Virtual Machines

COMP9242
2007/S2 Week 5
UNSW

COMP9242 07S2 W05 1 Virtual Machines

Overview

* Introduction: What are virtual machines

* Why virtualisation?

* Virtualisation approaches

* Hardware support for virtualisation

* Why virtualisation in embedded systems?

* Hypervisors vs microkernels

COMP9242 07S2 W05 p

Virtual Machines

Virtual Machines

A virtual machine (VM) is an efficient, isolated duplicate of a real
machine [PG74]

Duplicate: VM should behave identically to the real machine

- Programs cannot distinguish between execution on real or virtual hardware

- Except for:
- less resources available (and potentially different between executions)
- Some timing differences (when dealing with devices)

Isolated: Several VMs execute without interfering with each other

Efficient: VM should execute at a speed close to that of hardware

- Requires that most instructions are executed directly by real hardware

COMP9242 07S2 W05 3 Virtual Machines

Virtual Machines, Simulators and Emulators

Simulator
> Provides a functionally accurate software model of a machine
v May run on any hardware

Xt Is typically slow (order of 1000 slowdown)
Emulator

- Provides a behavioural model of hardware (and possibly S/W)
Xt Not fully accurate

vVReasonably fast (order of 10 slowdown)
Virtual machine

> Models a machine exactly and efficiently
vMinimal showdown

Needs to be run on the physical machine it virtualises (more or less)

Boundaries are becoming soft, eg some simulators approaching VM performance

COMP9242 07S2 W05 4 Virtual Machines

Types of Virtual Machines

* Contemporary use of the term VM is more general

* Call virtual machines even if there is no correspondence to
an existing real machine
- E.g Java virtual machine

> Can be viewed as virtualising at the ABI level
- Also called process VM [SNO5]

* We only concern ourselves with virtualising at the ISA level
- ISA = instruction-set architecture (hardware-software interface)
-> Also called system VM

- Will later see subclasses of this

COMP9242 07S2 W05 5 Virtual Machines

Virtual Machine Monitor (VMM), aka Hypervisor

* Program that runs on real hardware
to implement the virtual machine

* Controls resources

Partitions hardware w

->

->

->

e 2

->

N2 20

Schedules guests
Mediates access to shared

resources (devices, console)
Performs world switch

* Implications:

Hypervisor executes in privileged mode

Guest software executes in unprivileged mode

Privileged instructions in guest cause a trap into hypervisor
Hypervisor interprets/emulates them

Can have extra instructions for hypercalls

* invocation of hypervisor APIs that are not machine instructions

COMP9242 07S2 W05 6

Virtual Machines

Why Virtual Machines?

* Historically used for easier sharing of expensive mainframes
> Run several (even different) OSes on same machine
> Each on a subset of physical resources
> Can run single-user single-tasked OS in time-sharing system
— “World switch” between VM

* Gone out of fashion in 80’s
- Hardware became too cheap to worry...

Virtual Machine Virtual Machine

Real (Physical) Machine

COMP9242 07S2 W05 Virtual Machines

Why Virtual Machines?

* Renaissance in recent years for improved isolation [RG05]

* Server/desktop virtual machines

e 2

S 7

->

* Isn't that the job of the OS?

Improved QoS and security
Uniform view of hardware
Complete encapsulation (replication, migration, checkpointing, debugging)
Different concurrent OSes
* eg Linux and Windows
Total mediation

* Do mainstream OSes suck Virtual Machine Virtual Machine

beyond redemption?

COMP9242 07S2 W05 8 Virtual Machines

Real (Physical) Machine

Native vs. Hosted VMM

Native/Classic/Bare-metal/Type-1 Hosted/Type-2

Hardware

* Hosted VMM can run besides native apps
- Sandbox untrusted apps
- Run second OS
- Less efficient:
Guest privileged instruction traps into OS, forwarded to hypervisor
Return to guest requires a native OS system call

Hardware

COMP9242 07S2 W05 9 Virtual Machines

VMM Types

Classic: as above
Hosted: e.g. VMware GSX Server

Whole-system: Virtual hardware and operating system
- Really an emulation
- E.g. Virtual PC (for Macintosh)

Physically partitioned:allocate actual processors to each VM
Logically partitioned: time-share processors between VMs

Co-designed: hardware specifically designed for VMM

- E.g. Transmeta Crusoe, IBM i-Series
Pseudo: no enforcement of partitioning

- Guests at same privilege level as hypervisor
- Really abuse of term “virtualisation”

COMP9242 07S2 W05 10 Virtual Machines

COMP9242 07S2 W05 11 Virtual Machines

Requirements for Virtualisation

Definitions:

Privileged instruction: executes in privileged mode, traps in user mode
-> Note: trap is required, NO-OP is insufficient!
Privileged state: determines resource allocation
- Includes privilege mode, addressing context, exception vectors, ...
Sensitive instruction: control-sensitive or behaviour-sensitive
control sensitive: changes privileged state
behaviour sensitive: exposes privileged state

> Includes instructions which are NO-OPs in user but not privileged mode

Innocuous instruction: not sensitive

Requirements for Virtualisation

An architecture is virtualizable if all sensitive instructions are
privileged (suitable for pure virtualisation)

* Can then achieve accurate, efficient guest execution
- Guest’s sensitive instruction trap and are emulated by VMM
- Guest’s innocuous instruction are executed directly

- VMM controls resources

Guest Exception VMM

COMP9242 07S2 W05 Virtual Machines

Requirements for Virtualisation

* Characteristic of pure virtualization is
— Execution is indistinguishable from native, except:

— Resources are more limited
* effectively running on smaller machine

— Timing is different
* noticeable only if there is an observable real time source
— real-time clock
— devices commuincating with external world (network)
* in practice hard to completely virtualize time

* Recursively virtualizable machine:
— If VMM can be built without any timing dependence

COMP9242 07S2 W05 13 Virtual Machines

Virtualisation Overheads

* VMM needs to maintain virtualised privileged machine state
-> Processor status
> Addressing context

* VMM needs to simulate privileged instructions
- Synchronise virtual and real privileged state as appropriate
- E.g. shadow page tables to vitualize hardware

* Frequent virtualisation traps can be expensive
> STI/CLI for mutual exclusion
> Frequent page table updates
- MIPS KSEG address used for physical addressing in kernel

COMP9242 07S2 W05 14 Virtual Machines

Unvirtualisable Architectures

« X86: lots of unvirtualizable features
- E.g. sensitive PUSH of PSW is not privileged
- Segment and interrupt descriptor tables in virtual memory
- Segment description expose privilege level

* Itanium: mostly virtualizable, but
-> Interrupt vector table in virtual memory
- THASH instruction exposes hardware page tables address

* MIPS: mostly virtualizable, but
= Kernel registers kO, k1 (needed to save/restore state) user-accessible
- Performance issue with virtualising KSEG addresses

* ARM: mostly virtualizable, but
- Some instructions undefined in user mode (banked regs, CPSR)
- PC is a GPR, exception return is MOVS to PC, doesn’t trap

* Most others have problems too

COMP9242 07S2 W05 15 Virtual Machines

Impure Virtualisation

* Used for two reasons:

- Unvirtualisable architectures

- Performance problems of virtualisation
* Two standard approaches:

[] para-virtualisation

[] binary translation

COMP9242 07S2 W05 Virtual Machines

Paravirtualisation

* New name, old technique

-> Used in Mach Unix server [GDFR90],
L*Linux [HHL+97], Disco [BDGR97]

-> Name coined by Denali project [WSG02],
popularised by Xen [DBF+03]

* Manually port the guest OS to modified ISA

> Augment by explicit hypervisor calls (hypercalls)

Hardware

v Idea is to provide more high-level API to reduce the number of traps
v Remove unvirtualisable instructions
v Remove “messy” ISA features which complicate virtualisation

* Drawbacks:
Significant engineering effort
Needs to be repeated for each guest, ISA, hypervisor combination
Paravirtualised guest needs to be kept in sync with native guest
Requires source

COMP9242 07S2 W05 17 Virtual Machines

Binary Translation

* Locate unvirtualisable instruction in guest binary and
replace on-the-fly by emulation code or hypercall
- Pioneered by Vmware on x86 [RGO05]

v Can also detect combinations of sensitive instructions and replace by
single emulation

Doesn’t require source
May (safely) do some emulation in user space for efficiency

Very tricky to get right (especially on x86!)

EE<<

Needs to make some assumptions on sane behaviour of guest

COMP9242 07S2 W05 18 Virtual Machines

Virtualisation Techniques: Memory

* Shadow page tables

- Guest accesses shadow PT

- VMM detects changes (e.g. making them R/O) and syncs with real PT
- Can over-commit memory (similar to virtual-memory paging)

- Note: Xen exposes hardware page tables (at least some versions do)

* Memory reclamation: Ballooning (VMware ESX Server)
- Load cooperating pseudo-device driver into guest
- To reclaim, balloon driver requests physical memory from guest
- VMM can then reuse that memory
- Guest determines which pages to release

* Page sharing
- VMM detects pages with identical content

- Establishes (copy-on-white) mappings to single page via shadow PT
- Significant savings when running many identical guest OSes

COMP9242 07S2 W05 19 Virtual Machines

Virtualisation Techniques: Devices

* Drivers in VMM

- Maybe ported legacy drivers

* Host drivers
- For hosted VMMs

* Legacy drivers in separate driver VM
- E.g. separate Linux “driver OS” for each device (LUSG04)
- Xen privileged “domain 0” gest

* Drivers in guest
- Requires virtualizing device registers
- Very expensive, no sharing of devices

* Virtualisation-friendly devices with guest drivers
- IBM channel architecture (mainframes)
- Safe device access by guest if physical memory access is restricted (1/0O-MMU)

COMP9242 07S2 W05 20 Virtual Machines

Pre-Virtualisation

* Combines advantages of pure and para-virtualisation
* Multi-stage process

[] During built, pad sensitive instruction with NOPs and
keep record

[] During profiling run, trap sensitive memory operations
(e.g. PT accesses) and record

[] Redo built, also padding sensitive memory operations

|]
bt
=

[] Link emulation lib (/n-place VMM or “wedge”) to guest
[] At load time, replace NOP-padded instructions
by emulation code Hardware
* Features:
v Significantly reduced engineering effort
v Single binary runs on bare metal as well as a/l hypervisors
Requires source (as does normal para-virtualisation)
Il Performance may require some para-virtualisation
See [LUC+05]

COMP9242 07S2 W05 21 Virtual Machines

http://l4ka.org/projects/virtualization/afterburn/

Hardware Virtualisation Support

* Intel VT-x/VT-i: virtualisation support for x86/Itanium [UNR+035]

- Introduces new processor mode: roof mode for hypervisor

- If enabled, all sensitive instructions in non-root mode trap to root mode
* very expensive traps (700+ cycles on Core processors)

- VT-i (Itanium) also reduces virtual address-space size for non-root

* Similar AMD (Pacifica), PowerPC, ARM (TrustZone)

* Aim is virtualisation of unmodified legacy OSes

22 Virtual Machines

COMP9242 07S2 W05

Case study: TrustZone — ARM Virtualisation

Extensions

ARM virtualisation extensions introduce:

->

2

7

A 28 2/

New processor mode: monitor
-> Banked registers (PC, LR) Insecure World

> Guest runs in kernel mode
-> unvirtualisable instructions “ "
are no problem
L . . Hypetrvisor
New privileged instruction: S/
-> Enters monitor mode
New processor state: secure

Partitioning of resources
— Memory and devices marked secure or insecure

Monitor

In secure mode, processor has access to all resources

In insecure mode, processor has access to /nsecure resources only
Monitor switches world (secure - insecure)

Optional hypervisor switches insecure (para-virtualised) guests

COMP9242 07S2 W05 23

Secure World

ey

Virtual Machines

Other uses of virtualisation

* Checkpoint & restart
— Can be used for debugging, including executing backwards in time
* re-run from last checkpoint, collect traces, revert trace...

* Migrate live system images
— nice for load balancing and power management in clusters
— take your work home — without hauling a laptop around

* Multiple OSes
— Linux and Windows on a Mac
— Legacy OS version (XP image for old apps that don't run on Vista)

* OS development, obviously!
— develop on same box you're working on

* Ship complete OS image with application
— avoids some configuration dependencies
— also for security (run on trusted OS image!)
— sounds like Java ©

COMP9242 07S2 W05 24 Virtual Machines

Why Virtualisation in Embedded Systems?

* Heterogenous OS environments
* Legacy protection
* License separation

* Security

COMP9242 07S2 W05 25 Virtual Machines

Why Virtualisation: Heterogenous Environments

* Typical use: RTOS and high-level OS on same core
- Result of growing ES complexity

* RTOS environment for RT part

- Maintain legacy environment

- High-level OSes not real-time capable
* High-level OS for applications

- Well-defined OS API

- GUI, 3rd-party apps

- E.g. Linux, WinCE

* Alternative to multicore chips

- Cost reduction for low-end systems

COMP9242 07S2 W05 26 Virtual Machines

Why Virtualisation: License Separation

* Linux is under GPL

> All code in Linux kernel
becomes GPLed

> Includes loaded drivers

* Hypervisor encapsulates GPL

> RT side unaffected

- Can introduce additional
VVMs for other code...

> Stub driver forwards 10 requests

COMP9242 07S2 W05 Virtual Machines

Why Virtualisation: Security

* Protect against exploits
Attack

* Modem software attacked by Ul
exploits

> Compromised application OS could
compromise RT side

-> Could have serious consequences

e.g. for wireless devices (jamming)

* Virtualisation protects

- Separate apps and system
code into different VMs

COMP9242 07S2 W05 28 Virtual Machines

Why Virtualisation: Security

. _ o Attack
* Multiple cores offer insufficient

protection

- Cores share memory

* compromised OS can attack
OSes on other cores

* Virtualisation protects assets
- Provided OS is de- privileged

- Pseudo-virtualization buys nothing

* Digital Rights Management

- Encapsulate media player in own VM

COMP9242 07S2 W05 pA) Virtual Machines

Limitations of Virtualisation

* Pure hypervisor provides strong partitioning of resources

> Good for strict isolation
* This is not really what you want in an embedded system
* Subsystem of an embedded system need to cooperate
* Need controlled, high-performance sharing of resources

> Shared memory for high-bandwidth communication

-> Shared devices with low-latency access

* Need integrated scheduling across virtual machines

> High-level OS (best-effort VM) must be lower prio than real-time threads

-> However, some threads in real-time subsystem are background activities

* Need more than just a hypervisor!

COMP9242 07S2 W05 30 Virtual Machines

Hypervisors vs Microkernels

* Microkernels have been used as hypervisors for a long time
— Mach Unix ('90), L4Linux ('97)

* Hypervisors have more visibility than microkernels

* Both encapsulate subsystems

— Are hypervisors microkernels done right?
[HWF+05]

* What's the difference?

— Microkernels are generic

— Hypervisors are only
meant to support VMs
running guest OSes

COMP9242 07S2 W05 31 Virtual Machines

Microkernel as a Hypervisor

Xen L4 UML/LoL

Hardware

Hardware Hardware

* Microkernel as a hypervisor half-way between native and hosted
VMM?
-> However, para-virtualisation may also benefit from in-place emulation
-> E.g. save mode switches by virtualising PSR inside guest address space

32 Virtual Machines

COMP9242 07S2 W05

Microkernel as a Hypervisor

* Has all advantages of a pure hypervisor:
> Provide isolation (where needed)
— Run arbitrary guest OSes (high-level and RTOS)

* Supports efficient sharing
> High-performance IPC mechanism
> Shared memory regions
-> Support for device sharing

* Supports interleaved scheduling
> Application OS VM scheduled as a unit (with a single microkernel prio)

- RT threads directly scheduled by microkernel (with individual prios)

> Can have some at higher, some at lower prio than app OS environment

COMP9242 07S2 W05 33 Virtual Machines

Hypervisor vs. Microkernel

Hardware

Hardware

No other code in kernel mode
Generic, guest OS & native apps
VMM partially in guest AS
Minimal mechanism

Small (L4~ 0Okloc)

Guest communicate via IPC
continuum:

partitioned - integrated

Microkernel can be seen as a generalisation of a hypervisor
- Do we pay with performance?
- See also [HWF*05, HULO6]

COMP9242 07S2 W05 34 Virtual Machines

No other code in kernel mode
Specialised, legacy guest OS only
VMM completely in kernel (?)
Variety of mechanisms

Smaller? (Xen is 50—-100kLOC!)
Guest communicate via virtual NW
Strong subsystem partitioning

A2 25N 25 20 20 27
22 2580 250 2 0 7

Hypervisor vs. Microkernel: Performance

* Xen vs. L4 on Pentium 4 running Linux 2.6.9

* Device drivers in guest OS

Kernel Compile Netperf send Netperf receive
System Time | CPU O/H Xput CPU Cost Xput CPU Cost
(s) (%) (%) | (Mb/s) | (%) (cyc/B) | (Mb/s) | (%) | (cyc/B)
native 209 | 98.4 0 867.5 27 6.7 780.4 34 9.2
Linux on Xen 219 | 97.8 5 867.6 34 8.3 780.7 41 11.3
Linux on L4 236 | 97.9 13 866.5 30 7.5 780.1 36 9.8

* Xen base performance is better

-

... but more intrusive changes to Linux

-~ Network performance shows that there is optimisation potential

COMP9242 07S2 W05

35

Virtual Machines

Sharing Devices

* Requires high-performance IPC!

* Hypervisor + fast IPC = Microkernel?

COMP9242 07S2 W05 36 Virtual Machines

Integrated Scheduling

VM1 VM2
(Linux) System (RTOS)
Priority Priority Priority

RT5
RT4
RT3
Linux RT task
RT2
RT1
Linux
RTOS
Background1 Background task
Linux
Background task
»] Background2

COMP9242 07S2 W05 37 Virtual Machines

Other Microkernel Advantages: Native Environment

* Microkernel suitable for a native OS environment
> Hypervisor only meant to support a guest OS
> Microkernel powerful enough to support native OS environment

* Microkernel minimises trusted computing base
- No guest OS required for simple applications
- E.g. trusted crypto app

* run in own protection

domain Untrusted
- Xen TCB includes Trusted
dom-0 guest

(complete Linux!)

COMP9242 07S2 W05 Virtual Machines

Other Microkernel Advantages: Hybrid Systems

* Co-existence of monolithic and componentised subsystems
— Legacy support
— Successive migration
* componentise over time...

COMP9242 07S2 W05 Virtual Machines

