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Abstract. A key insight in artificial intelligence, which has been the foundation 
of expert systems and now business-rule systems, is that reasoning or inference 
can be separated from the domain knowledge being reasoned about.  We sug-
gest that the knowledge acquisition and maintenance problems that arise, might 
result from too great a separation of knowledge and inference.  We propose 
Linked Production Rules, where each rule evaluated directs the next step of in-
ference and the inference engine has no meta-heuristics or conflict resolution 
strategy.  We suggest that this loses none of the power of conventional infer-
ence but may greatly improve knowledge acquisition and maintenance since 
various Ripple-Down Rule knowledge acquisition methods, which have had 
some success in facilitating knowledge maintenance can be described as specif-
ic instances of Linked Production Rules.  Finally the Linked Production Rule 
approach suggests the possibility of a generalized Ripple-Down Rule method 
applicable to a wide range of problem types. 
Keywords: inference engine, declarative knowledge, conflict-resolution, prob-
lem-solving methods, Ripple-Down Rules. 

1 Introduction 

A crucial insight in the history of artificial intelligence was that domain knowledge 
should not be embedded in procedural code, but that knowledge and reasoning can be 
separated.  This insight resulted in the classic idea of a rule-based expert system, 
composed of a knowledge base, working memory and an inference engine.  However, 
the inference engine itself contains knowledge embedded in procedural code: not only 
different reasoning strategies, but ad hoc conflict resolution strategies.   

While there has been some research on specifying the knowledge used in control-
ling inference e.g. [1], it is probably fair to say that most business-rule systems, the 
latest incarnation of the expert system idea use the same sort of inference engine and 
conflict resolution strategies developed over 30 years ago for expert systems.  The 
aim of this paper is to revisit the way in which domain knowledge and inference have 
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been separated in expert systems, and now business rule systems, and question 
whether this is the best approach to building these systems.  The discussion here is 
restricted to forward-chaining propositional production rule systems, as these are the 
dominant form of rule-based technology. 

Typically [2] a production rule is described as having two components a condition 
part and an action list  

 
if [condition] then [action-list] 
 

This rule representation does not contain any information about which rule should 
be evaluated next as this is determined by the inference engine.  In practice there may 
be other information specified with the rule such as salience but this only gives the 
rule a priority to be used in determining whether a rule should be evaluated.  In con-
trast we propose an approach where each rule contains information that determines 
which rule will be evaluated next rather than this being determined by the inference 
engine using its conflict resolution heuristics.   

In our proposal for Linked Production Rules, there are three types of component: 
[condition], [case action-list] and [inference action].  Inference actions do not change 
the case (working memory), but specify which rule is to be evaluated next and only a 
single rule can be specified.  Case actions change the case in the conventional way.  
We use the term case rather than working memory to emphasise that rule-based sys-
tems process and add further facts to cases where a case is a group of data from the 
world (e.g. a partial patient record).  The rule-based system reasons about the case and 
if possible adds to the case (e.g. a diagnosis or patient management plan).  

In the Linked Production Rule approach inference actions are specified for every 
rule both for when the rule is satisfied and when it is evaluated but fails.  This gives 
the following structure: 

       if [condition] then [case action-list],  
                           [inference action] 

else [inference action] 

In this representation there is a single specific inference action for whether the rule 
fires or fails to fire.   

The paper contains:  a review of the problems with rule-based systems; a discus-
sion of the simplicity of knowledge acquisition with Ripple-Down Rules and how this 
arises because they are instances of Linked Production Rules and finally an outline of 
how Linked Production Rules can be used for rule-based systems in general. 

2 Issues with rule-based systems 

After the initial euphoria over the possibilities with expert systems, it became clear 
that they were harder to build and maintain than hoped.  XCON, one of the most suc-
cessful early expert systems, was very expensive to maintain.  It took over a year of 



training before DEC engineers could maintain XCON, then a system with 1,000 rules, 
and its maintenance demands meant they were unable to also maintain other expert 
systems introduced from CMU to DEC [3].  XCON eventually had 6,500 rules with 
50% changed every year – a major maintenance challenge [4].  

It has been argued that the situated nature of knowledge is the underlying problem 
in knowledge acquisition (e.g. [5]).  Clancey in particular argued that knowledge is 
not something in the head to be mined – a common metaphor – but is constructed in 
particular contexts.  From experience maintaining an early medical expert system, it 
was argued that human expertise does not provide reasons why conclusion X is cor-
rect in any absolute sense, but why it is a better hypothesis than other conclusions in 
the context [6].  This parallels the qualification problem [7]: that it is impossible to 
enumerate every factor that might alter the outcome of an action.  

Situated cognition explained why experts cannot readily justify conclusions out of 
context, but we suggest that the separation of knowledge and inference in rule-based 
systems has compounded the difficulties of acquiring, and particularly maintaining, 
knowledge. As suggested by the qualification problem, and as observed (e.g [8]), 
there always seem to be errors and omissions that need fixing; however, one does not 
readily know how changes in knowledge will interact with the inference engine and 
its conflict resolution strategies acting on top of domain knowledge and exerting pro-
cedural control over how the domain knowledge is used.  “Changing a knowledge 
base of an expert system built with typical current technology requires a knowledge 
engineer who understands the design of the system and the structure of the knowledge 
base thoroughly; most often, this means only the original author of the system”[9].  In 
a study of expert systems for industrial applications, in which less that half the appar-
ently successful systems were actually functioning, Bachmann et al noted: “Parts of 
the problem solving strategy applied by experts in the field of configuration or machinery 
diagnosis are not represented in the knowledge base of the system but in its inference 
engine. This is totally ignored if highly specified ready-made shells are used”. [10] 

Various researchers have identified that expert systems addressed different kinds of 
tasks e.g. [11,12]. This led to comprehensive software engineering approaches where 
the nature of the problem, and hence the appropriate problem-solving method, were 
identified prior to acquiring specific domain knowledge (e.g. [13]).  One would ex-
pect such methods, as with any systematic software engineering, to increase the like-
lihood that a successful system will result; however, it is unclear whether this reduces 
the maintenance problems due to the separation of knowledge and inference, or 
whether these remain because the knowledge embedded in the inference engine is not 
under the control of the domain expert.  In a recent survey of developers of rule-based 
systems, using a range of tools and methods, the major problem identified was 
knowledge debugging i.e. dealing with the difficulties in making changes to a 
knowledge base [14].  It seems clear that these debugging problems are precisely 
because the developer often does not know how a change in the knowledge base will 
be handled by the inference engine without trial and error. 

Our focus here is on rule-based systems because of their re-emergence as business 
rule systems.  A central assumption behind business rule systems is again that de-



clarative knowledge in the form of rules is much more maintainable than procedural 
code in data base triggers [15] – the expert system insight revisited.  A web search 
suggests that these systems are largely based on inference techniques deriving from 
work on RETE networks [16] and the conflict resolution strategies used in early ex-
pert systems.  There is also interest in sequential inferencing for business rules, but 
aimed at improving performance for a given rule set rather than improving knowledge 
maintenance e.g. [17].  The general idea of a strict inference sequence is part of the 
OMG standard [2]; what we propose here is a particular way structuring the sequence. 

One conflict resolution strategy, salience, relates to our proposal.  Salience and the 
more formally defined Courteous Logic [1] allow the expert or knowledge engineer to 
specify the relative priority between pairs of rules.  Such approaches are of increasing 
importance and Courteous Logic is part of RuleML [18]. These techniques are an 
option the expert or knowledge engineer may apply to some rules, to help resolve 
between which rule to fire if both are candidates.  In contrast, the Linked Production 
Rule approach requires that the next rule to be evaluated is explicitly specified by the 
current rule being evaluated.  Possibly this full specification of inference paths could 
be implemented with Courteous Logic, or other forms of labeled logic, but the starting 
point of these approaches is to determine between candidate rules which should be 
evaluated next, whereas with Linked Production Rules, each rule that is evaluated 
(whether true or false) specifies the next rule to be evaluated. 

3 Ripple-Down Rules (RDR) 

In this section we briefly outline some of the successes of Ripple-Down Rules (RDR).  
Since, as will be shown, RDR are an example of Linked Production Rules, the utility 
of RDR demonstrates or at least suggests the utility of Linked Production Rules.  The 
two most common forms of RDR, single and multiple classification, will be presented 
as Linked Production Rule systems below. 

3.1 RDR introduction 

RDR were developed in response to the maintenance problems of expert systems [19].  
The essential feature of RDR is that rules are added to deal with specific cases (gener-
ally while the system is already in operational use).  That is, a case has been pro-
cessed by the system with a specific inference sequence and has failed to give the 
correct output.  New rules to give the correct output for the case are added into the 
inference sequence. This rule placement is automatic and outside the control of the 
expert (or knowledge engineer).  Since there is no knowledge structuring by the ex-
pert or knowledge engineer and no requirement to understand the knowledge base as a 
whole, rules can be added by domain experts. Greater detail of these algorithms will 
be shown using the linked rule representation below.  

The strict inference sequencing in RDR enables a second type of knowledge acqui-
sition support.  An expert may add a rule for the case that is overly specific, but they 



can only introduce an error affecting the previous knowledge base by adding a rule 
that is too general, so that cases previously processed by the same sequence may now 
incorrectly fire the new rule.  Such cases can be shown to the expert who either makes 
their rule more specific to exclude the cases, or accepts that the rule should apply to 
these cases.  Suitable cases can be provided by saving the cases for which rules are 
added, known as ‘cornerstone cases’.   

3.2 RDR experience 

The first RDR system in routine use, using SCRDR inference (see below), was a 2000 
rule system for chemical pathology [20].  Later pathology systems in routine use were 
based on MCRDR (see below).   In a study of these systems, chemical pathologists 
from one laboratory added about 16,000 rules across 20 knowledge bases over a 29 
month period, at an median speed of 77 secs per rule [21]. Since rules are only added 
for cases, 77 secs is the time to call up a case, add a rule and test the rule against other 
cases.  The case has already been identified as requiring a new conclusion – a stand-
ard pathologist task.  The median time of 77 secs covers the purely knowledge engi-
neering task of selecting and verifying conditions for the rule, or rules against past 
cases.  In a more recent larger study the median time to add a rule across 17 laborato-
ries, 256 knowledge bases and about 56,000 rules was 78 secs [22].  About 46% of 
the rules were added after the systems had been in use for more than a year and the 
median time to add these rules was 91 secs.  This on-going and very rapid rule acqui-
sition strongly suggest that experts found it still easy to add rules more than a year 
after the system had been introduced. This contrasts with the comments that the whole 
knowledge base needs to be understood [9].  There is no directly comparable data on 
the time to add rules to a conventional knowledge base, but Zacharias’ study implies 
the average time to add a rule is more like half an hour to five hours [14]. 

RDR are used commercially in other areas apart from medicine.  For example Ivis 
[23] and Erudine [24] use technology based on RDR for marketing and software en-
gineering respectively, while IBM offers data a cleansing product based on RDR [25].  
The point of these references is to demonstrate that RDR, which we will now describe 
in terms of Linked Production Rules, is a commercially successful approach to build-
ing rule-based systems, and which as the results from pathology demonstrate, allows 
very rapid and simple rule addition throughout the life of the system.   

3.3 RDR as Linked Production Rules 

SCRDR inference.  Table 1 shows an example of a single classification RDR 
(SCRDR) knowledge base as linked rules.  The same SCRDR knowledge base is 
shown in Fig 1 using a more conventional RDR tree representation.  SCRDR was the 
first RDR system proposed [19] and used in the first RDR pathology system[20].  An 
SCRDR knowledge base is a binary tree, but in practice such trees are very unbal-
anced since rules tend to be added as new rules or new corrections to a rule rather 
than deeper and deeper corrections. 



 
Rule no Case actions Inf. action (true) Inf. action (false) 
1  assert conc 1 exit to rule 2 
2 assert conc 2  to rule 3 to rule 4 
3 retract conc 2 assert 3 exit to rule 6 
4 assert conc 4 to rule 5 exit 
5 retract conc 4 assert 5 exit to rule 7 
6 retract conc 2 assert 6 exit exit 
7 retract conc 4 assert 7 exit exit 

Table 1: an SCRDR knowledge base as Linked Production Rules.  Inf. action is an abbrevia-
tion for inference action.  The rule numbers indicate the order in which rules were added.  In-
ference starts with rule 1 and terminates when an exit is reached.  For illustration, the conclu-
sions are identified by the number of the rule which asserts them.  In practice some of the con-
clusions may be identical as different inference paths may give the same conclusion. 

 
Figure 1: the same knowledge base as Table 1, but shown as a binary tree.  The rule num-

bers are in circles.  If a rule fires the right hand link is traversed, if it fails to fire the left hand 
link is traversed. The rule numbers indicate the order in which rules were added 

 
Table 2 shows examples of extra rules being added to the knowledge base in Table 

1.  Rule 8 is added for a case where no conclusion was given.  The false branch of 
rule 4, the former exit point for the case, links to rule 8.  Rule 9 is added because rule 
6 has given the wrong conclusion and so the rule 6 inference action for true, links to 
rule 9.  Rule 10 is added since rule 4 gave the wrong conclusion, and no correction 
rule fired (i.e rules 5 & 7).  The false branch inference action for rule 7, links to rule 
10 giving the same sequence of 4 true, 5 & 7 false whenever 10 is evaluated. 

 
4 assert conc 4 to rule 5 to rule 8 
6 retract conc 2 assert 6 to rule 9 exit 
7 retract conc 4 assert 7 exit to rule 10 
8 assert conc 8 exit exit 
9 retract conc 6 assert 9 exit exit 
10 retract conc 4 assert 10 exit exit 

 Table 2: the three rules that have been added to Table 1 are shown, as well as the three rules 
whose inference action was changed to link to the new rules.  New rules are in italics and 
changed actions are bold. 

 



These changes to inference actions are not under the control of the expert, but au-
tomatically determined by the inference sequence for the case for which a rule is be-
ing added.  The case action for a rule is not changed; only the inference action. 

MCRDR Inference.  Multiple classification RDR (MCRDR) was introduced to al-
low multiple conclusions for a case, e.g multiple diagnoses [26] and is widely used in 
pathology [22].  MCRDR has an n-ary tree structure; i.e. at the top level all rules are 
evaluated and if a rule fires all its correction rules are evaluated and so on; however, 
since rules are always evaluated one-by-one, the order can be made explicit. MCRDR 
papers do not specify the order of sibling rule evaluation but of course a specific order 
was implemented by the person programming the MCRDR system.  Since the whole 
sequence must be specified with Linked Production Rules, we specify that older sib-
lings should be evaluated before newer - which we believe has been the common 
actual practice.  The difference here is that the sequence is specified in the knowledge 
base, rather than being part of the inference engine implementation.  

  
Rule no Case actions Inf. action (true) Inf. action (false) 
1  assert conc 1 to rule 2 to rule 2 
2 assert conc 2  to rule 3 to rule 4 
3 retract conc 2 assert 3 to rule 4 to rule 6 
4 assert conc 4 to rule 5 exit 
5 retract conc 4 assert 5 to rule 7 to rule 7 
6 retract conc 2 assert 6 to rule 4 to rule 4 
7 retract conc 4 assert 7 exit exit 

Table 3: an MCRDR knowledge base as Linked Production Rules; same formatting as Table 1.   
 
4 assert conc 4 to rule 5 to rule 8 
7 retract conc 4 assert 7 to rule 8 to rule 8 
8 assert conc 8 exit exit 

Table 4a: addition of rule 8 giving an extra conclusion 
 
4 assert conc 4 to rule 5 to rule 8 
6 retract conc 2 assert 6 to rule 9 to rule 9 
7 retract conc 4 assert 7 to rule 8 to rule 8 
8 assert conc 8 exit exit 
9 retract conc 6 assert 9 to rule 4 to rule 4 

Table 4b: addition of rule 8 and then rule 9.  Rule 9 is a correction to rule 6 
 

4 assert conc 4 to rule 5 to rule 8 
6 retract conc 2 assert 6 to rule 9 to rule 9 
7 retract conc 4 assert 7 to rule 10 to rule 10 
8 assert conc 8 exit exit 
9 retract conc 6 assert 9 to rule 4 to rule 4 
10 retract conc 4 assert 10 to rule 8 to rule 8 

Table 4c: addition of rules 8, 9 and 10.  Rule 10 is a further correction to rule 4. 



Table 3 shows an MCRDR knowledge base as Linked Production Rules with a 
parent before child and older child before new child sequence.  The difference from 
the SCRDR KB in table 1 is that inference passes to a sibling rule rather than exiting 
after a conclusion is decided, resulting in potentially many conclusions.  Tables 4a-c 
show how further MCRDR corrections are made; they are shown cumulatively, with 
one extra rule being added in each table. 

The SCRDR and MCRDR Linked Production Rule representations in Tables 1 and 
3 provide a complete description of SCRDR and MCRDR inference and how new 
rules are added.  Because with RDR the rules are at least implicitly linked, RDR 
knowledge acquisition results in a new rule or rules being automatically linked into 
the inference sequence, as shown in the examples above.  This allows for very simple 
rule addition, with the rule then being checked using the case differentiation support 
normally provided by RDR.  That is, if any previous case can fire the new rule, then 
the expert needs to select further features from the current case to be added to the rule 
to distinguish the cases, or alternatively the expert may decide the conclusion from 
the new rule should apply to the previous case.  The normal practice with RDR is to 
store and check the cases which have prompted the addition of a rule, so-called cor-
nerstone cases.  For SCRDR only the case for the parent rule needs to be considered, 
while for MCRDR the case for the parent rule, and the cases from sibling rules to the 
new rule need to be considered.  A rule added at the top level of an MCRDR tree 
requires that all cases be checked, but in practice the expert only considers 2 or 3 
cases before the rule is sufficiently precise to exclude all previous cases. 

It is beyond the scope of this paper to consider other RDR methods and the range 
of RDR research (reviewed by [27]), but all RDR methods implicitly have a fixed 
inference path and a fixed way of adding new or correction rules into the inference 
path, and also check new rules against some sort of selection of past cases. 

4 Production rule systems in general 

Colomb and Chung have proved that any propositional production rule expert system 
is equivalent to and can be converted into a decision table [28].  Although this con-
version is a simple in theory, it can produce unmanageably large decision tables.  
Colomb’s solution, inter alia, is to use a set of cases known to be processed by the 
expert system to remove unused rows [29].  If as we suggest here the system is built 
as a decision table, with rows (rules) added only to deal with specific cases, the explo-
sion in the number of rows will not arise. 

Since the order of inference for the rows (rules) in a decision table is not defined, 
there is no loss of generality in specifying a particular order, e.g. from the first to the 
latest row or rule added.  If a new rule is required for a case it is added at the end.  
Table 5 shows an example where rule 3 has given the wrong conclusion.  It is retract-
ed by rule 3.1 and a rule with the same body, but giving the new conclusion, is added 
at the bottom.  The expert simply provides the rule to give the new conclusion, and 



this is used for both.  As with RDR, (cornerstone) cases are used to check if cases 
from earlier rules fire rule 6, and the rule is made more specific if necessary. 

Although the structure in Table 5 is one of many possible, it has a particular fea-
ture, that if an expert adds a rule to retract a conclusion this is automatically linked to 
the rule whose conclusion is to be retracted.  I.e. rules that retract conclusions are not 
added as standard rules as normally allowed, but always linked to the rule being cor-
rected.  Such rules are composite rules [30] and have also been described as censored 
production rules for use in data mining [31].  The difference between this approach 
and the RDR systems described above is that rules now only have one level of correc-
tion, and these corrections do not provide a conclusion to replace a previous conclu-
sion, but simply stop the conclusion being given, with a new rule used to add the new 
conclusion.  In fact in the first experiments with MCRDR using simulated experts, 
this particular structure was used with the correction rules called stopping rule [32]. 

  
Rule no Case actions Inf. action (true) Inf. action (false) 
1  assert conc 1 to rule 2 to rule 2 
2 assert conc 2  to rule 3 to rule 3 
3 assert conc 3 to rule 3.1 to rule 4 
3.1(6) retract conc 3 to rule 4 to rule 4 
4 assert conc 4 to rule 5 to rule 4 
5 assert conc 5 to rule 6 to rule 6 
6 assert conc 6 exit exit 

Table 5: a decision table where rule 3 gives the wrong conclusion and should be replaced by 
the rule 6 conclusion. 
 

The inference considered so far has been simple one-pass inference.  Intermediate 
conclusions, to reduce the amount of knowledge required, are widely used in expert 
systems [12].  The use of intermediates generally requires that inference is repeated 
over the whole knowledge base, which of course results in rules that use the raw data 
to provide some intermediate conclusion, being evaluated before rules that need these 
intermediate conclusions to reach further conclusions – perhaps further intermediate 
conclusions.  Since all rules are repeatedly considered for evaluation, a RETE net-
work is often used to improve efficiency [16], with inference finally stopping when 
no further conclusions are made.   

 
Rule no Case actions Inf. action (true) Inf. action (false) 
1  assert conc 1 to rule 1 to rule 2 
2 assert conc 2  to rule 1 to rule 3 
3 assert conc 3 to rule 1 to rule 4 
4 assert conc 4 to rule 1 to rule 5 
5 assert conc 5 to rule 1 exit 

Table 6: a flat rule structure with repeat inference 
 



We use the following to provide structure inference:  knowledge acquisition or 
maintenance takes place because a case is identified as needing a new or corrected 
conclusion.  This happens only after inference on the case is complete; i.e. all infer-
ence cycles have been completed.  If a new rule is added at the bottom, like rule 6 in 
Table 5, this should be processed after the previous repeat inference for the case is 
complete so rule 6 is reached after the same inference sequence giving the same 
wrong conclusion.  If this applies to all rules as they are added we end up with the 
structure shown in Table 6, where after each rule satisfied, inference returns to the 
first rule.  Table 7: shows an example of where a correction rule is added for a repeat 
inference.  Two correction rules are added to illustrate the links. 

 
Rule no Case actions Inf. action (true) Inf. action (false) 
1  assert conc 1 to rule 1 to rule 2 
2 assert conc 2  to rule 1 to rule 3 
3 assert conc 3 to rule 3.1 to rule 4 
3.1(6) retract conc 3 to rule 4 to rule 3.2 
3.2(7) retract conc 3 to rule 4 to rule 1 
4 assert conc 4 to rule 1 to rule 5 
5 assert conc 5 to rule 1 to rule 6 
6 assert conc 6 to rule 1 to rule 7 
7 assert conc 7 to rule 1 exit 

Table 7: a flat rule structure with repeat inference with two correction rules to retract the con-
clusion of rule 3, when the conclusions of rule 6 or 7 should be given instead. 
 

To stop endless repeat inference the inference engine does not re-evaluate any rule 
that has already been satisfied (even if its conclusion has been retracted by one of its 
refinements).  When inference is directed to such a rule the inference action of the 
false branch is followed.  For problems such as configuration, where a solution has 
multiple components, with dependencies between them, but only one value for each 
component, we further constrain inference.  If a component is already part of the case 
(from the original data or added by a previous rule) any further rule assigning a value 
for that component is missed (i.e. its false branch is followed).  If components in the 
solution need to be added to or changed, they are fixed in the order in which they are 
inferred.  That is, the first component is fixed and the case is rerun and the next error 
fixed – perhaps newly introduced by the first correction, and the case is rerun again 
and so on.  Because of the way the rules are linked, no earlier conclusion for a case 
can be altered by a later change, so this approach guarantees that the maximum num-
ber of changes to fix a case (i.e. the number of rules added) is no more than the num-
ber of components that make up the overall conclusion for the case.  Each fix, or addi-
tion to the inference sequence, should take the same minimal time as with RDR. 

It is beyond the scope of this paper to provide detailed examples of Linked Produc-
tion Rules for other problem types; however, the approach outlined is essentially a 
problem solving method that builds a solution for a case one component at a time, 
regardless of whether it is a classification or a construction problem.  Errors in partic-



ular components are corrected by knowledge acquisition rather than by reasoning as 
in problem solving methods such as Propose and Revise.   

A final question is computational efficiency because inference is repeated each 
time a conclusion is reached.  Considered very simplistically: if there are n compo-
nents to a solution and these are inferred randomly through the m rules, on average m 
x n/2 rules will need to be evaluated, with m x n as the worst case.  If we consider a 
conventional system in the same simplistic way, all rules are evaluated on each pass 
for the conflict resolution to determine which satisfied rule will be acted on.  The 
means at least m x n rules will be evaluated.  Of course a RETE network or other 
techniques can be used to speed the process – but such techniques, which essentially 
maintain an index of rules that have fired and rules that could fire, should be able to 
be applied to Linked Production Rules, suggesting a general Linked Production Rule 
system should be at least as efficient as a conventional system. 

4.1 Ontologies and Linked Production Rules 

A key aspect of the system described is that inference can only change a case by 
adding some fact or conclusion to it.  Inference cannot retract a fact or conclusion that 
has already been reached, not can it change data provided initially.  Putting this gen-
erally: whatever the status of the case (or working memory), when a rule fires it only 
adds to the case, it does not change or retract what is already part of this case whether 
a rule conclusion or part of the data supplied to the system.  If an incorrect conclusion 
is made this is fixed by having an exception rule, which prevents that conclusion be-
ing added to the case in the first place.  If the original data includes an error, again the 
system does not change this, although of course it may output a conclusion that the 
data should be re-checked.  That is, it is not the responsibility of a rule to correct a 
prior error, whether made by a rule or in the original data; the source of the error 
should be corrected so that the error is not made in the first place, and this can be 
easily done through on-going rule addition as with Ripple Down Rules. 

We have described initially a system where a conclusion is a simple Boolean, so 
that once a conclusion is asserted it can’t be retracted, but then for configuration we 
have assumed a number of parameters each of which can take a single value, so that 
once a value for a particular parameter has been assigned no other rule can assign a 
different value for that parameter.  If one were to assume a taxonomy was specified, 
then once a diagnostic conclusion was reached about a type of leaf disease, for exam-
ple, another rule should not make a conclusion about a type of liver disease, because 
leaf disease implies the data is about a plant, while liver disease implies that data is 
about an animal.  This is a far fetched example but we can use it to generalize the 
constraint that a case can only be added to, not changed:  I.e. a conclusion cannot be 
asserted which has ontological implications that conflict with the ontological implica-
tions of a conclusion that has already been asserted or of the original data.  This re-
lates to term-subsumption systems such as KL-ONE [33], some of which include 
Ripple-Down Rules [34].  In such systems one can reason both by inheritance and by 
rules, whereas here we propose that the ontology simply provides constraints to en-
sure that rules can only add to a case not change it.  Although the broad principle of 
not allowing rules to fire which would alter the case, either explicitly or implicitly via 



an ontology, seems reasonable, we have not explored how this would work with more 
complex ontologies.   

5 Discussion 

The Linked Production Rule system proposed for production rules in general, is not 
necessarily the only general linked rule system possible.  Our aim has been simply to 
demonstrate that such a system is possible.  Since the rule acquisition task of adding a 
rule into a sequence is essentially the same as for RDR, each change should take no 
more than a minute or two.  This contrasts greatly with comments about expert sys-
tems in general  [9]. 

Conversely there seems to be no advantage in the various conventional conflict 
resolution strategies over Linked Production Rules.  Linked Production Rules with a 
strict rule ordering, replace position-in-text rule ordering and salience etc.  In particu-
lar salience, or the more recent Courteous Logic, is an ad hoc ordering or prioritising 
imposed by the knowledge engineer for some rules.  Linked Production Rules impose 
a total ordering, but determined by the order in which rules are added and corrected.  
In particular Linked Production Rules replaces the conflict resolution strategy of se-
lecting the more specific rule.  The exception rules used in Linked Production Rules 
(e.g. 3.1 & 3.2 in Table 7) require the parent rule also to be satisfied, but once the 
conclusion is retracted, replacement rules such as 6 & 7 do not need to be more spe-
cific.  Strategies such as recency ordering and data ordering are also embedded in the 
linked rule approach – or rather they are explicit, rather than some arbitrary function 
of the inference engine.   

Our approach has similarities with work on verification e.g [35,36] and refinement 
knowledge acquisition techniques [37], as these techniques are based on identifying 
inference paths; however, this is done after the knowledge is assembled, whereas we 
propose to build all rules with a linked structure from the outset.  

The early assumptions with expert systems were that you simply added knowledge 
and built a system.  Of course it turned out to be much more difficult than this, and 
one of the major insights was that in fact there were many different problem types 
[38] which needed to be thought about in different ways and for which different prob-
lem solving methods were appropriate.  This sort of analysis started with Clancey’s 
recognition that many expert systems used a method that he called heuristic-
classification [12] and led on to careful descriptions of families of problem-solving 
methods [39] and methods for managing the overall process of building a knowledge-
based system, including selecting the problem-solving method [13].  If with Linked 
Production Rules, the domain expert can build up a set of rules case by case, to pro-
vide the solution for the case and the process of adding and correcting rules (by add-
ing retraction or correction rules) itself determines the inference path through the 
knowledge base, what is the problem-solving method?   

One of course might say that linked-production rules are a problem-solving meth-
od, particularly when including heuristics such as: 

 



• Errors are corrected by adding exception to clauses to rules, preventing the error. 
• Intermediate conclusions can be used as in heuristic classification 
• Inference returns to the first rule after each conclusion is asserted 
• Once a particular conclusion is added it cannot be deleted or its value changed 
• New conclusions cannot be added which conflict with the ontological implica-

tions of previous conclusions. 
 

However, these heuristics are not really about reasoning or inference, but about 
managing knowledge acquisition, and reflecting the knowledge acquisition that has 
occurred.  Returning inference to the first rule after a conclusion is asserted ensures 
that inference follows the same path for any case for which the expert has added rules.  
Not allowing conclusions to be changed by inference is a way of forcing changes to 
be made by the domain expert adding specific knowledge. 

Traditionally problem-solving methods have been ways of inferring over some 
knowledge.  In contrast Linked Production Rules as a problem-solving method, are a 
way of managing knowledge acquisition, so that the sequence of knowledge acquisi-
tion provides the sequence of inference.  Although this may make it easier to add 
knowledge to a knowledge-based system, one must remember that many of the diffi-
culties identified by methods like CommonKADS remain:  

 

• One must develop a clear understanding of the problem to be addressed,  
• and develop an appropriate representation and terminology for the domain,  
• and issues of interfacing to other information system as well as appropriate 

user interfaces are critical if a system is to have any chance of success. 

6 Conclusion 

We have proposed Linked Production Rules as a replacement for general production 
rule systems and their conflict resolution strategies.  Nothing seems to be lost in this 
approach, but knowledge acquisition and maintenance should be greatly facilitated.  
Although the approach closely links domain knowledge and inference, the expert is 
only required to provide domain knowledge; the inference actions providing the links 
are added automatically.  The expert or knowledge engineer can completely ignore 
this structure, rather than trying to control the hidden decisions of inference heuristics. 
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