Elicitation 
There	are	a	range	of	long-standing	techniques	that	assist	in	eliciting	knowledge	but	I	
will	focus	here	on	techniques	based	on	Kelly’s	Personal	Construct	Psychology	(Kelly 
1955).  These ideas were introduced to the knowledge acquisition community by Shaw 
and Gaines (Gaines and Shaw 1980) and John Boose (Boose 1984).  The central 
technique in Personal Construct Psychology is to ask a person to select three objects in a 
domain of interest and then ask in which way two of these objects are alike and different 
from the third.  This is based on the same principle as situated cognition: if someone says 
two objects are different they must be able to identify different features.  Using the third 
object helps the user identify the more important differentiating features.  The most 
accessible modern version is at http://repgrid.com/.   
 
Although based on the same idea of distinguishing objects, experts construct knowledge 
with different terminologies and disagree with each other’s terminologies (Shaw and 
Woodward 1988).  They also note that these experts are well used to disagreeing with 
each other.  I suggest that people are able to share ideas while disagreeing about 
terminology because conversations are about specific problems and specific situations 
and terminology differences are clarified through discussion of the differences between 
different situations – and the more concrete the situations the more easily this can be 
done.  So despite the power and value of the PCP approach in assisting in the creation 
and articulation of knowledge – and its close relation to situated cognition, it does not of 
itself ground the constructs (axes of difference) in differences in actual data.  This is not a 
criticism, but simply an observation.   

Ripple-Down Rules (RDR) 
There has been a series of RDR papers presented at the knowledge acquisition workshops 
over the years, particularly at the Pacific Rim Knowledge Acquisition Workshops, 



 
 

covering a wide range of different research, but it does not qualify as a major theme, as 
the papers have been presented by a fairly small sub-community.  A review of much of 
this work can be found in (Richards 2009),  The reason for presenting RDR here is 
because of the way it relates to situated cognition. 
 
RDR was motivated by the problem that knowledge is only provided in context and 
proposed a refinement structure as way of limiting the context in which knowledge is 
then used (Compton and Jansen 1990).  It turned out that this refinement structure was 
useful in machine learning and a number of RDR learners were published including 
Gaines Induct (Gaines and Compton 1992), the basis of the well-known RIDOR program 
from Weka; however, for knowledge acquisition from humans it gradually became clear 
that the refinement structure was largely irrelevant and the real strength came from asking 
people to differentiate between cases.  The refinement structure was first supplemented 
with the idea of looking at case differences to assist in developing a rule but Kang’s 
thesis showed that using a flat rule structure the same or better results were achieved 
simply by selecting features to differentiate cases (Kang 1996).   
 
The essential idea was that an expert system would be put into use, with or without some 
initial rules, and its output monitored.  Whenever it gave incorrect advice or failed to give 
advice for some data, the expert would be asked to specify the correct piece(s) of advice 
the system should have given and identify the features in the data that justified this advice 
being given.  As the knowledge based developed cases were stored (generally the cases 
for which previous rules had been added) so if the features selected by the expert also 
occurred in these previous cases, they were presented to the expert to either decide that 
the new conclusion(s) should apply to the previous cases or to select further features from 
the present case to distinguish it from previous cases.  The resulting rule is then 
automatically located in the knowledge base, as specified by the particular RDR method 
used.  There are many assumptions here, for example that there is a language available 
that describes the features the expert wishes to identify, but at the core the method 
reduces to the task suggested by the situated cognition that a person should be able to 
select features to distinguish cases which they consider are different. 
 
Data on how well the method works comes from Pacific Knowledge Systems Pty. Ltd1. 
(PKS).  PKS logs the time its customers take from when they call up a case, which needs 
different conclusion until they have finished adding rule(s) that exclude previous stored 
cases.  The log data necessarily also includes time spent on interruptions.  Over many 
knowledge bases and many different domain experts the log data show it takes only a few 
minutes to add a rule (Compton, Peters et al. 2011).   For example the median time add a 
rule to knowledge bases of between 1,000 and 2,000 rules is less than three minutes.  For 
a single very large knowledge base in the data set, the median time to add a rule after 
10,000 rules was 10 minutes; however, the longer time is largely processing time, rather 
than expert time.  Regardless of the number of cases to be excluded, experts tend to 
produce a sufficiently precise rule to exclude all cases after no more than two or three 

                                                
1 I have a small shareholding in Pacific Knowledge Systems and provide it with some 
part-time consulting  



 
 

have been seen.  Figure 1 shows a detailed example of a single knowledge base.  This is a 
knowledge base of about 3,000 rules, which to date has been used to interpret over 7 
million patient results for general biochemistry tests and provides about 250 different 
pieces of advice (which may also be combined in reports).  About 10% of the rules define 
intermediate features (heuristic classification).  The data shown in Figure 1 is up until 
early 2011, but the knowledge base is still in routine use.  The individual points show the 
raw data for the time taken to add a rule and exclude past cases.  The line shows median 
time over the last 50 rules; the median is used because the data includes interruptions.  
The vertical lines separate the years over which the knowledge acquisition occurred and 
the hours show the total time spent each year on knowledge acquisition.   
 

 
Figure 1.  The time taken to add each rule and exclude conflicting cases 
 
Clearly rule addition (and excluding conflicting cases) is an extremely rapid task and it 
continues for a long time; i.e. cases keep emerging for which the existing rules are over-
general or missing, but the total time taken is extraordinarily small.  It is beyond the 
scope of this paper to consider questions such as repetition in the knowledge base, but 
references to a range of such can be found in (Richards 2009). It should also be noted that 
this knowledge base is in use and has been since 2004.  The point of presenting this data 
here is simply to highlight that the situated cognition task of asking people to identify the 
features that differentiate cases is extremely simple even in a rich and complex domain 
such as time-varying biochemistry results for a large number of analytes and including 
other clinical information that may be available in a laboratory information system. 
 
PKS is not the only company to have developed RDR technology.  Ivis uses RDR mainly 
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for translating product descriptions to standard ontologies for TESCO to facilitate selling 
on-line (Sarraf and Ellis 2006).  IBM uses RDR cleansing and augmenting data for big 
datasets (Dani, Faruquie et al. 2010; Nambiar, Faruquie et al. 2011) . 
 
Clearly one needs the scaffolding provided by methodologies like CommonKADs or 
Protégé if approaching a new and unknown problem.  In the domain of interpreting 
laboratory data PKS already has such scaffolding in place, so the problem reduces to the 
task of obtaining expert heuristics, where the situated cognition case-difference approach 
comes into play.        

Extracting knowledge from data 
I include here both machine learning and the wide range of research presented over the 
years on areas such as information extraction from text.  Such research avoids the 
problems of situated cognition and the disconnect between elicited knowledge and data 
by learning from data so that the resulting system can be applied to more examples of the 
same type of data.  Such systems are not a total panaceas as their development is always 
limited by the range and appropriateness of training data. 
 
Knowledge acquisition from people is normally only undertaken in domains of specialist 
expertise; however, in common sense tasks such as dealing with text, people are well able 
to identify features that differentiate different pieces of text e.g. named entities start with 
a capital, although such rules seem hopelessly over-general.  Dani et al showed that 
accumulating such over-general rules resulted in systems that outperformed machine 
learning (Dani, Faruquie et al. 2010) and it has also been shown that adding such rules 
can also improve the performance of general systems when applied to somewhat different 
domains (Kim and Compton 2012; Kim and Compton 2012).     

Conclusions and future possibilities 
Although situated cognition was a significant focus of discussion in the early years of the 
knowledge acquisition workshops, this interest largely faded as the focus moved 
primarily to comprehensive frameworks to deal with the problems of representation and 
reasoning and overall software engineering rather than actual acquisition. 
 
When situated cognition is re-expressed as a minimum capability of what people can do, 
it emphasises that they can and do differentiate concrete situations and identify the 
differentiating features.  Ripple-Down Rules suggests this can be made an extraordinarily 
rapid and simple task, so the question arises of where this might be of value in relation to 
other interests.  Clearly it could integrate with the various modelling approaches that have 
been developed, but there is still further research to be done on how knowledge is 
incrementally added to the knowledge base for the full range of problem types. 
 
Of more importance is how case differentiation might be used in the semantic web and in 
bridging the gap between the semantic web and Web 2.0;  Konstantinou et al. see a role 
for end-users “filling the gaps” (Konstantinou, Spanos et al. 2010). Given that it seems 
relatively easy to build case-differentiation systems for text (Dani, Faruquie et al. 2010; 
Kim and Compton 2012; Kim and Compton 2012), perhaps this could be used in 



 
 

providing and correcting semantic-web annotation.  The same simple approach is already 
used to standardise product descriptions (Sarraf and Ellis 2006).   
 
One initial application might be in developing text-processing resources, particularly for 
underresourced languages.  Crowd-sourcing has been shown to be useful in labelling text 
(Snow, O’Connor et al. 2008), but rather than applying machine learning to then develop 
automated text processing tools, could the crowd actually provide text-processing rules, 
by providing case-differentiation?  For example, if people tag the word “run” as a verb or 
a noun in different contexts, then they must also be able to identify differences in the 
contexts, e.g. the verb “run” is preceeded by a noun or preposition.  Such a rule seems far 
too simple and context-specific – but it provides a lot more information than simple 
context-specific tagging of “run” as a verb.  Could large numbers of such rules (and 
mechanisms to arbitrate between them) provide crowd-sourced knowledge bases for text-
processing, particularly for underresourced languages?  Could the same approach be used 
to learn to automatically annotate web pages for the semantic web? 
 
One obvious challenge in achieving this is to develop the mechanisms to arbitrate 
between rules provided by many individuals, but perhaps the more challenging task is to 
provide languages that support people’s unerring ability to identify features that 
distinguish different situations, but are rich enough for the semantic web.  
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