
MULTIPROCESSING, LOCKING
AND SCALABILITY

Peter Chubb and Ihor Kuz
first.last@nicta.com.au

1. Multiprocessors

2. Cache Coherency

3. Locking

4. Scalability

NICTA Copyright c© 2011 From Imagination to Impact 2



Multiprocessors:
➜ Moore’s law running out of steam
➜ So scale out instead of up.
➜ Works well only for some applications!
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For a long time people have been attempting ‘scale-out’ instead
of ‘scale-up’ solutions to lack of processing power. The problem
is that for a uniprocessor, system speed increases (including I/O
and memory bandwidth) are linear for a geometric increase in
cost, so it’s cheaper to buy two machines than to buy one more
expensive machine with twice the actual performance. As a half-
way point, have become popular — especially as the limits to
Moore’s Law scalability are beginning to be felt.
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MULTIPROCESSING

Classical symmetric
Multiprocessor (SMP)

• Processors with local
caches

• Connected by bus

• Separated cache
hierarchy

• ⇒ cache coherency
issues
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In the classical multiprocessor, each processor connects to shared
main memory and I/O buses. Each processor has its own cache
hierarchy. Typically, caches arewrite-through; each cache snoops
the shared bus to invalidate its own cache entries.
There are also non-symmetric multiprocessor designs. In these,
some of the processors are designated as having a special pur-
pose. They may have different architectures (e.g., the IBM Cell
processors) or may be the same (e.g., the early m68k multipro-
cessors, where to avoid problems in the architecture, one pro-
cessor handled page faults, and the other(s) ran normal code).
In addition, the operating system can be structured to be asym-
metric: one or a few cores can be dedicated to running OS code,
the rest, user code.
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MULTIPROCESSING

Multicore (Chip
Multiprocessor, CMP)

• per-core L1 caches

• Other caches shared

• Cache consistency
addressed in h/w
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It has become common for manufacturers to put more than one
processor in a package. The exact cache levels that are shared
varies from architecture to architecture; L1 cache is almost al-
ways shared; L2 sometimes, and L3 almost never, although the
small number of cores per package mean that broadcast cache-
coherency policies can be made to work.
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MULTIPROCESSING

Symmetric Multithreading
(SMT)

• Multiple functional units

• Interleaved execution of
several threads

• Fully shared cache
hierarchy

ThreadThread

Core

Cache
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Almost every modern architecture has multiple functional units.
As instruction-level parallelism often isn’t enough to keep all of
the units busy, some architectures offer some kind of symmetric
multithreading, (one variant of this is called hyperthreading).
The main difference between architectures is whether threads
are truly concurrent (x86 family), interleaved (Niagara) or switched
according to event (Itanium switches on L3 cache miss). These
don’t make a lot of difference from the OS point of view, however.
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MULTIPROCESSING

Cache Coherency:
Processor A writes a value
to address x

then. . .

Processor B reads from
address x

Does Processor B see the value Processor A wrote?

Memory
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Bus

DMA−master

device

Cache Cache Cache
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Whenever you have more than one cache for the same memory,
there’s the issue of coherency between those caches.
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MULTIPROCESSING

Snoopy caches:

• Each cache watches bus write traffic, and invalidates
cache lines written to

• Requires write-through caches.
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On a sufficiently small system, all processors see all bus oper-
ations. This obviously requires that write operations make it to
the bus (or they would not be seen).
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MULTIPROCESSING

• Having to go to the bus every time is s l o w.

• Out-of-order execution on a single core becomes
problematic on multiple cores
– barriers

NICTA Copyright c© 2011 From Imagination to Impact 9

As the level of parallelism gets higher, broadcast traffic from ev-
ery processor doing a write can clog the system, so instead,
caches are directory-based.
In addition, although from a single-core perspective loads and
stores happen in program order, when viewed from another core
they can be out-of-order. More later...
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CACHE COHERENCY

• There are many different coherency models used.

• We’ll cover MESI only (four states).
– Some consistency protocols have more states (up

to ten!)

• ‘memory bus’ actually allows complex message
passing between caches.
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‘Under the hood’ that simple bus architecture is a complex message-
passing system. Each cache line can be in one of a number of
states; cache line states in different caches are coordinated by
message passing.
This material is adapted from the book chapter by McKenney
(2010).
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CACHE COHERENCY

MESI:

Each cache line is in one of four
states:
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I Invalid
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One commonly used protocol is the MESI protocol. Each cache
line (containing more than one datum) is in one of four states.
In the Modified state, the cache line is present only in the current
cache, and it has been modified locally.
In the Exclusive state, the cache line is present only in the cur-
rent cache, but it has not been modified locally.
In the Shared state, the data is read-only, and possibly present
in other caches with the same values.
The Invalid state means that the cache line is out-of-date, or
doesn’t match the ‘real’ value of the data, or similar. In any event,
it is not to be used.

NICTA Copyright c© 2011 From Imagination to Impact 11-1



CACHE COHERENCY

MESI protocol messages:
Caches maintain consistency by
passing messages:

Read
Read Response
Invalidate
Invalidate acknowledge
Read invalidate
Writeback
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A Read message contains a physical address. A read response
message contains the data held in that address: it can be pro-
vided either by main memory or by another processor’s cache.
An invalidate message contains a physical address. It says to
mark the cache line containing that address as invalid. Each
cache that contains the line must generate an invalidate ac-
knowledge message; on small systems that do not use directory-
based caching, all caches have to generate an invalidate ac-
knowledge.
Read invalidate combines both read and invalidate messages
into one: presumably the processor is getting a cache line to
write to it. It requires both read response and Invalidate Ac-
knowledge messages in return.
The Writeback message contains a physical address, and data
to be written to that address in main memory. Other processors’
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caches may snoop the data on the way, too. This message al-
lows caches to eject lines in the M state to make room for more
data.
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CACHE COHERENCY
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a M → E A cache line is written back to memory (Writeback
message) but the processor maintains the right to modify
the cacheline

b E → M The processor writes to a cache line it already had
exclusive access to. No messages are needed.

c M → I The processor receives a read invalidate message
for a cacheline it had modified. The processor must in-
validate its local copy, then respond with both a Read Re-
sponse and an Invalidate Acknowledge message.

d I → M The processor is doing an atomic operation (read-
modify-write) on data not in its cache. It sends a Read
Invalidate message; it can complete its transition when
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it has received a full set of Invalidate acknowledge re-
sponses.

e S →M The processor is doing an atomic operation on a data
item that it had a read-only shared copy of in its cache.
It cannot complete the state transition until all Invalidate
acknowledge responses have been received.

f M → S Some other processor reads (with a Read message)
the cache line, and it is supplied (with a Read Response)
from this cache. The data may also be written to main
memory.

g E → S Some other processor reads data from this cache
line, and it is supplied either from this processor’s cache
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or from main memory. Either way, this cache retains a
read-only copy.

h S → E There can be two causes for this transition: either
all other processors have moved the cacheline to Invalid
state, so this is the last copy; or this processor has de-
cided it wants to write fairly soon to this cacheline, and
has transmitted an Invalidate message. In the second
case, it must wait for a full set of Invalidate Acknowledge
responses before completing the transition.

i E → I Some other processor does an atomic operation on a
datum held only by this processor’s cache. The transition
is initiated by a Read Invalidate message; this processor
responds with both Read Response and Invalidate Ac-
knowledge.
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j I → E This processor is attempting to store to an address
not currently cached. It will transmit a Read Invalidate
message; and will complete the transition only when a
Read Response and a full set of Invalidate Acknowledge
messages have been received. The cacheline will usually
move E → M soon afterwards, when the store actually
happens.

k I → S This processor wants to get some data, It sends Read
and receives Read Response

l S → I Some other processor is attempting to modify the cache
line. An Invalidate message is received; an Invalidate Ac-
knowledge is sent.
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CACHE COHERENCY

• Why don’t Invalidate Acknowledge storms saturate
interconnect?
⇒ simple bus doesn’t scale; add directory to each

cache that tracks who holds what cache line.
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With all this bus traffic, cache line bouncing can be a major con-
cern tying up the interconnect for relatively long periods of time.
In addition, if a cache is busy, because of the necessity to wait
for a remote transaction to complete, the current processor is
stalled
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CACHE COHERENCY

CPU 0 CPU 1
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While waiting for all the invalidate-acknowledgements, the pro-
cessor can make no forward progress.
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CACHE COHERENCY

Memory
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In most architectures this latency is hidden by queueing up stores
in a store buffer. When the processor does a write to a cache-
line in Invalid or Shared states, it sends a read-invalidate or a
invalidate message, and then queues the write to its store buffer.
It can then continue with its next operation without stalling.
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CACHE COHERENCY

Problems:

a = 1

b = a + 1

assert(b == 2)

Memory
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Core

Store
Buffer

Interconnect

Cache Cache
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If this is all it did, there would be problems. Imagine a is not in
the current cache (state Invalid).

1. a not in cache, sends Read Invalidate
2. a← 1 in store buffer
3. starts executing b=a+1, needs to read a
4. gets Read Response with a==0
5. loads a from cache
6. applies store from store buffer writing 1 to cache
7. adds one to the loaded value of a and stores it into b
8. Assertion now fails because b is 1.
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CACHE COHERENCY

Solution is Store Forwarding
Processors snoop their store buffers as well as their
caches on loads.

Local ops seen in program order

Insufficient in a Multiprocessor.
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CACHE COHERENCY

CPU 0 CPU 1

a = 1

b = 1

while (b==0) continue;

assert(a == 1);

Start with a in CPU 1’s cache; b in CPU 0.
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CACHE COHERENCY

1. CPU0: a← 1. New value of a to store buffer, send
Read Invalidate.

2. CPU1: reads b, sends Read message.
3. CPU0: executes b← 1. It owns this cache line, so no

messages sent.
4. CPU0 gets Read ; sends value of b (now 1), marks it

Shared.
5. CPU1 receives Read Response, breaks out of while

loop, and the assertion fails.
6. CPU1 gets the Read Invalidate message and sends

the cache line containing a to CPU 0.
7. CPU0 finally gets the Read ResponseNICTA Copyright c© 2011 From Imagination to Impact 20

The hardware cannot know about data-dependencies like these,
and needs help from the programmer. Almost every MP-capable
architecture has some form of barrier or fence instruction, that
waits until anything in the store buffer is visible to all other pro-
cessors, and also tweaks the out-of-order engine (if any) to con-
trol whether stores and loads before this instruction can be occur
afterwards, and vice versa.
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CACHE COHERENCY

Invalidate Queues:

• Invalidates take too long (busy caches, lots of other
processors sending Invalidates)

• So buffer them:
– Send Invalidate Acknowledge immediately
– Guarantee not to send any other MESI message

about this cache line until Invalidate completes.

• Can give more memory ordering problems
(McKenney 2010)
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Busy caches can delay Invalidate Acknowledge messages for a
long time. This latency is hidden using an ‘Invalidate Queue’. A
processor with an invalidate queue can send an Invalidate Ac-
knowledge as soon as it receives the Invalidate Request. The
Invalidate Request is queued instead of being actioned immedi-
ately.
Placing an Invalidate Request in the queue is a promise not to
send any MESI protocol messages that relate to that cache line
until the line has been invalidated.
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CACHE COHERENCY

Barriers: (also called fences)

Write barrier Waits for store buffer to drain

Read barrier Waits for Invalidate Queue to drain

Memory barrier Waits for both

All barriers also tweak out-of-order engine.
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In addition to waiting for queues to drain, barriers tell the out-of-
order execution engine (on OOO processors) not to move writes
past a write barrier, or reads before a read barrier. This ensures
in a critical section that instructions don’t ‘leak’.
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CACHE COHERENCY

Guarantees:

1. Each processor sees its own memory accesses in
program order

2. Processors may reorder writes only if they are to
different memory locations

3. All of a processor’s loads before a read barrier will be
perceived by all processors to precede any load after
that read barrier

4. Likewise for stores and a write barrier, or loads and
stores and a full barrier
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Particular processors may give stronger guarantees than these.
In particular, X86 is fairly strongly ordered, and sometimes you
can get away without a barrier that would be needed, say, on
Alpha.
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CACHE COHERENCY

Another example:
void foo() {

a = 1;

mb();

b = 1;

}

void bar(void) {

while (!b)

;

assert (a == 1);

}

Assume a == 0 in Shared state; b == 0 in Exclusive
state in CPU 0; CPU0 does foo(), CPU1 does bar()
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CACHE COHERENCY

1. CPU0 puts a← 1 into store buffer; sends Invalidate.
2. CPU 1 starts while (!b); sends Read and stalls.
3. CPU 1 gets Invalidate, puts it into queue, and

responds.
4. CPU 0 gets Invalidate Acknowledge, completes

a← 1, moves past barrier.
5. CPU 0 does b← 1; no need for store buffer.
6. CPU 0 gets Read for b, sends Read Response,

transition to Shared
7. CPU 1 gets Read Response with b == 1, breaks

out of while(...).
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CACHE COHERENCY

8. CPU 1 reads a from cache, it’s still 0 so assertion
fails.

9. CPU 1 completes Invalidate on a Too late!
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CACHE COHERENCY

Fix:
void foo() {

a = 1;

wmb();

b = 1;

}

void bar(void) {

while (!b)

;

rmb();

assert (a == 1);

}
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Adding a read barrier (or a full barrier) after the loop makes sure
that the read of a cannot happen before the read of b — so
(after a lot of coherency traffic) this will cause the assertion not
to trigger.
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CACHE COHERENCY

DMA and I/O consistency:

• PCI MMIO writes are posted (i.e., queued) and can
occur out of order WRT other I/Os.

• PCI I/O writes are strongly ordered and are
effectively a barrier. wrt MMIO writes.

• Depending on architecture, CPU memory barriers
may or may not be enough to serialise I/O
reads/writes.
– DMA not necessarily coherent with CPU cache:

some bus-mastering devices need cache flushes.NICTA Copyright c© 2011 From Imagination to Impact 28

We’ve talked a lot about memory consistency between proces-
sors – what about DMA? What of IPI?
Different I/O devices differ; some respect cache coherency, oth-
ers do not. Read the docs!
In particular note that MMIO writes are ‘posted’ — they can be
queued. The PCI spec says that any read from a device must
force all writes to the device to complete.
Other buses have different memory-ordering issues. Be aware
of them!
Some cases (from (McKenney 2010)): a processor is very busy,
and holds onto a cache line, so that when a device’s DMA com-
plete interrupt arrives, it still has old data in its cache.
Context switching also needs appropriate memory barriers, so if
a thread is migrated from one processor to another, it sees its
current data.
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LOCKING AND ALL THAT. . .

• Shared data an issue

• How to maintain data consistency?

• Critical Sections

• Lock-free algorithms
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In general to get good scalability, you need to avoid sharing data.
However, sometimes shared data is essential.
Single word reads and writes are atomic, always; the visibility of
such operations can be controlled with barriers as above.
When updating some data requires more than one cycle, there’s
the possibility of problems, when two processors try to update
relate data items at the same time. For instance, consider a
shared counter. If it has the value 2 to start with, and CPU0
wants to add 3 and CPU1 wants to add 1, the result could be 3,
5 or 6. Only 6 is the answer we want!
To solve this problem, we identify critical sections of code, and
lock the data during those sections of code. However, locks have
problems (in particular heavily contended locks cause much cache
coherency traffic) and so for some common cases it’s possible
to use lock-free algorithms to ensure consistency.
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LOCKING AND ALL THAT. . .

Lock Granularity:

• Coarse grained: ‘Big Kernel Lock’
– Kernel becomes a monitor (Hoare 1974)
– At most one process/processor in kernel at a time
– Limits kernel scalability

• Finer grained locking
– Each group of related data has a lock
– If carefully designed, can be efficient

Good discussion of trade-offs in ch.10Schimmel (1994),NICTA Copyright c© 2011 From Imagination to Impact 30

The simplest locking is to treat all kernel data as shared, and use
a single Big Kernel Lock to protect it. The Kernel then essentially
becomes a Hoare Monitor.
The main problem with this is that it doesn’t scale to very many
processors. For systems that do not spend much time in the
kernel, and do not have very many processors, this is a good
solution though. It has also been used as a first step in convert-
ing from a uniprocessor OS to a multiprocessor OS.
The next step is generally identifying large chunks of data (e.g.,
the process table, the namei cache etc.) and providing a single
lock for each.
As systems have grown, it’s been noticed that finer-grain access
to these things is desirable, and locks have become finer over
time.
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LOCKING AND ALL THAT. . .

Lock Data not Code!
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The one thing to remember, is that we’re locking data, not code.
Be very clear over what data items need to be kept consistent,
and insert appropriate locks into the code that manipulates that
data.
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LOCKING AND ALL THAT. . .

Uniprocessor Considerations:

• Just need to protect against preëmption

• (and interrupt handlers)
– disable/enable interrupts is sufficient
– some processors have multiple interrupt levels
spl0. . .spl7
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On a uniprocessor, the only way for multiple threads of control
to access the same data at a time is by a context switch, either
to interrupt context, or to a different thread. As context switches
happen only in two circumstances: voluntarily, or in response to
an interrupt, it suffices to disable interrupts.
Some processors have multiple interrupt levels (e.g., M68K); op-
erating systems for such architectures can selectively disable in-
terrupts.
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LOCKING AND ALL THAT. . .

Simple spin locks:

spinlock(volatile int *lp)

{

while (test_and_set(*lp))

;

}
spinunlock(volatile int *lp)

{

*lp = 0;

}
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The simplest way to implement a spinlock, is to use an atomic
test-and-set instruction sequence. On x86, this is usually a compare-
exchange sequence; on m68k a tas instruction; ARM instead
uses a send and receive event pair.
Such atomic operations usually have implicit memory barriers.
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LOCKING AND ALL THAT. . .

Issues with simple Spinlocks:

• Need to disable interrupts as well

• Wasted time spinning

• Too much cache coherency traffic

• Unfairness
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Spinlocks have problems. To prevent context switching, you
need to disable interrupts as well as hold the spinlock. While
spinning, the processor uses power and wastes CPU cycles.
Evey test-and-set instruction sends a Read Invalidate message
and gets all the Invalidate Acknowledge results if there’s any
contention at all. And if there’s a code sequence where a pro-
cessor releases the lock, then reacquires it, it’s likely not to let
any other processor in (because the lock is locally cache-hot).

NICTA Copyright c© 2011 From Imagination to Impact 34-1



LOCKING AND ALL THAT. . .

Ameliorating the problem:

• Spin on read (Segall & Rudolph 1984)

while (*lp || test_and_set(*lp))

;

– Most processors spin on while(*lp)

– The test_and_set() invalidates all locks,
causes coherency traffic.

– Better than plain test_and_set() but not
perfect.

– Unfairness still an issueNICTA Copyright c© 2011 From Imagination to Impact 35

Segall & Rudolph (1984) suggested guarding the test-and-set
with a read. That way, the spinning processors all have the
cache-line in Shared state, and spin on their own local caches
until the lock is released. This reduces coherency traffic, al-
though there’ll still be a thundering horde at unlock time. And
the resulting lock is still unfair.
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LOCKING AND ALL THAT. . .

• Ticket locks (Anderson 1990, Corbet 2008)
– Queue of waiting processes,
– Always know which one to let in next —
Deterministic latencies run to run

– As implemented in Linux, coherency traffic still an
issue.
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If you’ve ever bought Cheese at David Jones, you’ll be familiar
with a ticket lock: each person takes a ticket with a number on
it; when the global counter (controlled by the server) matches
the number on your ticket, you get served. Nick Piggin put these
into the Linux kernel in 2008; his contribution was to put the ticket
and the lock into a single word so that an optimal code sequence
could be written to take the lock and wait for it.

NICTA Copyright c© 2011 From Imagination to Impact 36-1



LOCKING AND ALL THAT. . .

lock(lp)

{

x = atomic_inc(lp->next);

while (lp->current != x)

;

}

unlock(lp)

{

lp->current++;

}
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Logically, the code sequence is as in the slide (I’ve omitted the
necessary read barriers). It’s assumed that the hardware pro-
vides a way to atomically increment a variable, do a write mem-
ory barrier and return its old value. If the lock was heavily con-
tested it would make sense to have the ticket counter and the
current ticket in separate cache lines, but this makes the lock
larger.
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LOCKING AND ALL THAT. . .

• Multi-reader locks
– Count readers, allow more than one
– Single writer, blocks readers

• BRlocks
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There are other locks used. There are many data structures that
are read-mostly. Concurrent reads can allow forward progress
for all readers. Multi-reader locks are slightly more expensive to
implement than simple spin locks or ticket locks, but can provide
good scalability enhancements.
Another lock used is the so-called brlock, or local-global lock.
These use per-cpu spinlocks for read access. A process at-
tempting write access needs to acquire all the per-cpu spinlocks.
This can be very slow.
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LOCKING AND ALL THAT. . .

Other locking issues:

• Deadlocking

• Convoying

• Priority inversion

• Composibility issues
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All locks have other issues. Lock ordering is important: if two
processes each have to take two locks, and they do not take
them in the same order, then they can deadlock.
Because locks serialise access to a data structure, they can
cause processes to start proceeding in lock step — rather like
cars after they’re released from traffic lights.
It’s possible for a process to be blocked trying to get a lock held
by a lower priority process. This is usually only a problem with
sleeping locks — while holding a spinlock, a process is always
running. There have been many solutions proposed for this (usu-
ally involving some way to boost the priority of the process hold-
ing the lock) but none are entirely satisfactory.
Finally there are issues with operation composability: how do
you operate on several data structures at once, when each is
protected by a different lock? The simplest way is always to take
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all the locks, but to watch for deadlocks.
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LOCKING AND ALL THAT. . .

Sleeping locks:

semaphore (Dijkstra 1965)

mutex just a binary semaphore

adaptive spinlock
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In 1965, Edsgar Dijkstra proposed a way for processes to co-
operate using a semaphore. The idea is that there is a variable
which has a value. Any attempt to reduce the value below zero
causes the process making the attempt to sleep until the value
is positive. Any attempt to increase the value when there are
sleeping processes associated with the semaphore wakes one
of them.
A semaphore can thus be used as a counter (of number of items
in a buffer for example), or if its values are restricted to zero or
one, it can be used as a mutual-exclusion lock (mutex).
Many systems provide adaptive spinlocks — these spin for a
short while, then if the lock has not been acquired the process is
put to sleep.
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LOCKING AND ALL THAT. . .

Doing without locks: (See Fraser & Harris (2007) and
McKenney (2003))

• Atomic operations
– Differ from architecture to architecture
– compare-exchange common
– Usually have implicit memory barrier
– Fetch-op useful in large multiprocessors: op

carried out in interconnect.
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Simple operations can be carried out lock free. Almost every
architecture provides some number of atomic operations. Archi-
tectures that do not, can emulate them using spinlocks.
Some architectures may provide fetch-and-add or fetch-and-mul
etc., instructions. These are implemented in the interconnect
or in the L2 cache, and provide a way of atomically updating a
variable and returning its previous or subsequent value.
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LOCKING AND ALL THAT. . .

Optimism:

• Generation counter updated on write

• Check before and after read/calc: if changed retry

• Also called Sequence Locks
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If you can afford to waste a little time, then an optimistic lock can
be used. The idea here is that a reading process grabs a gener-
ation counter before starting, and checks it just after finishing. If
the generation numbers are the same, the data are consistent;
otherwise the operation can be retried.
Concurrent writers still need to be serialised. Writers as their last
operation update the generation count.
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LOCKING AND ALL THAT. . .

RCU: (McKenney 2004, McKenney, Sarma, Arcangelli,
Kleen, Krieger & Russell 2002)

1. 2.

3. 4.
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Another way is so called read-copy-update. The idea here is that
if you have a data structure (such as a linked list), that is very
very busy with concurrent readers, and you want to remove an
item in the middle, you can do it by updating the previous item’s
next pointer, but you cannot then free the item just unlinked until
you’re sure that there is no thread accessing it.
If you prevent preëmption while walking the list, then a sufficient
condition is that every processor is either in user-space or has
done a context switch. At this point, there will be no threads
accessing the unlinked item(s), and they can be freed.
Inserting an item without locking is left as an exercise for the
reader.
Updating an item then becomes an unlink, copy, update, and
insert the copy; leaving the old unlinked item to be freed at the
next quiescent point.
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SCALABILITY

The Multiprocessor Effect:

• Some fraction of the system’s cycles are not available
for application work:
– Operating System Code Paths
– Inter-Cache Coherency traffic
– Memory Bus contention
– Lock synchronisation
– I/O serialisation
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We’ve seen that because of locking and other issues, some por-
tion of the multiprocessor’s cycles are not available for useful
work. In addition, some part of any workload is usually unavoid-
ably serial.
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Amdahl’s law:

If a process can be split into two parts, and σ of the
running time cannot be sped up, but the rest is sped up
by running on p processors, then overall speedup is

p

1 + σ(p− 1)
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It’s fairly easy to derive Amdahl’s law: perfect speedup for p pro-
cessors would be p (running on two processors is twice as fast,
takes half the time, that running on one processor).
The time taken for the workload to run on p processors if it took
1 unit of time on 1 processor is σ + (1 − σ)/p. Speedup is then
1/(σ+ (1− σ)/p) which, multiplying by p/p gives p/(pσ+1− σ),
or p/(1 + σ(p− 1))
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1 processor

Throughput

Applied load
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The general scalability curve looks something like the one in this
slide. The Y-axis is throughput, the X-axis, applied load. Un-
der low loads, where there is no bottleneck, throughput is deter-
mined solely by the load—each job is processed as it arrives,
and the server is idle for some of the time. Latency for each job
is the time to do the job.
As the load increases, the line starts to curve. At this point,
some jobs are arriving before the previous one is finished: there
is queueing in the system. Latency for each job is the time spent
queued, plus the time to do the job.
When the system becomes overloaded, the curve flattens out.
At this point, throughput is determined by the capacity of the
system; average latency becomes infinite (because jobs cannot
be processed as fast as they arrive, so the queue grows longer
and longer), and the bottleneck resource is 100% utilised.
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3 processors

2 processors

Applied load

Throughput

Latency

Throughput
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This graph shows the latency ‘hockey-stick’ curve. Latency is
determined by service time in the left-hand flat part of the curve,
and by service+queueing time in the upward sloping right-hand
side.
When the system is totally overloaded, the average latency is
infinite.
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Gunther’s law:

C(N) =
N

1 + α(N − 1) + βN(N − 1)

where:
N is demand
α is the amount of serialisation: represents Amdahl’s law
β is the coherency delay in the system.
C is Capacity or Throughput
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Neil Gunther (2002) captured this in his ‘Universal Scalability
Law’, which is a closed-form solution to the machine-shop-repairman
queueing problem.
It has two parameters, α which is the amount of non-scalable
work, and beta which is to account for the degradation often
seen in system-performance graphs, because of cross-system
communication (‘coherency’ or ‘contention’, depending on the
system).
The independent variable N can represent applied load, or num-
ber of logic-units (if the work per logic-unit is kept constant).
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Here are some examples. If α and β are both zero, the system
scales perfectly—throughput is proportional to load (or to pro-
cessors in the system).
If α is slightly positive it indicates that part of the workload is not
scalable. Hence the curve plateaus to the right. Another way of
thinking about this is that some (shared) resource is approaching
100% utilisation.
If in addition β is slightly positive, it implies that some resource
is contended: for example, preliminary processing of new jobs
steals time from the main task that finishes the jobs.
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Queueing Models:

ServerQueue

Poisson
arrivals

Poisson
service times

ServerQueue

Poisson
service times

Same Server

High Priority
Normal Priority

Sink
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You can think of the system as in these diagrams. The second
diagram has an additional input queue; the same servers service
both queues, so time spent serving the input queue is stolen
from time servicing the main queue.
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Real examples:
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These graphs are courtesy of Etienne and the Rapilog team.
This is a throughput graph for TPC-C on an 8-way multiprocessor
using the ext3 filesystem with a single disk spindle. As you can
see, β > 0, indicating coherency delay as a major performance
issue.
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Using R to fit the scalability curve, we get β = 0.017,α = 0.342 —
you can see the fit isn’t perfect, so fixing the obvious coherency
issue isn’t going to fix the scalability entirely.
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Moving the database log to a separate filesystem shows a much
higher peak, but still shows a β > 0. There is still coherency
delay in the system, probably the file-system log. From other
work I’ve done, I know that ext3’s log becomes a serialisation
bottleneck on a busy filesystem with more than a few cores —
switching to XFS (which scales better) or ext2 (which has no log)
would be the next step to try.
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Another example:
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This shows the reaim-7 benchmark running on various numbers
of cores on an HP 12-way Itanium system. As you can see, the
12-way line falls below the 8-way line — α must be greater than
zero. So we need to look for contention in the system some-
where.
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SPINLOCKS HOLD WAIT

UTIL CON MEAN( MAX ) MEAN( MAX )(% CPU) TOTAL NOWAIT SPIN RJECT NAME

72.3% 13.1% 0.5us(9.5us) 29us( 20ms)(42.5%) 50542055 86.9% 13.1% 0%
find lock page+0x30

0.01% 85.3% 1.7us(6.2us) 46us(4016us)(0.01%) 1113 14.7% 85.3% 0%
find lock page+0x130
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Lockmetering shows that a single spinlock in find lock page() is
the problem:
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struct page *find lock page(struct address space *mapping,

unsigned long offset)

{

struct page *page;

spin lock irq(&mapping->tree lock);

repeat:

page = radix tree lookup(&mapping>page tree, offset);

if (page) {

page cache get(page);

if (TestSetPageLocked(page)) {

spin unlock irq(&mapping->tree lock);

lock page(page);

spin lock irq(&mapping->tree lock);

. . .NICTA Copyright c© 2011 From Imagination to Impact 56

So replace the spinlock with a rwlock, and bingo:
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The scalability is much much better.
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TACKLING SCALABILITY PROBLEMS

• Find the bottleneck

• fix or work around it

• check performance doesn’t suffer too much on the
low end.

• Experiment with different algorithms, parameters
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