
A Companion to Data Organization

COMP2011

Aleksandar Ignjatovic

2005c©

2

Figure 1: A medieval copy of arguably the most influential textbook ever written, Eu-
clid’s Elements(Στoιχεία), from about 300 BC. It contains the oldest known algo-
rithm recorded, Euclid’s algorithm for computing the Greatest Common Divisor (GCD)
of two natural numbers.

Figure 2: First data structures: a Mesopotamian cuneiform tablet from about 3000 BC
with an inventory list.

Preface

This booklet is not meant to be a textbook, but only a companion to the textbook that we

use in this course, Cormen, Leiserson, Rivest and Stein’sIntroduction to Algorithms, the

second edition. Its purpose is to help you read the appropriate sections of the textbook,

and integrate it better with the rest of the course. It also adds a number of exercises not

present in the textbook.Please read the textbook and do not rely on this supplement

only.

3

Contents

1 Introduction 7

1.1 What is an Algorithm? . 7

1.2 Abstraction Levels in Data Organization 10

1.2.1 Abstract Data Structures . 11

1.2.2 Abstract Data Types . 16

1.3 Recursion . 24

1.3.1 What is Recursion? . 24

1.3.2 Types of Recursion . 25

1.3.3 Linear versus Divide-and-Conquer Recursion in Sorting 30

1.4 Asymptotic Time Complexity of Algorithms 38

1.4.1 Basics . 38

1.4.2 Asymptotic growth rate of functions 40

1.4.3 Basic property of logarithms 42

2 Sorting Algorithms 47

2.1 The Quick Sort . 48

2.2 Randomization . 59

5

Chapter 1

Introduction

1.1 What is an Algorithm?

An algorithm is a collection of precisely defined steps that are executable using certain

specified mechanical methods. By “mechanical” we mean the methods that do not

involve any creativity, intuition or even intelligence. Thus, algorithms are specified by

detailed, easily repeatable “recipes”. The word “algorithm” comes by corruption of

the name ofMukhammad ibn Musa Al-Khorezmi(780-850) who wrote an important

book on algebra,“Kitab al muhtasar fi hisab al gabr w’al muqubalah”(“A compact

introduction to calculation using rules of completion and reduction”). It is also believed

that the title of this book is the source of the word “algebra”.

In this course we will deal only with algorithms that are given as sequences of

steps, thus assuming that only one step can be executed at a time. Such algorithms are

calledsequential. If the action of each step gives the same result whenever this step

is executed for the same input, we call such algorithmsdeterministic. If the execution

involves some random process, say throwing some (possibly software simulated) coin

7

8 Chapter 1. Introduction

or dice, such algorithms are calledrandomized algorithms. Randomized algorithms are

important tools for tasks that have to be repeated many times.

Example 1.1 A sorting algorithmfor an input sequence of numbers〈a1,a2, ,an〉 pro-

duces as output a permutation〈aπ(1),aπ(2), . . . ,aπ(n)〉 of the input sequence such that

aπ(1) ≤ aπ(2) ≤ . . .≤ aπ(n).

There are many algorithms that accomplish the task of sorting that have different

efficiency for different kinds of inputs. Efficiency of an algorithm is measured by its

time complexity, and toanalyzean algorithm means to determine its time complexity

for the given type of inputs. Usually we do theworse case analysis, i.e., we determine

the largest number of basic steps needed to execute the algorithm for any input of size

n. Also important is theaverage caseanalysis. It provides the expected number of

basic steps needed to execute the algorithm for inputs of length at mostn, assuming

certain probability distribution of these inputs. Thus, if we assume that all inputs of

size at mostn are equally likely, the average case analysis gives the average number of

steps needed to execute the algorithm for all inputs of size at mostn. Clearly, a time

complexity functionT(n) is non decreasing, i.e.,m≤ n⇒ T(m)≤ T(n). An algorithm

is optimal if it provides the necessary functionality with the smallest possible numbers

of steps for each input.

Another important feature of an algorithm is itscorrectnessi.e., that it provides

correct functionality for all possible inputs. Generally, the only way to ensure the cor-

rectness of an algorithm is by means of a mathematical proof. This is due to the fact

that it is impossible to test an algorithm for all possible inputs. Sometimes such cor-

rectness proofs are very simple, because the correctness follows immediately from the

1.1. What is an Algorithm? 9

definition of the algorithm. However, sometimes the correctness of an algorithm is far

from obvious and requires a meticulous proof.

The activity of designing an algorithm and an appropriate data structure for the

problem at hand is calledproblem solving. Clearly, problem solving precedes writing a

code, and in fact it is largely independent of the programming language or even of the

programming paradigm used (e.g., object oriented, imperative, etc). This is true for as

long as the algorithm is to be implemented on a standard, sequential processor. After

problem solving is completed and the correctness of designed algorithms is verified,

there is still much to do, namely one has toimplementthe algorithms and the associated

data structures in a specific programming language. Such implementation has to meet

numerous important criteria:

• reliability - the implementation is correct and it will not introduce vulnerabilities

to the system that runs it.

• maintainability - one can easily replace a part of the code in order to provide

somewhat different functionality;

• extensibility- to obtain more features, additional piece of code can be integrated

with the existing code with little or no modifications of the already existing code

needed;

• reusability - possibility of using parts of the code in another application. This is

accomplished bymodular design.

• robustness- the implementation does not crush if the user inputs an unexpected

or illegitimate input;

10 Chapter 1. Introduction

• user friendliness- users can interact with ease with the program during its exe-

cution;

• implementation time- implementation takes a reasonable amount of program-

ming time and other resources.

Note that these features are not features of algorithms and data structures, but rather,

of their implementations. Clearly, it is equally important that both the algorithms and

the data structures on one hand, as well as their implementation on the other hand, be

correct. Separation of design and implementation simplifies the process of software

development and helps ensure reliability of the final product, because it allows that the

correctness of algorithms be verified prior to their their implementations.

1.2 Abstraction Levels in Data Organization

While solving a problem that involves a collection of objects of any kind, only a limited

number of properties of these objects and a limited number of their mutual relations are

relevant for the problem considered. Thus, objects can be “abstracted away”, i.e., re-

placed with suitable “names” and with an abstract representation of their corresponding

properties and mutual relations. These properties of objects and their relations we call

data.

Data is organized in a well-defined and structured abstract entity, called adata struc-

ture. Note that this makes sense regardless of whether data is to be manipulated by a

human or by a machine. The data corresponding to each object usually consists of a

keythat identifies the object that data is abstracted from, and the remaining data that is

called thesatellite data. Together they form arecord, which is an element of the data

1.2. Abstraction Levels in Data Organization 11

structure. Data structures can change their content as elements are added or deleted,

and for that reason a data structure is adynamic set.

Example 1.2 A group of students as a “set of objects”, with data for each student con-

sisting of their names, used as the corresponding key, and their date of birth, address

and student number, organized in a data structure in the form of an alphabetical list.

1.2.1 Abstract Data Structures

We can further ignore what particular data is involved, and consider only the abstract

structure into which data is organized for the purpose of efficient storage and retrieval,

e.g., a linked list, a binary search tree, etc. In this way, we obtain anabstract data

structure (ADS). An ADS is defined by the details of its internal organization and by

internal operations that are used to maintain its properties as elements are added or

removed. Information about what kind of data will be stored in such structures is not a

part of abstract data structure specification. This has an important practical consequence

that the same abstract data structure can be used to store different type of data, say

integers or floating point numbers, by simply instantiating the same data structure with

a different particulartypeof data.

Examples of Abstract Data Structures

1.1 A Singly Linked List is an Abstract Data Structure organized in a list of elements

that has a special beginning element (thehead) and an end element (thetail). Further,

each element contains information what the next element in the list is.

12 Chapter 1. Introduction

head next next next tail

• • •

Figure 1.1: A singly linked list

1.2 A Doubly Linked List satisfies all properties of a singly linked list, but also con-

tains with each element information what are its predecessor and its successor.

head prev. next prev next prev. next tail

• • •

Figure 1.2: A doubly linked list

1.3 An array allows a direct and thus fast (constant time) access to each of its elements,

but to insert a new element into the array while preserving the order among the existing

elements, we may have to move a lot of elements to free the appropriate space, as shown

on Figure 1.3.

Figure 1.3: Insertion in an array

In a linked list access to a particular element may require traversing many elements

in the list, but once the appropriate insertion point has been reached, insertion and

deletion involve changing only a few references (pointers), as shown on Figure 1.4.

This difference should be kept in mind when deciding if a list of elements should be

represented using an array or a linked list.

Exercise 1.1We say that a linked list contains a loop if one of its elements points back

to one of the previous elements in the list; see Figure 1.5.

1.2. Abstraction Levels in Data Organization 13

Figure 1.4: Insertion in a doubly linked list

1. Write a code fragment that, given any two integersm,n such that0≤ n < m it

produces a singly linked list of total lengthm and with a loop of lengthn. (Note

thatn can be zero.) The content of each link is its index in the list, i.e., the content

of the first link is number one, etc.

2. Write a code fragment that, given a singly linked list, say produced by the code

obtained in the first part of this exercise, it determines whether the list contains

a loop or not. The program is not allowed to make any modifications to the list,

and it can use only constant amount of additional storage space, i.e., an amount

of additional space that does not depend on the size of the list. Try to make your

algorithm as fast as possible.Hint: Try advancing two pointers, one twice as fast

as the other, and see if the slow one will overtake the fast one before the fast one

reaches the end of the list.

• • • • • •

m

n

Figure 1.5: A singly linked list with a loop

3. Let A be an automaton that has a memory of 4 bits only, 3 bit wide input and

output ports on two of its sides, an input for the synchronization clock pulses,

14 Chapter 1. Introduction

and a single bit special output, as shown on Figure 1.6.

output

input output

output

input

special
output

input

4 bit Memory
& Logic

Figure 1.6: A simple finite automaton

Consider now a very long chain consisting of2k such automata (k is very large),

shown on Figure 1.7, such that output ports of each automaton are directly con-

nected to the input ports of the next and the previous automaton. At every clock

cycle, each automaton can read the input port values, perform a computation and

set the values of the output port that become available to the previous and the

next automata on the next clock cycle. Thus, it takes at leastn clock cycles to

send a message from the first to the last automaton. Design an algorithm that

Figure 1.7: A chain of finite automata

should be implemented by such automata to allow them to function in the follow-

ing way. After a triggering pulse arrives at the input port of the first automaton, all

automata should output 1 at their special outputssimultaneously(after the nec-

essary number of clock cycles), and then reset and wait for the next triggering

1.2. Abstraction Levels in Data Organization 15

pulse. Notice that, given extreme memory limitations of these finite automata,

they cannot determine their position in the chain.Hint: You might find the hint

for 2. above inspiring!

1.4 In a Binary Search Tree (BST) the key at every node is equal or larger than all

keys in the left subtree at this node, and equal or smaller than all keys at the right subtree

at that node; see Figure 1.8. Such tree itself isnot data and caries no information, but

it is a construct used to organize data efficiently. The time complexity of a search for a

particular key in a binary search tree is bounded by the height of such a tree, rather than

by its size. This is important, because, as we will see, the size of a well balanced tree is

exponential in its hight, and there are methods of ensuring a good balance as elements

are added or deleted. Note that a tree iswell balancedif at each of its nodes the height

of the left subtree is about the same as the height of the right subtree; we will explain

the details later.

sat.data
key = 6

sat.data
key = 2

sat.data
key = 7

sat.data
key = 5

sat.data
key = 4

sat.data
key = 1

sat.data
key = 3

Figure 1.8: A binary search tree

If we have a collection of elements with a mutual relationship that naturally forms

a tree, then we must treat such a tree structure as a part of data. For example, members

16 Chapter 1. Introduction

of an extended family with “x is a parent of y” relationship form a genealogical tree.

However, an abstract data structure that can be used to represent such a genealogical

tree way might not itself be a tree but, for example, a table instead, as shown on the

Figure 1.9.

 Mary Peter Helen Tom

Jim 0 1 0 0

Anne 0 1 0 0

John 0 0 1 0

Mary 0 0 1 0

Peter 0 0 0 1

Helen 0 0 0 1

Peter Helen

Jim Anne John Mary

representation

Tom

Figure 1.9: Representation of a genealogical tree

Consequently, we must be careful to distinguish between structures that are inherent

in the collection of objects we consider and are thus part of data, from the auxiliary

structures introduced in the process of data organization whose purpose is only to allow

efficient storage and retrieval of data.

1.2.2 Abstract Data Types

If we further ignore the particular internal organization of a data structure, and consider

only its functionality, then we obtain anabstract data type (ADT). Functionality of an

ADT is provided by a set of operations forming theinterfaceof the ADT. This is the

only aspect of an ADT visible and accessible from the outside of an ADT. We say that

these operations areexportedby the ADT. The program that utilizes an ADT via its

interface operations is usually called theclient.

1.2. Abstraction Levels in Data Organization 17

An ADT is realizedby an appropriate abstract data structure that is in turnimple-

mentedas a construct in a particular programming language. For example, theStack

ADT can be realized by a Linked List ADS, which can be implemented as a pointer

based construct in, say, C. This is illustrated on the Figure 1.10.

Interface
operations

Concrete Data Structure
(implementation details

invisible to ADS)

Abstract Data Structure (ADS)
(invisible outside ADT)

Figure 1.10: Abstract Data Type

Examples of Abstract Data Types

1.5 Stack ADThas interface consisting of operationspush(x), pop(), size(),

top(), makeEmpty() and isEmpty() . Notice that the stack itself is a “hidden

variable” of these operations; only push has an explicit input. Insertions and deletions

from the stack follow thelast-in-first-out scheme (LIFO). Its functionality is described

by the following proerties of its operations:

• push(x) takes an element x as input and inserts it at the top of the stack; since

the stack itself is hidden, this operation produces no output;

• pop() removes and returns the top element of the stack as the output; if the stack

is empty, it returns an error message;

18 Chapter 1. Introduction

• top(x) returns the top element of the stack as the output without removing it;

if the stack is empty, it returns an error message;

• size() returns the number of elements in the stack;

• makeEmpty() makes the stack empty;

• isEmpty() returnsTrue just in case the stack is empty.

Note that in the above “programming language type” of notation, the stack itself is hid-

den, because the interface functions hide “the inside” of the abstract data structure. To

formulate the above properties in a rigorous way, we make the hidden “stack” variable

explicit and use for it a variable of separate kind, denoted by a Greek letter. Accord-

ingly, the output of operations also have two components: the “visible”, exported value

given by the first element of the ordered pair, and the “invisible” new stack content

given by the second element of the ordered pair.

1. pop(push(x,a))=(x,a) . Thus,pop returns the top element of the stack

a, but it also modifies the stack by removing the top element; consequently, the

output is the pair consisting of the top elementx and the stacka.

2. top(push(x,a))=(x, push(x,a)) . Thus,top returns the top element

of the stacka, without removing it; the output is the top elementx and the stack

push(x,a) .

3. isEmpty(a)= True ⇒ size(a)= 0; size(push(x,a))=size(a)+1

4. isEmpty(a)= True ⇒ pop(a)= top(a)= error"EmptyStack"

5. isEmpty(makeEmpty(a))= True

1.2. Abstraction Levels in Data Organization 19

The functionality of the queue is thus defined purely algebraically. This highlights

the fact that an ADT is defined only by its functionality, completely hiding how such

functionality is achieved. There are important practical benefits of such an approach:

1. It eliminates the need to maintain uniform data representation throughout the sys-

tem: for as long as we know how interface operations input and output data, inside

an ADT data can be represented in an arbitrary way, different from the way how

the same data is represented in the client program. Thus, changes in the design of

the client or the ADT raise no question regarding their subsequent compatibility.

2. Design becomes modular; different modules can be designed by different people,

who need to know nothing about how other modules are designed, but only what

the interface operations are and what the functionality provided by the ADT is.

3. The structure of the system can be described on a higher level, without going into

the details of implementation. This greatly simplifies design and understanding

of complex systems. It also simplifies testing and verification of systems, because

each module can be tested separately prior to its incorporation into the system.

4. Modules can be easily reused in other systems without change for as long as the

functionality needed is the same.

Examples of stack applications include: history of pages visited in a Web browser; undo

sequence in a text editor; CPU stack that handles recursion; etc.

Exercise 1.2

1. Consider algebraic expressions built using the following rules:

20 Chapter 1. Introduction

(a) a variable denoted by a small Roman letter is an expression. For example,x

andy are both expressions;

(b) if t1 andt2 are expressions, then so is(t1t2);

(c) expressions can be built only using the above two rules.

Thus, for example((xy)z)w) is a correct expression (we do not remove the outer-

most parentheses), but, for example,(xy)(z is not a correct expression. Similarly,

((xy)) is not a correct expression, because it cannot be obtained using the above

rules. Design an algorithm that checks if a sequence of variables and brackets is

a correct algebraic expression or not, i.e., if it has correctly matched parenthe-

ses. Implement your procedure and test it.Hint: Set a counter and increment

it whenever you open a bracket and decrement it when you close it. Ignore the

variables.

The other most commonly used ADT is thequeue. Unlike the stack that follows

the LIFO scheme, insertions and deletions from the queue follow thefirst-in-first-out

scheme (LIFO)as shown on the Figure below.

1.6 Queue ADThas interface consisting of operationsenqueue(x), dequeue(),

front(), size(), makeEmpty() and isEmpty() . Again, the stack itself is

a “hidden variable” of these operations; onlypush has an explicit input. Since inser-

tions and deletions from the queue follow thefirst-in-first-out scheme (FIFO), a queue

encodes temporal order how elements have been added. Its functionality is specified by

the following properties of its operations:

• enqueue(x) takes an elementx as input and inserts it at the end of the queue;

since the queue itself is hidden, this operation produces no output;

1.2. Abstraction Levels in Data Organization 21

in out

in out

Figure 1.11: A Stack and a Queue

• dequeue() removes and returns the first element in the queue as the output; if

the queue is empty, it returns an error message;

• front() returns the first element in the queue as the output; if the queue is

empty, it returns an error message;

• size() returns the number of elements in the queue;

• makeEmpty() makes the queue empty;

• isEmpty() returnsTrue if the queue is empty.

An example of the Queue ADT is the printing queue: jobs are printed in the order

they arrive at the printer. As with the stack, if we make the queue itself visible by

using a variable of a separate kind, we can define the functionality of a queue purely

algebraically:

22 Chapter 1. Introduction

1. isEmpty(a)=True ⇒ decueue(a)=front(a)=error"EmptyQueue"

2. isEmpty(a)=True ⇒ decueue(enqueue(x,a))=(x,a)

3. isEmpty(a)=True ⇒ front((enqueue(x,a)))=(x,enqueue(x,a))

4. isEmpty(a)=False ⇒ decueue(enqueue(x,a))=decueue(a)

5. isEmpty(a)=False ⇒ front(enqueue(x,a))=front(a)

6. isEmpty(a)=True ⇒ size(a)=0

7. size(enqueue(x,a))=size(a)+1

8. isEmpty(makeEmpty(a))=True

Exercise 1.3A simple implementation of a queue would consist of an array together

with two pointers that keep track of where the front and the rear end of the queue are.

However, with such a design, as elements are added and removed, the content of the

queue would move through the array and would eventually “run away” (overflow the

array) even if there are fewer elements in the queue than the size of the array. Solve this

problem by designing a circular structure. Implement it and test it.

1.7 Binary Search Tree (BST)is an ADT for efficient storage, removal and retrieval of

records(k,a) with keys that are linearly ordered. There are several versions of BST;

we chose one with the following interface operations:

• insert((k,x)) inserts element(k,x) into the BST; if there is already an

element(k,y) with the same keyk , it is replaced with the new element;

• delete(k) deletes the element with the keyk from the BST; if there is no such

element, it leaves the tree unchanged.

1.2. Abstraction Levels in Data Organization 23

• find(k) finds and outputs the element with keyk if there is such element in

the BST and it returns an error message if there is no such element;

• in(k) returns True just in case the BST contains an element with the keyk .

• size() returns the number of elements in the BST;

• isEmpty() returns True if the BST is empty.

• makeEmpty() makes the BST empty.

• We require that all of the above operations run in time bounded byK lg(n+ 2)

whereK is a fixed constant,n is the number of elements in the tree, andlg n =

log2n.

Thus, a purely algebraic definition of a Binary Search Tree ADT is expected to be more

complicated than the definitions of a stack or a queue, because it involves not only the

interface operations but also their complexity constraints. Informally speaking, such

complexity constraints are met by requiring that a search in a BST that is obtained by

joining two trees of equal size takes only a constant number of steps more than the

search in one of them. We postpone the details until a later, systematic treatment of

BST.

Note that in the definition of BST there is no reference to any kind of tree structure,

but only to the properties of the interface operations. Their name comes from the fact

that they are in fact realized using abstract data structures that do have a tree structure.

Examples include AVL trees and Red-Black trees. Clearly, unlike stacks and queues, a

BST does not encode the order in which elements are added to the structure, but instead,

it allows retrieval of a record by the value of its key.

24 Chapter 1. Introduction

1.3 Recursion

1.3.1 What is Recursion?

Example 1.3 (Towers of Hanoi) Referring to the Figure 1.12, the task is move discs

from A to C, one at a time, never placing a larger disc on top of a smaller disc.

A B C

1
2
3
 4
 5
 6
 7

Figure 1.12: Towers of Hanoi

Algorithm: To moven discs from A to C:

Moven−1 discs from A to B;

Move the largest disc from A to C;

Moven−1 discs from B to C.

Thus, to obtain the procedure forn discs, we call the same procedure forn−1 discs

twice, with a simple modification (changing the roles of poles). We say that such recur-

sion is linear or of typen→ n−1, because the computation for an input withn elements

(discs) is reduced to several computations withn−1 elements.

Let XY stands for “move the top-most disc of poleX to poleY”. For example,AB

means “move the top-most disc of poleA to poleB”. If we denote by∧ concatenation

1.3. Recursion 25

of moves, then the above algorithm can be written as:

f (n,A,B,C) = f (n−1,A,C,B)∧AC∧ f (n−1,B,A,C)

For n = 4 we can “unwind” the recursion as in the Figure 1.13 below. The boxes

correspond to recursive calls. Note that computations in each box can be completed

only after the computations in the smaller boxes contained within are completed.

Exercise 1.4Tom and his wife Mary went to a party where nine more couples were

present. Not every one knew every everyone else, so people who did not know each

other introduced themselves and shook hands. People that knew each other from before

did not shake hands. Later that evening Tom got bored, so he walked around and asked

all other guests (including his wife) how many hands they had shaken that evening, and

got 19 different answers. How many hands did Mary shake?

Hint: Try recursion on the number of couples, by finding what couple you should elim-

inate first. If there are 19 different answers what could they be? Which ones are the

most interesting numbers among those 19 numbers and how are these people related?

1.3.2 Types of Recursion

Consider the following two recipes to how to cook potatoes:

“Take a kilo of potatoes and boil them for sixty minutes.”

“Take a kilo of potatoes and boil them until soft.”

These two recipes exemplify the first major distinction among recursion types. Type

A is an example of a recursive procedure that involves a number of steps that can be

determined before the procedure has started (“keep boiling potatoes for 60 one minute

26 Chapter 1. Introduction

AC

f(2,C,A,B)

 AC

f(2,B,C,A)
BA

f(2,A,B,C)

 AC

 CB

f(1,B,A,C) = BC

f(4,A,B,C)

f(3,A,C,B)

f(3,B,A,C)

f(1,A,C,B) = AB

f(1,A,C,B) = AB

f(1,C,B,A) = CA

f(1,B,A,C) = BC

f(1,C,B,A) = CA

f(1,A,C,B) = AB

f(1,B,A,C) = BC

BC

AB

Figure 1.13: The solution of the Towers of Hanoi puzzle forn = 4, producing
f (4,A,B,C) = 〈AB,AC,BC,AB,CA,CB,AB,AC,BC,BA,CA,BC,AB,AC,BC〉

intervals”), i.e., of the form:for i=0 to 60 do {. . .}. On the other hand, the

number of “one minute boiling intervals” in the procedure B cannot be determined in

advance; it is an example of a recursion of the formdo{. . .} until {. . .} Functions

computable using only “for i=0 to . . . do {. . .}” loops are called primitive re-

cursive functions; functions computable using “do{. . .} until {. . .} ” loops are called

general recursive functions.

Example 1.4

1. The factorial function is defined by primitive recursion:1! = 1; n! = n · (n−
1)! Note that such function is easily definable by initializingk = 1 and then

1.3. Recursion 27

executing the loopfor i = 1 to n do k ← k · i .

2. f(n) = n th number p such that both p and p+2 are prime .

To get such a number we initializek=0, p=2 and then execute:do {{if p

and (p+2) are prime then k←k+1 }; p ←p+1} until {k==n } .

In fact, we do not even know if for everyn our algorithm will terminate. The hy-

pothesis that there infinitely many primesp such thatp+ 2 is also a prime is

known thetwin primes hypothesis.

There are functions that are not primitive recursive, yet they are still simpler than most

general recursive functions. The best known example is the Ackerman function defined

by double recursion:

F(0,n) = n+1

F(m,0) = F(m−1,1)

F(m,n) = F(m−1,F(m,n−1)) for m, n > 0

One can show that such function cannot be reduced to the usual primitive recursion; in

fact, Ackerman function grows faster than any function defined by primitive recursion.

Exercise 1.5Write a program that computesF(m,n) and try to evaluateF(3,3) and

F(4,4).

In this booklet we call a harder exercise aproblem; nevertheless, you should not be

discouraged; try to solve it!

Problem 1.1 Two thieves have robbed a warehouse and have to split a pile of items

without price tags on them. How do they do this in away that ensures that each thief

28 Chapter 1. Introduction

believesthat he has got at least one half of the value of the whole pile?(You might want

to try to solve this problem before reading any further.)The solution is that one of the

two thieves splits the pile in two parts, so that he believes that both parts are of equal

value. The other thief then chooses the part that he believes is at least one half. Assume

now that ten thieves have robbed a warehouse. How do they split the pile of items so

that each thief believes that he got at least one tenth of the total value of the pile?

Linear Recursion considered above (except the double recursion used to define the

Ackerman function) reduces computation ofF(n,x) to one or several computations

of F(n−1, . . .). For example, identityn! = n(n−1)! reduces computation ofn! to a

computation of(n− 1)! and a multiplication of the result byn. Much more efficient

is divide-and-conquer recursion, that reduces a computation ofF(n,x) to computations

of F(dn/ke, . . .), wherek > 1. Oftenk = 2, and soF(n, . . .) is reduced to computations

of the formF(dn/2e, . . .). We sometimes do not write integer part function and simply

write F(n/2, . . .) for F(dn/2e, . . .), if no confusion can arise.

Example 1.5 y= xn can be computed using linear recursion as follows:x0 = 1; xn+1 =

x · xn. However, one can also use recursion as follows:x0 = 1; x2n = (xn)2; x2n+1 =

x · (xn)2. Clearly, this way the number of multiplications needed to evaluatexn is at

most2 lg n.

Example 1.6 We are given 27 coins of the same denomination; we know that one of

them is counterfeit and that it is lighter than the others. Find the counterfeit coin by

weighing coins on a pan balance only three times.

Solution: Split 27 = 33 coins into three equal groups with 9 coins each. Put two

groups on the pan balance. If equal, the false coin must be in the third group; otherwise

1.3. Recursion 29

take the lighter group. Split these nine coins into three groups with three coins each and

compare two of these groups. As in the previous step, you can find a group containing

the false coin. Finally, compare two of the three coins left; if equal, the false coin is the

remaining coin, otherwise take the coin on the lighter side. 2

Notice that if we had3n coins and can weigh coins n times, then splitting them into

three groups with3(n−1) coins each and comparing two of the three groups we end up

with 3(n−1) coins where the fake coin might be and can weighn−1 times. Thus, this

type of recursion reduces the size of the problem into a sub-problem of size equal to a

fraction of the original problem; this is why such recursion is called divide-and-conquer

recursion.

Exercise 1.6We are given twelve coins and one of them is a counterfeit but we do not

know if it is heavier or lighter. Determine which one is a counterfeit and if it is lighter

or heavier by weighing coins on a pan balance three times only.

Hint: divide and conquer; note that you can reuse coins that are established not to be

counterfeit!

Example 1.7 We have nine coins and three of them are heavier than the remaining six.

Can you find the heavier coins by weighing coins on a pan balance only four times?

Solution: If we weigh the coins four times, since every weighing has three possi-

ble outcomes, we have altogether34 = 81 outcomes altogether. However, there are
(9

3

)
= 9·8·7

3! = 84 possible combinations what three coins out of nine might be heavier.

Thus, the number of possibilities we have do distinguish between is larger than the

number of possible outcomes of our weighing! Consequently, it is not possible to find

30 Chapter 1. Introduction

the heavier coins by weighing coins on a pan balance only four times. 2

This is an example of the lower bound estimation for the complexity of algorithms,

i.e., estimation of the minimal number of steps needed to solve a problem for an input

of given size. Exactly the same method as above can be used to determine the minimal

number of steps needed to sort a sequence of numbers by comparing pairs of numbers.

1.3.3 Linear versus Divide-and-Conquer Recursion in Sorting

1.8 Algorithm 1 is calledInsertion Sort and is based on the procedure used to sort

playing cards at hand. Note that the procedure does not call itself; thus, it is anitera-

tive procedure, rather than a recursive procedure. On the other hand, algorithm 2 is a

“genuine recursion” version of insertion sort.

Algorithm 1 INSERTION-SORT(A)
1. for j ← 2 to length[A] do
2. key← A[j]
3. i ← j−1
4. while i > 0 and A[i] > keydo
5. A[i +1]← A[i]
6. i ← i−1
7. A[i +1]← key

Algorithm 2 INSERTION-SORT-REC(A[1. . .n])
1. INSERTION-SORT-REC(A[1. . .n−1])
2. key← A[n]
3. i ← n−1
4. while i > 0 and A[i] > keydo
5. A[i +1]← A[i]
6. i ← i−1
7. A[i +1]← key

1.3. Recursion 31

key

already sorted

� key > key jth

Figure 1.14: Insertion Sort

Note that insertion sort uses only the space taken by the elements of the array plus

only one extra storage space for the key. Thus, it is very memory efficient. We say that

it sorts in place.

We seldom sort “unattached” numbers; most often we sort records according to

their keys. When sorting by keys, an important feature that a sorting algorithm can

have isstability. A sorting algorithm isstableif it does not change the ordering among

equal keys. For example, medical records of patients arriving to the emergency ward

of a hospital are kept sorted according to their keys, that are assigned in a way that

reflects the severity of the patient’s injury. Thus, the algorithm that sorts medical records

according to such a key must be stable, to keep the patients with the same severity of

the injury in the same order as they have arrived. This ensures that the waiting time for

each patient is kept as short as possible.

We now analyzeINSERTION-SORT i.e., we estimate its run-time.

Worst case:The array is in reverse order (from the largest to the smallest number).

In this case each element of the array (except the first) is put inkey and then compared

to all of the previous elements. All of the previous elements have to be shifted to the

right and the element stored inkey is then put into the first cell of the array. For theith

32 Chapter 1. Introduction

element this takesci many steps. The constantc depends on what exactly elementary

instructions that can be executed in a single step are. Thus the total number of steps is

a quadratic polynomial inn:

n

∑
i=2

ci = c

(
n(n−1)

2
−1

)
= c

n2 +n−2
2

(1.1)

We did not count overhead of invoking subroutines etc. However, this overhead is linear

in n (i.e., a constant multiple ofn) and thus it does not change the nature of the estimate

of the time complexity of the entire algorithm, which remains quadratic inn. We will

develop later a calculus (the “O-notation”) that will allow us to estimate the growth rate

of functions without having to worry about such “details”.

Average case:If the numbers in the array are randomly chosen, any member of the

array is smaller than about one half of the previous elements of the array. Thus, for the

ith element in the array there will be abouti/2 comparisons and shifts. Consequently,

the total number of operations will be about

n

∑
i=2

c
i
2

=
c
2

n2 +n−2
2

(1.2)

i.e., it is again a quadratic polynomial inn. Thus, the average case is about as bad as

the worst case. If you have to sort many arrays with randomly distributed content, the

algorithm will on average run in quadratic time in the length of the arrays. This, as we

will see, is very slow.

Best case:The array is already sorted. In this case each element of the array (except

the first) is put in key and then, after a comparison with the previous element, it is

returned to its old position. Thus, for each element of the array the number of atomic

1.3. Recursion 33

operations (moving numbers, comparing numbers) is constant. Consequently the total

number of operations is of the formcn, i.e. it is linear inn.

What is wrong with the above “analysis”?There isno such thing as “the best

case analysis”. The “best case” provides no useful information. However, knowing a

significant class of inputs for which an algorithm is particularly fast can be useful. For

example, if you expect few inversions in your input sequences, thenINSERTION SORT

algorithm will run in linear time, which is very fast. This happens if you sort checks

in a bank: most of the checks arrive to the bank in the order you write them, with few

inversions.

Exercise 1.7Let k be a natural number. Consider the familyAk of all arraysA[1. . .n]

such that for everyi ≤ n there are at mostk elements amongA[1. . . i−1] larger than

A[i]. Show that there exists a constantc such that every arrayA[1. . .n] from Ak can be

sorted in timec·n.

Exercise 1.8 Insertion sort consists of two main operations: searching for the right

place in the list where the key should be inserted, and inserting the key element into the

list. If the list of elements is realized as an array, what operation is the bottle-neck that

accounts for the quadratic run time of the Insertion Sort? What if the list is implemented

as a linked list? Refer to the remark 1.3 on page 12.

Divide-and-Conquer Recursionconsists of three steps at each level of recursion:

• Divide the problem into a number of sub-problems of smaller size.

• Conquerthe sub-problems using recursive calls. If the problem size is very small,

i.e., at the base of recursion, do it directly without using a recursion call.

34 Chapter 1. Introduction

• Combine the solutions of the sub-problems into a solution of the starting prob-

lem.

MERGE-SORT(A, p, r) sorts the elements of the sequence contained in the sub-array

A[p. . . r] of an arrayA in the following way. It:

• divides the n-element sequence into two subsequences of sizedn/2e andbn/2c;

• conquers by sorting the two subsequences using recursive calls of Merge-Sort.

• merges the two sorted subsequences to get the initial sequence sorted.

When thedivide procedure produces a sequence of length one, such sequence is

already sorted. To merge two sorted sequences we compare the first members of each

subsequence and pick the smaller one as the next element of the joint sequence. We

repeat this procedure until we exhaust one of the sequences, at which stage we just con-

catenate the remaining part of the other sequence to the end of the joint sequence. We

now give the pseudo-codes of theMerge [A, p,q, r] algorithm which merges sequences

A[p. . .q] andA[q+1. . . r], and the pseudo-code for theMerge-Sort algorithm:

26 18 26 18 26 18 26 18 26 18 26 18 26 26

19 17 19 17 19 17 19 17 19 17 19 ↓ 19 ↓
13 16 13 16 13 16 16 ↓ ↓
8 7 8 ↓ ↓

↓ ↓

7 8 13 16 17 18 19 26

1.3. Recursion 35

Algorithm 3 Merge [A, p,q, r]
1. i ← p
2. j ← q+1
3. k← p
4. while i < q+1 and j < r +1 do
5. if A[i]≤ A[j] then
6. B[k]← A[i]
7. i ← i +1
8. k← k+1
9. if i = q+1 then

10. for m← j to r do
11. B[k− j +m]← A[m]
12. else
13. B[k]← A[j]
14. j ← j +1
15. k← k+1
16. if j = r +1 then
17. for m← i to q do
18. B[k− i +m]← A[m]
19. for n← p to r do
20. A[n]← B[n]

Algorithm 4 MERGE-SORT(A, p, r)
1. if p < r then
2. q← b p+q

2 c
3. MERGE-SORT(A, p,q)
4. MERGE-SORT(A,q+1, r)
5. MERGE(A, p,q, r)

36 Chapter 1. Introduction

Example of merging the sequences〈8,13,19,26〉 and 〈7,16,17,18〉 into a single

increasing sequence〈7,8,13,16,17,18,19,26〉 is represented in the above table; a run

of Merge-Sort on input sequence〈7,4,2,5,3,2,3,1〉 is shown on Figure1.15.

divide

conquer
by

merging

 7 4 2 5 3 2 3 1

7 4 2 5 3 2 3 1

3 2 3 1 7 4 2 5

7 4 2 5 3 1 3 2

4 7 2 5 2 3 1 3

2 4 5 7 1 2 3 3

1 2 2 3 3 4 5 7

Figure 1.15: Merge Sort example

Analysis of Merge-Sort. How efficient is the Merge-Sort? Assume that the input

array hasn elements, and let us denote byT(n) the running time for arrays of lengthn.

Divide This part just calculates the middle point of the array, which takes constant

amount of time.

Conquer We apply the same algorithm on arrays of sizesdn/2e andbn/2c. Thus,

the running times areT(dn/2e) andT(bn/2c), which is smaller or equal than2T(dn/2e).
Combine Uses an application of theMERGEprocedure applied on two sequences

of total lengthn. For each element of the merged sequence we did at most one com-

parison and a few moving operations. Thus, the total number of operations used in the

procedureMERGE is linear inn.

1.3. Recursion 37

Summing up all three components, we get the inequality:T(n) ≤ 2T(dn/2e)+cn.

Thus, sice a time complexity function is non decreasing, to find anupper boundfor

T(n) it is enough to solve the recurrenceT(n) = 2T(dn/2e)+cn.

We “unwind” the recursion as shown on Figure 1.16 and estimate the height of the

tree and the work we have to do at each level of the tree.

h = log2 n

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n/2 c⋅⋅⋅⋅ n/2

c⋅⋅⋅⋅ n/4 c⋅⋅⋅⋅ n/4 c⋅⋅⋅⋅ n/4

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n

 c⋅⋅⋅⋅ n⋅⋅⋅⋅ log2 n
n leaves

 c c

:
:

:
:

Total number
of operations

 c c

:
:

 c c

:
:

c⋅⋅⋅⋅ n/4

Figure 1.16: Analysis of Merge Sort

Clearly, since at each step ofdivide the size of sub-arrays is halved, forn > 1 the

height of the tree is equal todlg ne. Since the total number of elements in all sub-arrays

is alwaysn, and theMERGEprocedure works in time linear inn, the total work at each

level iscn for some constantc. Thus, the total number of steps ofMERGE SORT is a

constant multiple ofnlg n.

Sincelg n is much smaller thann and, as we have seen, insertion sort runs in time

38 Chapter 1. Introduction

that is a multiple ofn2, MERGE SORT is in general much more efficient than theIN-

SERTION SORT. In practice,MERGE SORT beatsINSERTION SORT for inputs of size

about 30. For much largern the difference in performance is huge; the growth rates of

n2 andnlg n are compared on Figure1.18.

20 40 60 80 100

2000

4000

6000

8000

10000

n2

n log2 n

Figure 1.17: Growth rate comparison forn2 (dark) andnlg n (light)

Exercise 1.9 1. Show that theMERGESORT is a stable sorting algorithm.

2. Show that if we replace line 5:A[i]≤ A[j] in Algorithm 3 (MERGE) with: A[i] <

A[j] the algorithm remains correct, but is no longer stable.

1.4 Asymptotic Time Complexity of Algorithms

1.4.1 Basics

Present day microprocessors are all capable of implementing the same kind of com-

putations, and differ essentially only in terms of speed of execution and their memory

capacity. This feature of processors is calledTuring completeness. Turing completeness

explains why we can buy software for new tasks without having to buy a new, different

computer for each new task. Our computers are “universal machines” in the sense that

they can execute different tasks by changing only their software.

1.4. Asymptotic Time Complexity of Algorithms 39

Nearly all processors of the type that is commonly used in general purpose com-

puters are built according to the same architecture, usually called theVon Neumann

Architecture. They all consist of a CPU (Central Processing Unit) and a (potentially

infinite) collection of memory cells that can each be directly accessed, calledRandom

Access Memory(RAM). All such machines are equivalent to a theoretical model of

computation, called the Universal Turing Machine and thus are equally powerful com-

puting machines (save memory and speed constraints).

Two different (sequential) processorsA,B may have different “hard-wired” basic

operations, i.e., different sets of instructions implemented in the hardware by special

circuits. Since they can perform the same tasks, every instruction executable as a basic

instruction ofA, if not hard-wired inB, can be implemented as a sequence of steps of

instructions ofB. Since there are only finitely many basic instructions implemented in

the hardware ofA, there exists a natural numberM such that every basic instruction

of A can be implemented as a sequence of at mostM basic instructions ofB. Thus, a

programp containing only basic instructions available onA can replaced by a program

containing only instructions available onB, such thatp′ is at most as long asM times

the length ofp. Consequently, execution time of the same algorithm onA andB for the

same input can differ by at most a multiplicative constantM.

Since algorithms to be run on a processor of Von Neumann Architecture machines

are abstract entities independent of individual platforms on which they can be executed,

we need a method for measuring the execution time of an algorithm that is independent

for inessential features of the algorithm, such as which particular basic instructions are

used in specifying the algorithm. In light of the above discussion, we want to consider

two algorithms with execution times that, for sufficiently large inputs, differ by at most

a multiplicative constant as equally efficient. This leads us to the notion of asymptotic

40 Chapter 1. Introduction

growth rate of functions.

1.4.2 Asymptotic growth rate of functions

“Big Oh notation”: f (n) = O(g(n)) is abbreviation for the statement“There exists

positive constantsc andn0 such that0≤ f (n) ≤ cg(n) f oralln ≥ n0”. In this case we

say thatg(n) is an asymptotic upper bound forf (n).

Thus, f (n) = O(g(n)) means thatf (n) does not grow substantially faster thang(n)

because a multiple ofg(n) eventually dominatesf (n). Clearly, multiplying constants

of interest will be larger than1, thus “enlarging”g(n).

2g(x)

g(x)

f(x)

Figure 1.18:f (x) = O(g(x)); c = 2 andn0 = 18. Thus, f (x)≤ 2g(x) for n≥ 18

Example 1.8

1.4. Asymptotic Time Complexity of Algorithms 41

1. f (n) = n2 +10n does not grow substantially faster thang(n) = n2 in the sense of

the above definition becausef (n) = n2+10n≤ 2n2 = 2g(n) for all n≥ 10. Thus,

here we can takec = 2, n0 = 10, and son2 +10n = O(n2).

2. f (n) = 1000n2 does not grow substantially faster thang(n) = n2 becausef (n) =

1000n2 = 1000g(n) for all n≥ 0. Thus, forc= 1000andn0 = 0 we get1000n2 =

O(n2).

3. f (n) = n2 does grow substantially faster thang(n) = 1000n because there are

no constantsc,n0 such thatf (n) = n2 ≤ c1000n for all n≥ n0. This is because

n≥ 1000c impliesn2 > 1000cn. Consequently,1000n = O(n2).

Thus, a linear function can never be an asymptotic upper bound for a quadratic function.

“Omega notation”: f (n) = Ω(g(n)) is an abbreviation for the statement“There exists

positive constantsc andn0 such that0≤ cg(n) ≤ f (n) for all n≥ n0.” In this case we

say thatg(n) is an asymptotic lower bound forf (n).

Thus, f (n) = Ω(g(n)) essentially says thatf (n) grows at least as fast asg(n), be-

causef (n) eventually dominates a multiple of g(n). Clearly, multiplying constants of

interest will be smaller than1, thus ”reducing” g(n) by a constant factor.

Example 1.9

1. g(n) = 10n is an asymptotic lower bound forf (n) = n2 because whenn is suffi-

ciently large (n > 10) we haveg(n) = 10n < n2 = f (n). Thus, here we can take

c = 1 andn0 = 10.

42 Chapter 1. Introduction

2. g(n) = n2 is not an asymptotic lower bound forf (n) = 10n because there is no

constantc such that10n> cn2 for sufficiently largen. No matter how smallc> 0

is chosen,cn2 will eventually be larger than10n.

“Theta notation”: f (n) = Θ(g(n)) stands forf (n) = O(g(n)) and f (n) = Ω(g(n)). In

this case we say thatf andg have the same asymptotic growth rate, or that areasymp-

totically equivalent.

Thus, f (n) = Θ(g(n)) means thatg(n) is both an asymptotical upper bound and an

asymptotical lower bound forf (n). It is easy to see that in this case there exist positive

constantsc1,c2 andn0 such that0≤ c1 g(n)≤ f (n)≤ c2 g(n) for all n≥ n0.

Example 1.10

1. n2+5n+1= Θ(n2) because0≤ n2≤ n2+5n+1≤ 2n2 for all n≥ 6. In general,

for any polynomialp(x) of orderk we havep(x) = Θ(xk).

2. 2n+1 = Θ(2n) because0≥ 2n≥ 2n+1 = 2·2n for all n≥ 0.

1.4.3 Basic property of logarithms

1.9 The Logarithm function is very important for estimating the run time of algorithms.

For example, we have seen that theMERGE SORT algorithm runs in timeO(nlg (n)).

1.4. Asymptotic Time Complexity of Algorithms 43

We now review briefly the main properties of the logarithm function.

logc(ab) = logca+ logcb (1.3)

logc(a/b) = logca− logcb (1.4)

log(ab) = b loga (1.5)

alogab = b (1.6)

logax = logbx logab = logbx/ logba (1.7)

Proof: Properties 1.3 - 1.5 follow directly from the definition of thelog function, i.e.,

from the fact thatlogcx = y just in casecy = x, and the corresponding basic proper-

ties of exponentiation:cx+y = cxcy; cx−y = cx/cy; (cx)y = cxy. Property 1.7 is a bit

trickier: let logbx = w; thus, bw = x. Using 1.6 and substituting inbw = x we get

(alogab)w = x, i.e.,awlogab = x. Take nowloga of both sides to getwlogab= logax, i.e.,

logbxlogab = logax. 2

Note that 1.7 implies that for every two numbersa,b> 1we havelogan= Θ(logbn).

1.10 The growth rate of the factorial function. We now show thatlg n! = Θ(n lg n).

Using Stirling’s formulan! =
√

2πn
(

n
e

)
(1+ Θ(1/n)) and takinglg of both sides we

get:

lg (n!) = lg
√

2πn+n lg n−n lg e+ lg (1+Θ(1/n))

However, it is easy to see that the expression on the right isΘ(n lg n).

44 Chapter 1. Introduction

Exercise 1.10Provelg (n!) = Θ(n lg n) using basic algebra only.

Hint: Note that forn > 0, n! ≤ nn and take logarithm of both sides; for the other

direction show thatnn < (n!)2 by pairing suitably factors of(n!)2 and then using the

fact thatx(n+1− x) < n for all 1≤ x≤ n. This inequality can be proved using basic

algebra of quadratic polynomials.

Exercise 1.11Determine iff (n) = O(g(n)), f (n) = Ω(g(n)) or f (n) = Θ(g(n)) for the

following pairs:

f (n) g(n)

n (n−2 lg n)(n+cos n)

(lg n)2 lg (nlg n)+2 lg n

n1+sin(π n/2))/2 √
n (a plot might help)

How important is the run time of an algorithm? Is it just the matter of “elegance”?

The graph on the Figure 1.19 might help explain the significance of algorithm effi-

ciency. To comprehend the growth rate of these functions even better, assume we have

algorithms with time complexities shown in the table, that are executed on a 1 GHz

machine executing one instruction each clock cycle. In the table one can find how long

it would take to complete these programs; time is in seconds unless stated otherwise.

For many real-time applications, for example algorithms used in digital telecom-

munications, algorithms that run in quadratic time are unacceptably slow. For standard

applications cubic run time is unacceptably slow, unless inputs are of relatively small

size. ”Brute force” algorithms often tend to run in exponential time, and as you can

see, for inputs of size only 100 it would take the entire age of the universe! Thus, poor

efficiency of an algorithm can often render it entirely useless.

1.4. Asymptotic Time Complexity of Algorithms 45

 log2 n

n

n log2 n

n2

n3

0

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 1.19: Growth rate comparison for basic functions

n = 10 100 1,000 10,000 100,000 1,000,000

lg n 3·10−9 6·10−9 9·10−9 1.3·10−8 1.6·10−8 1

n 10−8 10−7 10−6 10−5 1 10−3

n lg n 3·10−8 7·10−7 10−5 10−4 1 10−2

n2 10−7 10−5 10−3 0.1 10 17 min

n3 10−6 10−3 1 17 min 11.5 days 37 years

age 10292 103001 1030093 103010191

2n 10−7 of the ridiculous non- pure pure

universe sensical math theology

We now turn to a systematic study of sorting algorithms.

Chapter 2

Sorting Algorithms

Sorting is one of the most frequently encountered data processing tasks. There are

many sorting algorithms, and one could wonder why there are so many algorithms for

the same task. We will see that for different probability distributions of inputs, different

algorithms for the same task can have vastly different performance. For example, we

have seen thatINSERTION SORT is extremely fast if inputs are nearly sorted; on such

inputs it runs in linear time. However, if all permutations of inputs are equally likely,

then INSERTION SORT is extremely slow; for such inputs it runs in quadratic time.

Merge Sort , on the other hand, runs in timeΘ(n lgn) for all inputs, but the constants

involved in this asymptotic bound are not very small. For that reason, theMERGE

SORT algorithm is rather slow for smaller size inputs (less than about 30-40 elements).

We will study another sorting algorithm, theQUICK SORT, that has very low average

sorting time for random inputs, but if inputs are frequently nearly sorted, thenQUICK

SORT is very slow: it runs in quadratic time.Thus, the choice of a sorting algorithms

depends on the expected input.

Besides being important on their own right as massively used tools, sorting algo-

47

48 Chapter 2. Sorting Algorithms

rithms will be also used to illustrate:

1. how to chose the right algorithm for the task at hand;

2. general algorithm design techniques, like divide-and-conquer;

3. how to estimate time complexity of algorithms in general.

2.1 The Quick Sort

The Quick Sort is one of the most frequently used sorting algorithms. Assume that we

want to sort the part of an arrayA that is between indicesp andr, i.e., to sortA[p. . . r].

We employ “divide-and-conquer” strategy, as follows:

Divide: The arrayA[p. . . r] is partitioned and rearranged into two nonempty sub-arrays

A[p. . .q] andA[q+1. . . r] such that every element ofA[p. . .q] is smaller or equal than

A[p], chosen to bethe pivoting element, and every element ofA[q+1. . . r] is larger or

equal thanA[p]. Thus, each element ofA[p. . .q] is smaller or equal than every element

of A[q+1. . . r].

Conquer: The two sub-arraysA[p. . .q] andA[q+1. . . r] are sorted by recursive calls

to QUICK SORT.

Combine:Since both sub-arrays are now sorted in place, no work is needed to combine

them; the entire arrayA[p. . . r] is already sorted.

We first describe thePARTITION procedure which rearranges and splits the array.

2.1. The Quick Sort 49

Algorithm 5 PARTITION(A, p, r)
1. pivot← A[p]
2. i ← p−1
3. j ← r +1
4. repeat
5. j ← j−1
6. until A[j]≤ pivot
7. repeat
8. i ← i +1
9. until A[i]≥ pivot

10. if i < j then
11. exchangeA[i]↔ A[j]
12. else
13. return j

Here is an example run for thePARTITION algorithm.

p p+1 r

i 4 10 9 3 5 7 2 6 j

i 4 10 9 3 5 7 j 2 6

i 2 10 9 3 5 7 j 4 6

2 i 10 9 j 3 5 7 4 6

2 i 3 9 j 10 5 7 4 6

2 j 3 i 9 10 5 7 4 6

We can now define theQUICK SORT algorithm.

Algorithm 6 QUICK SORT(A, p, r)
1. if p < r then
2. q← PARTITION1(A, p, r)
3. QUICK SORT(A, p,q)
4. QUICK SORT(A,q+1, r)

50 Chapter 2. Sorting Algorithms

How fast is theQUICK SORT? This is not a simple question.

The Worst Case Behavior.When the array is already sorted or in the reverse order

(from the largest to the smallest element), then the partition procedure produces one

region with a single element, and one region withn− 1 elements. Clearly, this is a

maximally unbalanced partition, and it is easy to see that in fact, in this case the number

of steps needed to execute theQUICK SORT algorithm is maximal for all inputs of this

length. The running time is then given by the recurrence relationT(n) = T(n−1)+

Θ(n), because in the next stage of recursion the algorithm is applied to a single sub-

array withn− 1 elements, and thePARTITION algorithm clearly runs in linear time.

Thus, for somec1, c2 and all sufficiently largen,

T(n−1)+c1n < T(n) < T(n−1)+c2n

Thus, by consecutive substitutions and by summing the resulting arithmetic progres-

sion, we get that for all sufficiently largen

c1 +2c1 +3c1 + . . .nc1 < T(n) < c2 +2c2 +3c2 + . . .nc2

i.e.,
c1 n(n+1)

2
< T(n) <

c2 n(n+1)
2

Thus, in the worst caseT(n) = Θ(n2). The best case happens when thePARTITION

procedure always produces two regions of equal size. In this case we have the recur-

renceT(n) = 2T(n/2)+ Θ(n). Just as for theMERGE SORT algorithm, we have that

in this caseT(n) = Θ(n lg n). Let us examine the “intermediate” cases. Assume,

for example, that thePARTITION algorithm always produces a split that is at most 9:1

2.1. The Quick Sort 51

n

T(n)

T(1)

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ (n-1)

Total number of operations: ΘΘΘΘ(n2)

:
:

T(1)

T(1)

T(n-1)

T(n-2)

T(n-3)

T(1) T(1)

:

c⋅⋅⋅⋅ (n-2)

c⋅⋅⋅⋅ (n-3)

c

:
:

c

(a) Worst case with maximally un-
balanced partitions

log2 n

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n/2 c⋅⋅⋅⋅ n/2

c⋅⋅⋅⋅ n/4 c⋅⋅⋅⋅ n/4 c⋅⋅⋅⋅ n/4

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n

 Total number of operations = ΘΘΘΘ(n⋅⋅⋅⋅ log2 n)

 c c

: : : :

 c c

: :

 c c

: :

c⋅⋅⋅⋅ n/4

(b) Best case with perfectly balanced partitions

Figure 2.1: Extreme cases ofQUICK SORT performance

 log10/9 n

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅9 n/10

c⋅⋅⋅⋅ 81n/100

c⋅⋅⋅⋅ n

c⋅⋅⋅⋅ n

 c⋅⋅⋅⋅ n

Total number of operations = O(n log10/9 n)

c

: :

c⋅⋅⋅⋅ n/100

c⋅⋅⋅⋅ n/10

c⋅⋅⋅⋅ 9n/100

c⋅⋅⋅⋅ 9n/1000 c⋅⋅⋅⋅ 81n/1000

:

c⋅⋅⋅⋅9 n/100

c⋅⋅⋅⋅ 9n/1000 c⋅⋅⋅⋅ 81n/1000

:

c⋅⋅⋅⋅ 729n/1000

c⋅⋅⋅⋅ 6561n/10000

c

< c⋅⋅⋅⋅ n

< c⋅⋅⋅⋅ n

< c⋅⋅⋅⋅ n

Figure 2.2: A case ofQUICK SORT run with partitions 1:9

unbalanced.Prima facie,this might appear as a quite unbalanced partitioning; see Fig-

ure 2.2. The height of the resulting tree is equal to the smallest integerh such that

(9/10)hn≤ 1. This implies n≤ (10/9)h and soh = dlog10
9

ne. Thus,h = O(log10
9

n).

Sincelog10
9

n = log10
9

2 log2n we get that alsoh = O(lgn). On each level the cost is

O(n), because it is the cost of splitting and rearranging the arrays whose total length

is at mostn; after some of the branches of the tree terminate, the total length of arrays

on which the recursion is called again is strictly smaller thann. Thus, the total cost is

52 Chapter 2. Sorting Algorithms

againO(n lgn). Consequently, the only case whenQUICK SORT runs slow is if most of

the splitting results in extremely unbalanced partitions. This looks unlikely to happen

for randomly produced inputs, because only very particular arrays cause extremely un-

balanced partitions. To precisely estimate the average run time ofQUICK SORT, let us

assume that the chosen pivot is theith element in size among the elements of the input

array. Then theaveragesorting timeunder such assumption, denotedTj(n), is given by

Tj(n) = T(j)+T(n− j)+Θ(n) (2.1)

whereT(j) andT(n− j) are average times to sort an array of lengthj andn− j respec-

tively. This is because the cost of the partitioning procedure is linear inn, i.e., Θ(n),

andT(j) andT(n− j) are costs of sorting procedures for the two sub arrays of lengthj

andn− j respectively. Since for allj ≤ n the probability that the pivoting elementA[p]

is jth in size among all elements of the array, is equal, we get that the average sorting

time for an input of lengthn, denoted byT(n), is given by:

T(n) =
1
n

n−1

∑
j=1

(T(j)+T(n− j))+c n

Since the termT(i) is equal to the termT(n− j) for j = n− i, all the terms repeat twice,

and we have:

T(n) =
2
n

n−1

∑
j=1

T(j)+c n (2.2)

Forn−1 this becomes

T(n−1) =
2

n−1

n−2

∑
j=1

T(j)+c(n−1) (2.3)

2.1. The Quick Sort 53

Multiplying the first equation byn and the second byn−1 and by subtracting, we get

nT(n)− (n−1)T(n−1) = 2T(n−1)+c(n2− (n−1)2) (2.4)

because all terms of the second sum cancel the corresponding term of the first sum,

leaving only2T(n−1), that is not present in the second sum. Thus,

nT(n)− (n+1)T(n−1) = c(2n+1) (2.5)

which, by dividing both sides byn(n+1), becomes

T(n)
n+1

− T(n−1)
n

=
c(2n+1)
n(n+1)

<
2c
n

(2.6)

i.e.,
T(n)
n+1

<
T(n−1)

n
+

2c
n

(2.7)

By applying the same fact onT(n−1) we get

T(n−1)
n

<
T(n−2)

n−1
+

2c
n−1

(2.8)

by combining 2.7 and 2.8 we get

T(n)
n

<
T(n−2)

n−1
+

2c
n

+
2c

n−1
(2.9)

Applying 2.7 toT(n−2) and continuing in the above manner, we get

T(n)
n

< 2c
n

∑
i=1

1
i

(2.10)

54 Chapter 2. Sorting Algorithms

The above sum is a partial sum of the harmonic series∑n
j=1

1
j , and can be easily bounded

by a definite integral, as shown on Figure 2.3. Since the surface area under the graph of

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

1.2

 y=1/x

1/4

1/2

1/3

1/n ...
n-1 n 0

Figure 2.3: Estimating the partial sum of the harmonic series

y= 1/x and betweenx= 1 andx= n is larger than the sum of the areas of the rectangles

shown, we get∑n
j=2

1
j <

∫ n
1

1
xdx. Thus,∑n

j=1
1
j < 1+(lnn− ln1) = 1+ lnn and soT(n)

n <

2c(1+ lnn). This implies the average (expected) run time of the isT(n) = O(nlgn).

Exercise 2.1What is the performance of theQUICK SORT algorithm if all elements of

the input array are equal?

Exercise 2.2 It appears that lines 7 , and 10 in 5 involve unnecessary work;prima

facie, if elements are equal to the pivot, there is no need to swap them. How would

the performance of thePARTITION procedure change if these lines are replaced by

A[j] < pivot and A[j] > pivot respectively?Hint: Show that the resulting partition

becomes very unbalanced if there are many elements equal to thepivot. Thus, non

strict inequalities actually make the algorithm behave better on arrays that contain lots

of repetitions, by keeping the partition balanced.

2.1. The Quick Sort 55

Exercise 2.3A different version of thePARTITION procedure is given in the second

edition of our textbook (Cormen, Leiserson, Rivest and Stein, “Introduction to algo-

rithms”). The procedure first picksA[r] as a “pivoting” element. Then it “grows” two

regions, one consisting of elements smaller or equal than thepivot, placed to occupy

positions fromp to i, and the other consisting of elements larger thanA[r], placed to

occupy positionsi +1 to j−1. This is accomplished by advancing pointerj, and when-

ever the jth element is smaller than the pivot, it is swapped with the first element in

A[p. . . j] that is larger than the pivot, namely withA[i +1], and pointeri is advanced to

the next position in the array, thus again delimiting the region consisting of elements

smaller or equal to the pivot.

Algorithm 7 PARTITION2(A, p, r)
1. pivot← A[r]
2. i ← p−1
3. for j ← p to r−1 do
4. if A[j]≤ pivot then
5. i ← i +1
6. exchangeA[i]↔ A[j]
7. exchangeA[i +1]↔ A[r]
8. return i +1

56 Chapter 2. Sorting Algorithms

p p+4 r

i j 4 10 9 3 5 7 2 6

i 4 j 10 9 3 5 7 2 6

i 4 10 j 9 3 5 7 2 6

i 4 10 9 j 3 5 7 2 6

4 i 3 9 10 j 5 7 2 6

4 3 i 5 10 9 j 7 2 6

4 3 i 5 10 9 7 j 2 6

4 3 5 i 2 9 7 10 6

4 3 5 i 2 6 7 10 9

An example of execution of thePARTITION2 algorithm is shown in the table, for

input consisting of the array of integers 4, 10, 9, 3, 5, 7, 2, 6. Each row represents

the content of the array after a single step of execution of thePARTITION2 algorithm,

and also shows the positions of the pointersi, j at each step. Numbers in the region for

numbers smaller than the pivot are shown in small italics, and numbers larger than the

pivot in large bold print. The value returned is one plus the last value ofi; in this case it

is p+4. The corresponding version ofQUICK SORT2(p,r) algorithm, operating on the

part of an arrayA between positionsp andr is shown below.

Algorithm 8 QUICK SORT2(A, p, r)
1. if p < r then
2. q← PARTITION2(A, p, r)
3. QUICK SORT2(A, p,q−1)
4. QUICK SORT2(A,q+1, r)

1. What is the performance of theQUICK SORT2 algorithm if the input array has

2.1. The Quick Sort 57

lots of repetitions, say, if all input elements are equal?

2. One might want to improve the performance of the above versionQUICK SORT2

algorithm by buildingthree, rather than two regions; one for all elements smaller

than the pivot, one for elements equal to the pivot and one for elements larger

than the pivot. The corresponding algorithms for such approach arePARTITION3

andQUICK SORT3. Determine which “fix” is better overall ,QUICK SORT3 or

QUICK SORT4, in terms of performance for random inputs and for inputs that

contain repetitions.

Algorithm 9 PARTITION3(A, p, r)
1. pivot← A[r]
2. i ← p−1
3. k← p−1
4. for j ← p to r−1 do
5. if A[j] < pivot then
6. i ← i +1
7. exchangeA[i]↔ A[j]
8. k← k+1
9. if k > i then

10. exchangeA[k]↔ A[j]
11. else ifA[j] = pivot then
12. k← k+1
13. exchangeA[k]↔ A[j]
14. exchangeA[k+1]↔ A[r]
15. return (i,k+1)

Algorithm 10 QUICK SORT3(A, p, r)
1. if p < r then
2. (q,s)← PARTITION3(A, p, r)
3. QUICK SORT3(A, p,q)
4. QUICK SORT3(A,s+1, r)

How does suchQUICK SORT3 perform if there are a lot of repetitions in the

58 Chapter 2. Sorting Algorithms

array? Is the performance of this algorithm with such a “fix” adversely affected

if there are only a few repetitions in the array?

3. Finally, lets consider yet another “fix” forPARTITION, algorithmPARTITION4,

and the correspondingQUICK SORT4.

Algorithm 11 PARTITION4(A, p, r)
1. pivot← A[r]
2. i ← p−1
3. k← 1
4. for j ← p to r−1 do
5. if A[j] < pivot then
6. i ← i +1
7. exchangeA[i]↔ A[j]
8. else ifA[j] = pivot then
9. k←−k

10. if k < 0 then
11. i ← i +1
12. exchangeA[i]↔ A[j]
13. exchangeA[i +1]↔ A[r]
14. return i +1

Algorithm 12 QUICK SORT4(A, p, r)
1. if p < r then
2. q← PARTITION4(A, p, r)
3. QUICK SORT3(A, p,q−1)
4. QUICK SORT3(A,q+1, r)

Is this “fix” better than the previous one, and under what circumstances? How

much unnecessary overhead is introduced by this fix if the array has very few or no

repetitions?

2.2. Randomization 59

2.2 Randomization

In practice, the Quick Sort is on average about twice as fast as the Merge Sort. However,

despite its low average run time, on particular inputs the Quick Sort can be extremely

slow: it might run in quadratic time. For example, if you use the Quick Sort to sort

checks in a bank, the performance of Quick Sort will be extremely poor, because checks

appear in nearly sorted order, and for such sequences the Quick Sort has quadratic run

time. However, it is easy to fix this problem of the Quick Sort algorithm. We can insure

that the performance of the Quick Sort algorithm on a large set of inputs is essentially

independent on the probability distribution of different permutations of input strings

by usingrandomization. Randomizationcannot guarantee good performance on any

particular input, but it brings theaveragerun time for this set of inputs closer to the

expected valueof the run time of the Quick Sort algorithm for random inputs, i.e.,

for inputs in which all permutations are equally likely. Thus, we can expect efficient

performance of the randomized Quick Sort algorithm on large sets of inputs.

Randomization is accomplished by picking the pivot from the input array randomly,

by first swapping the pivoting element with a randomly chosen element. Thus, for

example, Algorithm 5 is transformed in this way into Algorithm 13;RANDOM(p, r) is

a random number generator producing integers betweenp andr with (approximately)

equal probability.

Clearly, our analysis of the expected time of theQUICK SORT algorithm equally

applies to the expected time of theRANDOMIZED QUICK SORT algorithm. Note that

randomization doesnot reduce the expected run time, but only insures that no particular

permutation of input elicits slow performance of the algorithm.

Note that calling a random number generator at each call of thePARTITION algo-

60 Chapter 2. Sorting Algorithms

Algorithm 13 PARTITION(A, p, r)
1. exchangeA[p]↔ A[RANDOM(p, r)]
2. pivot← A[p]
3. i ← p−1
4. j ← r +1
5. repeat
6. j ← j−1
7. until A[j]≤ pivot
8. repeat
9. i ← i +1

10. until A[i]≥ pivot
11. if i < j then
12. exchangeA[i]↔ A[j]
13. else
14. return j

rithm is computationally expensive, so one has to be careful when deciding if expected

inputs warrant using theRANDOMIZED QUICK SORT algorithm.

Exercise 2.4 (reviewing basic probability and expectation) Assume I took 1000 en-

velopes and he put in one of them 1000 dollars.

1. I now offer you to pick one of the envelopes for the price of 10 cents. Would you

pay?

2. How about if I ask you for $10 dollars?

3. What is the highest price that you would pay? Would you pay 999 dollars for all

of the envelopes? Would you pay 999 dollars for all envelopes but one?

4. In general, what is reasonable price to pay in such cases? What should be the

relationship between the expected gain and the price?

5. Can you base your decision solely on the basis of expected gain and the price?

2.2. Randomization 61

Other methods for improving the performance of the Quick Sort involve ensuring

that we pick a good pivot (i.e., as close to the median of elements in the array, thus

ensuring a balanced ensuing partition. They include taking a median of three elements,

picked one from both ends of the array and one from the center. Also, when the size of

the input array becomes small, recursive divide and conquer becomes inefficient: small

size arrays are best sorted by the Insertion Sort. Thus, one improvement of the Quick

Sort involves stopping the recursive partitioning when the size of the array drops below

certain threshold, usually about 20 or so. Small size sub-arrays are left unsorted, until

the Quick Sort terminates, and then the resulting “nearly sorted” array is sorted in linear

time using Insertion Sort.

Since the efficiency of the Quick Sort comes from the simplicity of the inner loop,

as with randomization, every “improvement” must be carefully weighted against added

computational complexity. Lots of useful details on this topic can be found in Sedgewick’s

classical bookAlgorithms(editions are available with implementations for several lan-

guages, includingC, C++ andJava).

