
                           

COMP9242 07S2 W05 1 Virtual Machines

Virtual Machines

COMP9242
2007/S2 Week 5

UNSW



                           

COMP9242 07S2 W05 2 Virtual Machines

Overview

• Introduction: What are virtual machines

• Why virtualisation?

• Virtualisation approaches

• Hardware support for virtualisation

• Why virtualisation in embedded systems?

• Hypervisors vs microkernels



                           

COMP9242 07S2 W05 3 Virtual Machines

Virtual Machines

A virtual machine (VM) is an efficient, isolated duplicate of a real 

machine [PG74]

Duplicate: VM should behave identically to the real machine

➔ Programs cannot distinguish between execution on real or virtual hardware

➔ Except for:

 ➔ less resources available (and potentially different between executions)

➔ Some timing differences (when dealing with devices)

Isolated: Several VMs execute without interfering with each other

Efficient: VM should execute at a speed close to that of hardware

 ➔ Requires that most instructions are executed directly by real hardware



                           

COMP9242 07S2 W05 4 Virtual Machines

Virtual Machines, Simulators and Emulators

Simulator

➔ Provides a functionally accurate software model of a machine 

√	 May run on any hardware

 Is typically slow (order of 1000 slowdown)

Emulator

➔ Provides a behavioural model of hardware (and possibly S/W) 

 Not fully accurate

√Reasonably fast (order of 10 slowdown)

Virtual machine

➔ Models a machine exactly and efficiently

√Minimal showdown

 Needs to be run on the physical machine it virtualises (more or less)

Boundaries are becoming soft, eg some simulators approaching VM performance



                           

COMP9242 07S2 W05 5 Virtual Machines

Types of Virtual Machines

• Contemporary use of the term VM is more general

• Call virtual machines even if there is no correspondence to 

an existing real machine

 ➔ E.g Java virtual machine

 ➔ Can be viewed as virtualising at the ABI level 

 ➔ Also called process VM [SN05] [SN05]

• We only concern ourselves with virtualising at the ISA level

 ➔ ISA = instruction-set architecture (hardware-software interface)

 ➔ Also called system VM

 ➔ Will later see subclasses of this

 



                           

COMP9242 07S2 W05 6 Virtual Machines

Virtual Machine Monitor (VMM), aka Hypervisor

• Program that runs on real hardware
to implement the virtual machine

• Controls resources
➔ Partitions hardware

➔ Schedules guests

➔ Mediates access to shared 
resources (devices, console) 

➔ Performs world switchworld switch

• Implications:
➔ Hypervisor executes in privilegedprivileged mode

➔ Guest software executes in unprivilegedunprivileged mode

➔ Privileged instructionsPrivileged instructions in guest cause a trap into hypervisor

 ➔ Hypervisor interprets/emulates them

➔ Can have extra instructions for hypercallshypercalls

• invocation of hypervisor APIs that are not machine instructions



                           

COMP9242 07S2 W05 7 Virtual Machines

Why Virtual Machines?

• Historically used for easier sharing of expensive mainframes
➔ Run several (even different) OSes on same machine

 ➔ Each on a subset of physical resources

 ➔ Can run single-user single-tasked OS in time-sharing system

 ➔ “World switch” between VM

• Gone out of fashion in 80’s
 ➔ Hardware became too cheap to worry...



                           

COMP9242 07S2 W05 8 Virtual Machines

Why Virtual Machines?

• Renaissance in recent years for improved isolation [RG05]

• Server/desktop virtual machines
 ➔ Improved QoS and security

 ➔ Uniform view of hardware

 ➔ Complete encapsulation (replication, migration, checkpointing, debugging)

 ➔ Different concurrent OSes

• Isn't that the job of the OS?
• Do mainstream OSes suck 

beyond redemption?

• eg Linux and Windows

 ➔ Total mediation



                           

COMP9242 07S2 W05 9 Virtual Machines

Native vs. Hosted VMM

• Hosted VMM can run besides native apps
➔ Sandbox untrusted apps
➔ Run second OS
➔ Less efficient:

 Guest privileged instruction traps into OS, forwarded to hypervisor
 Return to guest requires a native OS system call

Native/Classic/Bare-metal/Type-1 Hosted/Type-2



                           

COMP9242 07S2 W05 10 Virtual Machines

VMM Types

Classic: as above

Hosted: e.g. VMware GSX Server

Whole-system: Virtual hardware and operating system

➔ Really an emulation

➔ E.g. Virtual PC (for Macintosh)

Physically partitioned:allocate actual processors to each VM

Logically partitioned: time-share processors between VMs

Co-designed: hardware specifically designed for VMM

➔ E.g. Transmeta Crusoe, IBM i-Series

Pseudo: no enforcement of partitioning
➔ Guests at same privilege level as hypervisor
➔ Really abuse of term “virtualisation”



                           

COMP9242 07S2 W05 11 Virtual Machines

Requirements for Virtualisation

Definitions:

Privileged instruction: executes in privileged mode, traps in user mode

➔ Note: trap is required, NO-OP is insufficient!

Privileged state: determines resource allocation

➔ Includes privilege mode, addressing context, exception vectors, …

Sensitive instruction: control-sensitive or behaviour-sensitive

control sensitive: changes privileged state

behaviour sensitive: exposes privileged state

➔ Includes instructions which are NO-OPs in user but not privileged mode

Innocuous instruction: not sensitive



                           

COMP9242 07S2 W05 12 Virtual Machines

Requirements for Virtualisation

An architecture is virtualizable if all sensitive instructions are 

privileged (suitable for pure virtualisation)

• Can then achieve accurate, efficient guest execution

➔ Guest’s sensitive instruction trap and are emulated by VMM

➔ Guest’s innocuous instruction are executed directly

➔ VMM controls resources



                           

COMP9242 07S2 W05 13 Virtual Machines

Requirements for Virtualisation

• Characteristic of pure virtualization is
– Execution is indistinguishable from native, except:

– Resources are more limited
• effectively running on smaller machine

– Timing is different
• noticeable only if there is an observable real time source

– real-time clock
– devices commuincating with external world (network)

• in practice hard to completely virtualize time

• Recursively virtualizableRecursively virtualizable machine:
– If VMM can be built without any timing dependence



                           

COMP9242 07S2 W05 14 Virtual Machines

Virtualisation Overheads

• VMM needs to maintain virtualised privileged machine state
➔ Processor status

➔ Addressing context

• VMM needs to simulate privileged instructions
➔ Synchronise virtual and real privileged state as appropriate 

➔ E.g. shadow page tables to vitualize hardware

• Frequent virtualisation traps can be expensive
➔ STI/CLI for mutual exclusion

➔ Frequent page table updates

➔ MIPS KSEG address used for physical addressing in kernel



                           

COMP9242 07S2 W05 15 Virtual Machines

Unvirtualisable Architectures

• X86: lots of unvirtualizable features
➔ E.g. sensitive PUSH of PSW is not privileged

➔ Segment and interrupt descriptor tables in virtual memory

➔ Segment description expose privilege level

• Itanium: mostly virtualizable, but
➔ Interrupt vector table in virtual memory

➔ THASH instruction exposes hardware page tables address

• MIPS: mostly virtualizable, but
➔ Kernel registers k0, k1 (needed to save/restore state) user-accessible

➔ Performance issue with virtualising KSEG addresses

• ARM: mostly virtualizable, but
➔ Some instructions undefined in user mode (banked regs, CPSR)

➔ PC is a GPR, exception return is MOVS to PC, doesn’t trap

• Most others have problems too



                           

COMP9242 07S2 W05 16 Virtual Machines

Impure Virtualisation

• Used for two reasons:
➔ Unvirtualisable architectures

➔ Performance problems of virtualisation

• Two standard approaches:

① para-virtualisation

② binary translation



                           

COMP9242 07S2 W05 17 Virtual Machines

Paravirtualisation

• New name, old technique

➔ Used in Mach Unix server [GDFR90], 

L4Linux [HHL+97], Disco [BDGR97]

➔ Name coined by Denali project [WSG02], 

popularised by Xen [DBF+03]

• Manually port the guest OS to modified ISA
➔ Augment by explicit hypervisor calls (hypercalls)

√ Idea is to provide more high-level API to reduce the number of traps

√ Remove unvirtualisable instructions

√ Remove “messy” ISA features which complicate virtualisation

• Drawbacks:
 Significant engineering effort

 Needs to be repeated for each guest, ISA, hypervisor combination

 Paravirtualised guest needs to be kept in sync with native guest 

 Requires source



                           

COMP9242 07S2 W05 18 Virtual Machines

Binary Translation

• Locate unvirtualisable instruction in guest binary and 

replace on-the-fly by emulation code or hypercall 

➔ Pioneered by Vmware on x86 [RG05]

√ Can also detect combinations of sensitive instructions and replace by 

single emulation

√ Doesn’t require source 

√ May (safely) do some emulation in user space for efficiency

 Very tricky to get right (especially on x86!)

 Needs to make some assumptions on sane behaviour of guest 



                           

COMP9242 07S2 W05 19 Virtual Machines

Virtualisation Techniques: Memory

• Shadow page tables
➔ Guest accesses shadow PT

➔ VMM detects changes (e.g. making them R/O) and syncs with real PT

➔ Can over-commit memory (similar to virtual-memory paging)

➔ Note: Xen exposes hardware page tables (at least some versions do)

• Memory reclamation: Ballooning (VMware ESX Server)
➔ Load cooperating pseudo-device driver into guest

➔ To reclaim, balloon driver requests physical memory from guest

➔ VMM can then reuse that memory 

➔ Guest determines which pages to release

• Page sharing
➔ VMM detects pages with identical content

➔ Establishes (copy-on-white) mappings to single page via shadow PT

➔ Significant savings when running many identical guest OSes



                           

COMP9242 07S2 W05 20 Virtual Machines

Virtualisation Techniques: Devices

• Drivers in VMM
➔ Maybe ported legacy drivers

• Host drivers
➔ For hosted VMMs

• Legacy drivers in separate driver VM
➔ E.g. separate Linux “driver OS” for each device (LUSG04)

➔ Xen privileged “domain 0” gest

• Drivers in guest
➔ Requires virtualizing device registers

➔ Very expensive, no sharing of devices

• Virtualisation-friendly devices with guest drivers
➔ IBM channel architecture (mainframes)

➔ Safe device access by guest if physical memory access is restricted (I/O-MMU)



                           

COMP9242 07S2 W05 21 Virtual Machines

Pre-Virtualisation

• Combines advantages of pure and para-virtualisation

• Multi-stage process

① During built, pad sensitive instruction with NOPs and 
keep record

② During profiling run, trap sensitive memory operations 
(e.g. PT accesses) and record

③ Redo built, also padding sensitive memory operations

④ Link emulation lib (in-place VMM or “wedge”) to guest

⑤ At load time, replace NOP-padded instructions 
by emulation code

• Features:
√ Significantly reduced engineering effort

√ Single binary runs on bare metal as well as all hypervisors

 Requires source (as does normal para-virtualisation)

 Performance may require some para-virtualisation
See http://l4ka.org/projects/virtualization/afterburn/ [LUC+05]

http://l4ka.org/projects/virtualization/afterburn/


                           

COMP9242 07S2 W05 22 Virtual Machines

Hardware Virtualisation Support

• Intel VT-x/VT-i: virtualisation support for x86/Itanium [UNR+05]

➔ Introduces new processor mode: root mode for hypervisor

➔ If enabled, all sensitive instructions in non-root mode trap to root mode

• very expensive traps (700+ cycles on Core processors)

➔ VT-i (Itanium) also reduces virtual address-space size for non-root

• Similar AMD (Pacifica), PowerPC, ARM (TrustZone)

• Aim is virtualisation of unmodified legacy OSes 



                           

COMP9242 07S2 W05 23 Virtual Machines

Case study: TrustZone — ARM Virtualisation 
Extensions

ARM virtualisation extensions introduce:
➔ New processor mode: monitor

➔ Banked registers (PC, LR)

➔ Guest runs in kernel mode

➔ unvirtualisable instructions

 are no problem

➔ New privileged instruction: SMI

➔ Enters monitor mode

➔ New processor state: secure

➔ Partitioning of resources

➔ Memory and devices marked secure or insecure

➔ In secure mode, processor has access to all resources

➔ In insecure mode, processor has access to insecure resources only

➔ Monitor switches world (secure - insecure)

➔ Optional hypervisor switches insecure (para-virtualised) guests



                           

COMP9242 07S2 W05 24 Virtual Machines

Other uses of virtualisation

• Checkpoint & restart
– Can be used for debugging, including executing backwards in time

• re-run from last checkpoint, collect traces, revert trace...

• Migrate live system images
– nice for load balancing and power management in clusters
– take your work home — without hauling a laptop around

• Multiple OSes
– Linux and Windows on a Mac
– Legacy OS version (XP image for old apps that don't run on Vista)

• OS development, obviously!
– develop on same box you're working on

• Ship complete OS image with application
– avoids some configuration dependencies
– also for security (run on trusted OS image!)
– sounds like Java 



                           

COMP9242 07S2 W05 25 Virtual Machines

Why Virtualisation in Embedded Systems?

• Heterogenous OS environments

• Legacy protection

• License separation

• Security



                           

COMP9242 07S2 W05 26 Virtual Machines

Why Virtualisation: Heterogenous Environments

• Typical use: RTOS and high-level OS on same core
➔ Result of growing ES complexity

• RTOS environment for RT part

➔ Maintain legacy environmentMaintain legacy environment

➔ High-level OSes not real-time capable

 High-level OS for applications

➔ Well-defined OS API

➔ GUI, 3rd-party apps

➔ E.g. Linux, WinCE

 Alternative to multicore chips

➔ Cost reduction for low-end systems



                           

COMP9242 07S2 W05 27 Virtual Machines

Why Virtualisation: License Separation

• Linux is under GPL

➔ All code in Linux kernel 

 becomes GPLed

➔ Includes loaded drivers

 Hypervisor encapsulates GPL

➔ RT side unaffected

 ➔ Can introduce additional  

VMs for other code...

 ➔ Stub driver forwards IO requests



                           

COMP9242 07S2 W05 28 Virtual Machines

Why Virtualisation: Security

• Protect against exploits

• Modem software attacked by UI 
exploits

➔ Compromised application OS could 
compromise RT side

➔ Could have serious consequences

 e.g. for wireless devices (jamming)

• Virtualisation protects

➔ Separate apps and system 
 code into different VMs



                           

COMP9242 07S2 W05 29 Virtual Machines

Why Virtualisation: Security

• Multiple cores offer insufficient 
protection

➔ Cores share memory
• compromised OS can attack 

OSes on other cores

• Virtualisation protects assets
➔ Provided OS is de- privileged

➔ Pseudo-virtualization buys nothing

• Digital Rights Management
➔ Encapsulate media player in own VM



                           

COMP9242 07S2 W05 30 Virtual Machines

Limitations of Virtualisation

• Pure hypervisor provides strong partitioning of resources
 ➔ Good for strict isolation

• This is not really what you want in an embedded system

• Subsystem of an embedded system need to cooperate

• Need controlled, high-performance sharing of resources

➔ Shared memory for high-bandwidth communication

 ➔ Shared devices with low-latency access

• Need integrated scheduling across virtual machines

 ➔ High-level OS (best-effort VM) must be lower prio than real-time threads

 ➔ However, some threads in real-time subsystem are background activities

• Need more than just a hypervisor!



                           

COMP9242 07S2 W05 31 Virtual Machines

Hypervisors vs Microkernels

• Microkernels have been used as hypervisors for a long time
– Mach Unix ('90), L4Linux ('97)

• Hypervisors have more visibility than microkernels

• Both encapsulate subsystems
– Are hypervisors microkernels done right? 

[HWF+05]

• What's the difference?
– Microkernels are generic
– Hypervisors are only 

meant to support VMs 
running guest OSes



                           

COMP9242 07S2 W05 32 Virtual Machines

Microkernel as a Hypervisor

• Microkernel as a hypervisor half-way between native and hosted 
VMM?
➔ However, para-virtualisation may also benefit from in-place emulation

➔ E.g. save mode switches by virtualising PSR inside guest address space

Xen L4 UML/LoL



                           

COMP9242 07S2 W05 33 Virtual Machines

Microkernel as a Hypervisor

• Has all advantages of a pure hypervisor:
 ➔ Provide isolation (where needed)

 ➔ Run arbitrary guest OSes (high-level and RTOS)

• Supports efficient sharing
 ➔ High-performance IPC mechanism

 ➔ Shared memory regions

 ➔ Support for device sharing

• Supports interleaved scheduling
 ➔ Application OS VM scheduled as a unit (with a single microkernel prio)

➔ RT threads directly scheduled by microkernel (with individual prios)

 ➔ Can have some at higher, some at lower prio than app OS environment



                           

COMP9242 07S2 W05 34 Virtual Machines

Hypervisor vs. Microkernel

➔ No other code in kernel mode

➔ Specialised, legacy guest OS only

➔ VMM completely in kernel (?)

➔ Variety of mechanisms

➔ Smaller? (Xen is 50–100kLOC!)

➔ Guest communicate via virtual NW

➔ Strong subsystem partitioning

➔ No other code in kernel mode

➔ Generic, guest OS & native apps

➔ VMM partially in guest AS

➔ Minimal mechanism

➔ Small (L4≈10kloc)

➔ Guest communicate via IPC

➔ continuum:
partitioned - integrated

• Microkernel can be seen as a generalisation of a hypervisor
➔ Do we pay with performance?

➔ See also [HWF+05, HUL06]



                           

COMP9242 07S2 W05 35 Virtual Machines

Hypervisor vs. Microkernel: Performance

• Xen base performance is better
➔ … but more intrusive changes to Linux

Network performance shows that there is optimisation potential

• Xen vs. L4 on Pentium 4 running Linux 2.6.9
• Device drivers in guest OS

780.1

780.7

780.4

(Mb/s)

Xput

Netperf receive

36

41

34

(%)

CPU

9.8

11.3

9.2

(cyc/B)

Cost

866.5

867.6

867.5

(Mb/s)

Xput

Netperf send

30

34

27

(%)

CPU

7.5

8.3

6.7

(cyc/B)

Cost

1397.9236Linux on L4

597.8219Linux on Xen

098.4209native

(%)(%)(s)

System O/HCPUTime

Kernel Compile



                           

COMP9242 07S2 W05 36 Virtual Machines

Sharing Devices

• Requires high-performance IPC!

• Hypervisor + fast IPC = Microkernel?



                           

COMP9242 07S2 W05 37 Virtual Machines

Integrated Scheduling



                           

COMP9242 07S2 W05 38 Virtual Machines

Other Microkernel Advantages: Native Environment

• Microkernel suitable for a native OS environment
 ➔ Hypervisor only meant to support a guest OS

 ➔ Microkernel powerful enough to support native OS environment

• Microkernel minimises trusted computing base
 ➔ No guest OS required for simple applications

 ➔ E.g. trusted crypto app

• run in own protection 

domain

 ➔ Xen TCB includes

dom-0 guest

(complete Linux!)



                           

COMP9242 07S2 W05 39 Virtual Machines

Other Microkernel Advantages: Hybrid Systems

• Co-existence of monolithic and componentised subsystems
– Legacy support
– Successive migration

• componentise over time...


