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Abstract

In this paper, we consider the problem of network de-
ployment in hybrid sensor networks, consisting of both
resource-rich and resource-impoverished sensor devices.
The resource-rich devices, called micro-servers, are more
expensive but have significantly greater bandwidth and en-
ergy capabilities compared to the low-cost, low-powered
sensors. Such hybrid sensor networks have the potential
to support the higher bandwidth communications of broad-
band sensor networking applications, as well as the fine-
grained sensing that is made possible by smaller sensor de-
vices. We investigate some fundamental questions for hy-
brid sensor network deployment — for a given number of
micro-servers, what is the maximum lifetime of a sensor
network and the optimal micro-server placement? What
benefit can additional micro-servers add to the network,
and how financially cost-effective is it to introduce these
micro-servers? We propose a cost model and integer lin-
ear programming (ILP) problem formulation for minimiz-
ing energy usage/maximizing lifetime in a hybrid sensor
network. Then, we prove that the integer linear optimiza-
tion problem is NP-hard and introduce an efficient approxi-
mation algorithm using tabu-search technique. Our studies
show that network lifetime can be extended by more than
100% by adding an extra micro-server to the network. The
network lifetime of optimized micro-servers’ placement can
be five times longer than the worst case lifetime, and 2.5
times longer than with a random micro-server placement.

Moveover, we propose a network performance-cost ratio
model to analyze the cost-effectiveness of network and show
that hybrid sensor network is financially cost efficient for a
large cases. Our optimization algorithm, together with the
performance-cost ratio model, can be used to estimate the
lifetime and financial cost of hybrid sensor network before
actual deployment.

1 Introduction

This paper investigates the problem of network deploy-
ment in hybrid sensor/actuator networks. By hybrid sen-
sor networks, we mean those networks consisting of both
resource-rich and resource-impoverished sensor devices.
The resource-rich devices, called micro-servers, are more
expensive but have significantly greater bandwidth and en-
ergy capabilities compared to the low-cost, low-powered
sensors. Such hybrid sensor networks have the potential
to support the long-range and/or high-bandwidth communi-
cations required by data-intensive sensing applications us-
ing broadband networking standards such as 802.16 as well
as the low-power, fine-grained sensing possible by smaller
sensing devices. Examples of broadband sensor network-
ing applications include time-elapsed imaging using video
sensors for coastal monitoring, and speech analysis in home
health care and cane-toad monitoring.

In the past couple of years, sensor networks research
has addressed the development of sensor platforms [7],



application domains [13], and communication paradigms
[17,12, 19, 16]. However, they neither exploited hybrid de-
vice capabilities such as out-of-band data communication
channels nor explored anycast services for sensor networks.

1.1 Motivation for Hybrid Sensor Networks

Historically, large scale networks have evolved to en-
compass myriad types of network devices. The Internet
today combines different devices such as routers, servers
and hosts. Even the routers can be classified into different
categories (e.g., into core routers and edge routers). For
large scale sensor networks that may have thousands of
nodes in the future, it is more realistic to have hierarchi-
cal models of network devices rather than flat ones. Such
a sensor network involves a hybrid of resource-rich special-
ized nodes in conjunction with small sensor devices [14].
The resource-rich nodes provide service such as (i) long-
range data communications, (ii) persistent data storage, or
(iii) actuation. Examples of actuation would be re-charging
or replacing small nodes whose energy has been depleted,
imagers which can take photos or video when activated by
sensors, sprinklers used for precision agriculture which can
sprinkle water in badly parched areas etc. The resource-
rich node can act as a data sink, and we call it a micro-
server. Figure 1 shows the hierarchical view of a hybrid
sensor network. Lower tier consists of numerous inexpen-
sive sensors, e.g. MICA2 (See Figure 2) from CROSSBOW
[1]; and upper tier consists of many expensive but resource-
rich micro-servers, e.g., STARGATE (See Figure 2) from
CROSSBOW.

Figure 1. An example of hybrid sensor net-
work.

MICA2 STARGATE

Figure 2. MICA2 and STARGATE.

1.2 Motivation for Data Anycast

The key challenge in building Ad-Hoc multi-hop sen-
sor networks from small, low-powered sensor nodes are
scalability and energy-efficient mechanisms for data dis-
semination. Previously proposed data routing protocols
[17, 12, 19, 16] for sensor networks have not been de-
signed to leverage the capabilities of hybrid devices. By ex-
ploiting resource-rich devices, the communication burden
on smaller, energy, bandwidth, memory and computation-
constrained sensor devices can be reduced. Consequently,
these protocols may not be best suited for several applica-
tions of such hybrid sensor networks, which involve a mul-
titude of mutually cooperative micro-servers.

Our thesis is that an anycast service, which routes sen-
sor data to the nearest available micro-server, rather than to
a single designated server, can provide significant improve-
ments to the aforementioned data dissemination protocols
for such applications and networks. The intuition is that you
only care for the service, not which server provides it. The
anycast service should be useful for several hybrid sensor
applications.

Consider the case of mobile soldiers operating in a bat-
tlefield. The soldiers may be equipped with more powerful
data transmitters (out of band higher-range radios) than sen-
sors. It may be more effective to forward the information
(e.g. enemy detection, land mine presence, convoy vehi-
cles) to the nearest available soldier, who can forward it to
the other soldiers, instead of sending it to all soldiers in the
field. In a disaster recovery operation, several biochemi-
cal sensors may have been scattered, and multiple imagers
(aerial or robotic) may be navigating the terrain. When bio-
chemical sensors detect a toxic plume, this message just
needs to go to the nearest imager (rather than a specific im-
ager) which can act accordingly. In the example of Figure
1, resource-impoverished MICA2 motes transfer data to one
of the STARGATES, and the STARGATE can either handle
the data or transfer it to interested parties using out-of-band
transmission channel (e.g., WiFi) and other routing proto-



cols (e.g., AODV [5]).

1.3 Hybrid Sensor Network Deployment: Prob-
lems and Contributions

In this paper, we investigate some fundamental questions
on hybrid sensor network deployment to support anycast
communication.

e Given a number of micro-servers, how does the place-
ment of them affect the life time of network?

e What is the benefit of introducing additional micro-
servers into network? Is it cost effective to introduce
these extra micro-servers?

To answer these two questions, we formulate an integer pro-
gramming problem to study how the placement of micro-
servers affect the lifetime of a hybrid sensor network us-
ing anycast communication. This optimization problem al-
lows us to study the cost-benefit of using multiple micro-
servers. Our cost model accounts for the variation in the
cost and capability of network resources in a hybrid sen-
sor network, such as bandwidth and energy consumption,
as well as the spatiotemporal variation in network events.
In particular, we find that the cost-effectiveness of micro-
servers increases with the size of the network, thus making
hybrid sensor networks a scalable solution. Although we
study network deployment in the context of anycast com-
munication, a similar methodology can also be applied to
distributed storage and computation in hybrid sensor net-
works.

The rest of this paper is organized as follows. Section 2
provides an overview of the anycast communication model
and the other related work. Section 3 proposes an integer
linear programming formulation of the network deployment
problem and prove the problem is NP-hard. Section 4 in-
troduces a tabu-search algorithm to solve the problem effi-
ciently. Section 5 presents an analysis to compare the life-
time differences and a cost analysis of different scenarios.
Section 6 discusses our conclusions.

2 Redated Work

In this section, we provide an overview of our anycast
mechanism and the other related work.

2.1 Tree-Based Data Anycast

In this section, we provide an overview of our anycast
mechanism which motivates the network deployment prob-
lem addressed in this paper.

We assume a hybrid sensor network which consists of
both resource-rich micro-server nodes and low-power sen-
sor nodes. Further we assume that there are multiple micro-
servers (sinks) interested in the same data. Data needs to
only reach one sink, thus motivating an anycast service. We
assume that sensor network applications can handle small
amount of data loss; and therefore anycast does not need to
explicitly provide reliable data delivery.

We want to provide an anycast service that is scalable,
self-organizing, robust, simple and energy-efficient. To im-
plement this, we adopted a shared tree approach. Corre-
sponding to each event source, a shortest-path tree rooted
at the source is constructed. Sinks form the leaves of the
tree. Sinks can dynamically join or leave the anycast tree.
Although this approach requires more network state, it is a
good approach to handling dynamics, as it simultaneously
maintains paths to all sinks. By eliminating the need to dis-
cover paths to alternate sinks each time a sink leaves, it can
reduce worst-case latency (when sinks fail) and does not
require synchronization among sinks. Figure 3 illustrates
how the structure of each anycast tree evolves when two
sinks join and leave a sensor network. Details of the any-
cast mechanism are described in paper [11].

An important metric in determining the performance of
the anycast scheme is the number and placement of micro-
servers (resource-rich nodes), relative to low-powered sen-
sor nodes. The number of micro-servers must be suffi-
cient to meet system lifetime objectives, as well as other
application-governed objectives (e.g., message delivery la-
tency), without exceeding resource cost thresholds. More-
over, the number of micro-servers chosen depends on pa-
rameters such as the occurrence pattern (frequency, spatial
distribution) of sensor events in the system. In the next sec-
tion, we propose a problem formulation for resource provi-
sioning, i.e., placement of micro-servers and sensors, in-
corporating all these factors.

2.2 Related Work in Deployments and Lifetime
Optimizations of Sensor Networks

Although previous work has considered optimal sensor
deployment in the context of homogeneous sensor networks
[10, 9, 6], network deployment has not been previously con-
sidered in the context of hybrid sensor networks.

In [15], the authors analyze heterogenous deployments
of sensor networks and shows how they impact the cover-
age aging process of a sensor network. In [8], the authors
try to maximize the amount of information collected by all
the nodes within required lifetime of two-tired sensor net-
work. Power-aware base station positioning in sensor net-
works problem has been investigated by [3] recently. How-
ever, previous work do not consider the problem with any
routing protocol. The key difference between our work and
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Figure 3. lllustration of the anycast mechanism. The lower boxed pictures show the structure of each
anycast tree as two sinks join and leave a sensor network.

these prior studies is that we focus on the deployment, e.g.
network lifetime and financial cost, of hybrid sensor net-
works that use tree-based anycast as routing algorithm.

3 Cost Model and Optimization

In this section, we propose a model to investigate how
the number of micro-servers and their placement affect the
lifetime of a hybrid sensor network and prove that the prob-
lem is NP-hard. In this paper, We define network lifetime as
the cumulative active time of the network until the first loss
of coverage; namely, the time from the deployment of the
network to the depletion of the first sensor or micro-server.

3.1 Cost Model

We model a sensor network as a graph G = (V, E),
where V' is a set of vertices 1, 2, ... nand E is a set of
edges. A sensor : is located at (i, 4,). Given the trans-
mission range of sensor (R), e; ; is an edge if equation (1)
holds.

Gy = )2 = e — ju)? <R &)

For a given G that has n vertices, assuming that each
vertex can hold either a sensor or a micro-server, our place-
ment problem is to decide where the micro-servers should
be placed so that the lifetime of the network can be max-
imized. In order to formulate the placement problem, we
define the following parameters:

A number of events r; can be detected by either a sen-
sor or a micro-server at location (i, i,) within each
time unit.

It costs e; units of energy for a sensor to sense/handle
an event.

It costs F; units of energy for a micro-server to
sense/handle an event.

It costs e, units of energy for a sensor to forward the
data packets of an event.

It costs E5 units of energy for a micro-server to for-
ward the data packets of an event.

The initial energy of a sensor is B*¢"%°" units.
The initial energy of a micro-server is B¢ units.

The shortest distance (hop-count) between vertex ¢ and
vertex j is d;.

The network lifetime is L.

The lifetime of sensor or micro-server at vertex k is
Ly.



Sensors use their energy for two purposes — (i) sens-
ing, and (ii) relaying packets from a data source to a micro-
server. In order to have the second type of energy consump-
tion captured in the optimization model succinctly, we de-
fine the indication function 7{3 as follows:

if vertex k is on the transmission path
from vertex i to vertex j and k # j

¢ _ J 1 (Note that the requirement that £ # j
Vij = is required because the last node in the
path does not have to re-transmit.)
0 otherwise.

The values of yfj depend on the network’s routing al-
gorithm (e.g., tree-based anycast) and can be calculated in
advance.

The decision variables are x; as:

1 if the device at vertex 7 is a sensor
€Xr; = . .
0 otherwise (a micro-server).

With anycast routing, a sensor will be transmitting to the
closest micro-server. To enforce this in the problem formu-
lation, we define an auxiliary variable z;;:

if the micro-server at vertex j is the
1 closest micro-server to the sensor at

vertex ¢
0 otherwise.

Zij =

The objective of the optimization is choose the locations
of the m micro-servers so as to maximize the lifetime of the
network. Therefore, the problem can be formulated as:

Minimize X 2

subject to:

rRe1%r + Z Z(ijrizij)eg — BT\, < 0,VEk. (3)

i=1 j=1

riFq 7TkE1$k+Z(T’iZik)E27BS€TU€T>\;€ <0,Vk. (4)

=1
dijw}; < dir, — digwy, Vi, j, k (5)
wlj < 25, i, j, k ®)
zij — ar < why, Vi, g, k @)

Y zi=n-m 9)
=1

>z =1V (12)
j=1

A >\, Vi (12)

z; € {0,1},Vi (13)

wl; € {0,1},Vi, j, k. (15)

Constraints (3) and (4) model, respectively, the energy
consumption of a sensor and a micro-server. The details
as to how these constraints are derived can be found in the
Appendix.

Constraints (5) to (7) enforce that a sensor delivers pack-
ets only to the closest micro-server. For details on deriva-
tion, see Appendix. Constraint (8) ensures a micro-server
cannot be an intermediate node of a path. Constraint (9)
limits that there are m micro-servers in the network. Con-
straint (10) ensures that only a micro-server can be the end
point (sink) of disseminated data. Constraint (11) enforces
that a sensor sends packets to one micro-server only. Con-
straint (12) says the lifetime of the network is the smallest
lifetime of all the sensors and micro-servers. Constraints
(13, 14, 15) define the scopes of variables x;, z;; and wfj

Remark: Although the above formulation uses the mean
spatial data rate rj, to determine the locations of the micro-
servers. It can be given a more general interpretation. Given
a temporal-spatial data rate distribution r (¢) at time ¢, if the
lifetime is sufficiently long and the distribution has finite
mean and variance, we can apply Central Limit Theorem
and Gaussian distribution to argue that the spatial data rate
at vertex k is less than =, with probability (1 — €). By us-
ing r{, in our formulation instead, we can obtain a lifetime
guarantee with probability (1 — ¢).

3.2 Proof of NP-Hardness

We will prove that the Integer Programming problem in-
troduced in subsection 3.1 is a NP-hard problem by trans-
form it to a well-known NP-hard problem of p-median prob-
lem [18].

We consider a special case of our problem where only
one sensor k has energy limitation (all the other sensors and



micro-servers have no energy limitation), and packets can
be delivered to any of micro-server regardless of the dis-
tance between the source and the micro-server. Since the
network lifetime equals to the lifetime of sensor k&, the ob-
jective function (2) and equation (12) can be rewritten as:

Minimize Mg (16)

As equation (3), we can further rewrite the objective
function as:

Minimize rre; + Z Z(’YZWQQZZ']') (17)

i=1 j=1

The constraints of the model can be rewritten as:

Z Ti=n—m (18)
i=1

zij —14+x; <0,Vi,j (19)
j=1

;€ {0,1}, Vi 1)

Zij € {Oa 1}7VZvj (22)

The above model is a p-median problem. Therefore, our
problem is NP-hard.

4 A Tabu Search Algorithm

Since the combinatorial optimization problem intro-
duced in Section 3 is NP-hard, it is very inefficient to solve
the problem and achieve optimized solution. From our ex-
perience, we find that the maximum network size that the
state-of-art commercial optimization package CPLEX [2]
can handle efficiently is 20 nodes. Thus, the results pro-
duced by CPLEX are not very helpful for the deployment of
a reasonable size network. We therefore develop an heuris-
tic solution based on tabu search [4].

4.1 Tabu Search

The tabu search is conducted within a neighborhood of
the current solution. We have tested a number of differ-
ent ways of defining the neighborhood and our experience
shows that the following works best: during a local search,

int tsStable = O;
int stabilityLimit = 500;

while(tsStale < stabiliyLimit) {

if(bestGain(x, best, obj) >= 0) { //intensification
randomMoveOneOfTheBest(x);

} else { //diversification
randomMoveAllMicroservers(x);
}
if(obj > best) { //better result found
best = obj;
tsStable = 0;
} else {
tsStable = tsStable + 1;
}
update_tabu_list(tabu_list_from, tabu_list_to);
}
bestGain(x, best, obj) {
old = obj;
soFarBest = -1;
for each neighbour of current microservers {
getlifetime(x, obj);
if(obj > best) { /laspiration level condition
update(x);
soFarBest = obj;
} else if(inTabulist(x)) {
continue;
} else{
if(obj > soFarBest)
soFarBest = obj;
}
}
return old - obj;
}

Figure 4. A tabu-search algorithm for sensor
network lifetime Optimization Model.

we vary the location of one micro-server at a time; if the cur-
rent location of the micro-server is at grid k, then its neigh-
borhood Ny, is defined as all the other grids in the network:

Np={1,2,..k—1,k+1,..n} (23)

Our tabu-search algorithm (Figure 4) defines two tabu
lists. The first one records the grids that micro-servers can
not move to for a number of iterations I;. The second one
records the grids that micro-servers can not leave for an-
other number of iterations ;. The value of I, and I should
be large enough to avoid cycles (we tuned them as 3/4 x n
and 1/2 x m respectively in our experiments).

The algorithm tries to find out a local maximum by cal-
culating the lifetime of each possible single move in inten-
sification stage. When the gain is negative, the algorithm



explores the unexplored area in diversification stage by ran-
dom movement. Note that it will not move to recent loca-
tions since they are recorded in tabu-lists unless aspiration
level condition is satisfied. The aspiration level condition is
defined as a new best lifetime found. The algorithm termi-
nates when the objective function has not improved for the
number of stability Limit iterations. The stabilityLimit
parameter is defined as a large integer (e.g., 500) to ensure
the robustness of the algorithm.

4.2 Algorithm Benchmark

To validate the tabu-search algorithm, we compared its
results with those from CPLEX for a 20-grid network (the
maximum grid size that CPLEX can handle efficiently).
The results, see Table 1, showed that our tabu-search al-
gorithm achieved the same optimal results as CPLEX, but
in much shorter time.

We have also applied our tabu search algorithm to larger
grid sizes. For example, for a grid size of 100 and 10 micro-
servers, it takes about 8 minutes and 48 seconds to obtain a
solution.

5 Resultsand Analysis

The mathematical model introduced in Section 3 enables
us to study the effect of the number of micro-servers and
their placements on the network lifetime of hybrid sensor
networks utilizing anycast routing. Moreover, this model
also allows us to study the financial cost effectiveness and
in particular to determine the most cost-effective combina-
tion of sensors and micro-servers in a hybrid sensor net-
work. Furthermore, our scalability studies show that the
cost effectiveness of hybrid sensor networks increases with
the size of the network.

We used three different network sizes (50, 100, 150)
and two types of network topologies (grid and random), in
our studies. The parameters that we used for our study is
showed in Table 2. Note that the sensing and transfer en-
ergy figures are taken from [14]. The reason why we chose
6KJ for the sensor is that this is the energy found inside two
AA batteries. We used two different traffic patterns. The
first traffic pattern, a uniform traffic pattern, had five events
taking place at each sensing location within each time unit.
The second traffic pattern, a non-uniform traffic pattern, had
r events taking place at a sensing location k per unit time
where 7, is an uniformly distributed integer in [0, 10].

5.1 Network lifetime analysis
In order to study the effect of the number of micro-

servers and micro-server placement on the lifetime of the
network. For a given number of micro-servers, we find:

1. The micro-server placement that will give the maxi-
mum lifetime using the mathematical model developed
in Section 3 will be referred to as “the best”.

2. The lifetime resulted from random placement of the
micro-servers. This is calculated by generating 19
random placements according to uniform distribution.
The mean lifetime of these 19 placements will be re-
ferred to as “random (mean)”, and the worst lifetime
of these placements will be referred to as “the worst”.

For the 150-grid (15 columns and 10 rows) case, Fig-
ures 5, 6 plot lifetime for the best, the worst and random
(mean) placement against different number of micro-servers
with uniform and non-uniform traffic patterns, respectively.
The figures show that network lifetime can be improved by
placing micro-servers at optimal locations. For example,
when two micro-servers are deployed, the best micro-server
placements can extend the network lifetime by about four
folds comparing to the worst, and by more than about 100%
comparing to the random (mean) placements. This demon-
strates the need to optimize the locations of the micro-
Servers.

Figures 5,6 also show that, with optimal placement, ad-
ditional micro-servers can improve network lifetime signif-
icantly. For example, network lifetime improves by more
than 80% with the addition of the second micro-server when
the traffic pattern is uniform.

We further investigated the effect of micro-server place-
ment in a general network. We generated a random topol-
ogy of a 150 nodes where the nodes are located inside an
area of 320 x 240m and the transmission range R of nodes
is 40m. Figures 7, 8 show the best micro-server locations of
3 and 4 micro-servers scenarios respectively.

Similar to grid topology, Figure 9 shows the optimal
micro-server location can improve network lifetime signif-
icantly. Moreover, Figure 9 shows that our tabu-search al-
gorithm, compared to random micro-server placement, per-
forms significantly better in non-uniform topology than in
grid topology. There are two reasons for such performance
difference. Firstly, there are a large number of local opti-
mums “plateaus” in grid topology, which makes the prob-
ability higher for random algorithm to have a “good” so-
lution. Secondly, although our tabu-search algorithm can
achieve better result than random approach, the difference
between these better results and local optima is not large in
grid topology.

Moreover, we investigated the performance of our algo-
rithm in different network topologies. We generated 20 ran-
dom topologies of 150 nodes inside an area of 320 x 240m.
We calculated the best, the worst and random(mean) life-
times of these networks with 4 micro-servers. Figure 10
shows that the best micro-server placement can extend net-
work lifetime by around 2.5 times comparing to the mean,
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Figure 5. Network life time of a 150 grid net-
work with different number of micro-servers.

Number of
Micro-servers

OO, WN B

Lifetime Computation Time
(seconds)
CPLEX | Tabu-search | CPLEX | Tabu-search

16901 16901 105.94 0.16
22641 22641 633.74 0.51
25531 25531 900.5 1

25531 25531 732.22 2.22
25531 25531 1618.37 8.75
29268 29268 342.95 40.71

Table 1. Results of CPLEX and tabu-search algorithm at a 20-grid network.

+ A+

Parameter Value
Initial energy of a sensor 6,000 Joules
Initial energy of a micro-server 60,000 Joules
Energy to sense an event for a sensor 35mJ
Energy to sense an event for a micro-server 25mJ
Energy to forward the packets generated by an event for a sensor 6 mJ
Energy to forward the packets generated by an event for a micro-server 6mJ
Table 2. Simulation parameters
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Figure 6. Network life time of a 150 grid net-
work with different number of micro-servers.
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and by more than 5 folds compared to the worst. Figures
11, 12 show two of the topologies and related micro-server
placements. This demonstrates the robustness of our algo-
rithm.

5.2 The impacts of heterogeneity

Hybrid sensor networks can extend the network lifetime
in two aspects: injecting extra energy into the system by
adding additional micro-servers, and shortening the data
transmission paths. In this section, we study the impacts
of both aspects.

For a random network topology shown in Figure 13, we
analyzed the relationships between network lifetimes and
initial network energies in different scenarios. The number
of initial energies of sensors, micro-servers and network are
summarized in Table 3. We used a fixed value of 6,000
Joules as B*¢™#°" and various the values of B*¢"v<" from
6,000 Joules to 246,000 Joules in our experiments. The sce-
narios that we used for comparisons are defined as follows:

Tradition: there is one and only one micro-server in the
network. In this scenario, the increased network ener-
gies will be allocated to one micro-server only.

Homogeneity: there are four micro-servers in the network;
sensors and micro-servers have the same initial energy;
the total initial network energy equals to that in “Tradi-
tion”. In this scenario, the increased network energies
will be allocated to all devices, i.e. sensors and micro-
servers, evenly.

Heterogeneity | there are four micro-servers in the net-
work; the micro-servers have different initial energies
to the sensors; but the total initial network energy
equals to that in “Tradition”. In this scenario, the in-
creased network energies will be allocated to all micro-
servers evenly.

Heterogeneity I1: where there are four micro-servers in
the network; the micro-servers have different initial en-
ergies to the sensors; and the total initial network en-
ergy is more than that in “Tradition”. In this scenario,
the increased network energies will be allocated to all
micro-servers evenly.

Figure 14 plots the network lifetimes with different ini-
tial total network energies. Although network lifetimes in-
crease with the injection of additional energy in all cases,
the lifetimes of both “Heterogeneity” cases increase at
significantly faster rates. It is the locations of energy-
injection, i.e. micro-servers’ locations, rather than the
energy-injection itself that have much greater impacts on
network lifetime. Namely, the impact of shorter transmis-
sion paths contributes much more to the longer network life-

times than that of additional energy-injection. In “Tradi-
tion”, “Heterogeneity 1” and “Heterogeneity 117, since ex-
tra energies are allocated to the micro-servers only, there
are bounds on the network lifetimes. Therefore, the curves
of these scenarios plateau after some thresholds; namely,
30,000J for “Tradition”, 102,000J for “‘Heterogeneity 17,
and 30,000 for “Heterogeneity 11” as shown in the figure.

5.3 Financial cost-effectiveness analysis

It is obvious that the network lifetime increases with the
number of micro-servers. An important question is how
cost-effective this is. We define the performance cost ratio
of a hybrid sensor network with m micro-servers as

L

L, =
(n —m)es + mkes

(24)

where L is network lifetime and the denominator is the net-
work cost. The cost consists of n — m sensors at cost ¢, and
m micro-servers at cost kc, where & represents the ratio of
the cost of a micro-server to a sensor. If we use the current
costs of Mica Mote and STARGATE, then & = 5. However,
this can change in the future. In our studies, we used & from
51to 110.

As a basis of comparison, we normalized the perfor-
mance cost ratio with respect to that with only one micro-
server; namely, we defined Nz, = LL_T Note that Ny, ,
is independent of unknown parameter ¢;. Therefore, if
Ny, is larger than 1 or 100%, then network L,, (which
has m micro-servers) is financially more cost-effective than
L4 (which has one micro-server).

Figures 15, 16 plot the values of the normalized perfor-
mance ratio for 150-node grid networks with uniform traffic
patterns, non-uniform traffic patterns respectively. Figure
17 plots the values of the normalized performance ratio for a
random 150-node network shown in Figure 7 with uniform
traffic patterns. The figures show that hybrid sensor net-
works are cost effective for a wide range of k. For example,
in a 150-grid network with uniform traffic pattern, for k =
5and m € [3,14], the cost-effectiveness of these networks
are more than twice that of a single micro-server network.
The figures also show that hybrid sensor network is more
financially cost effective when the network topology is ran-
dom than it is grid. For example, when k& = 10, in a 150 grid
network with uniform traffic pattern, the network lifetime
per unit cost when there are four micro-servers is about 2.2
longer than that when there is one micro-server; while in a
random network with uniform traffic pattern, the network
lifetime per unit cost when there are four micro-servers is
about 2.8 longer than that when there is one micro-server.
Namely, hybrid sensor network is scalable with network
topology complexity.

Moreover, to achieve maximum cost-effectiveness, the
figures show that different number of micro-servers should
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Figure 11. Network topology and the best 4
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be used as the values of k£ change. For example, in a 150
grid network with uniform traffic pattern, if k£ = 5, the life-
time of network can be extended by more than 230% at the
same cost ratio if twelve micro-servers are used compared
to just one micro-server is used; if k = 50, network lifetime
can be extended by about 50% at the same cost ratio if three
micro-servers are used compared to just one micro-server
is used. Not surprisingly, the performance decreases as
the value of k increases (when micro-server becomes much
more expensive than sensor).

Furthermore, we found that cost-effectiveness increases
with network size. We have plotted N, for k& = 50 for
different grid network sizes with uniform traffic patterns in
Figure 18. It shows that the larger the network, the more fi-
nancially cost-effective it is to add additional micro-servers
into the network. For example, the network lifetime per
unit cost can be extended by more than 40% when the sec-
ond micro-server is added to a 150 grid network, while the
lifetime can be only extended by about 20% and 10% re-
spectively when the second micro-server is added to a 50 or
100 grid network.

6 Conclusions

In this paper, we considered the problem of network de-
ployment for hybrid sensor networks, consisting of both
resource-rich and resource-impoverished sensor devices.

We model the sensor network as a graph. We pro-
posed an integer linear programming formulation to max-
imize network lifetime, proved that it is NP-hard, and intro-
duced a tabu-search algorithm to answer some fundamen-
tal questions related to hybrid sensor network deployment
— for a given number of micro-servers, what is the max-
imum lifetime of a sensor network and what is the opti-
mal micro-server placement? What benefit can additional
micro-servers add to the network, and how cost-effective is
it to introduce these micro-servers?

Our extensive studies showed that network lifetime
could be extended more than 100% by adding an extra
micro-server to the network; the network lifetime with opti-
mized micro-server placement can be five times greater than
the worst case lifetime, and 2.5 times greater than lifetime
with random deployment of micro-servers. We also pro-
posed a network performance-cost ratio model and showed
that a maximum performance cost ratio can be achieved.
In particular we find that the cost-effectiveness of micro-
servers increases with network size, thus making hybrid
sensor networks a scalable solution. Although we studied
network deployment to support anycast communication, a
similar methodology could be applied to deployment for
distributed computation and storage in hybrid sensor net-
works.
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Appendix:
model

Derivation of the optimization

Constraints (3) and (4)

The energy of a sensor is used for sensing and relaying
packets. If the device at vertex k is a sensor with lifetime
L;, we have

n n
rre1xp Ly + Z Z(ijrizij)egmkl/k — BT <0, Vk
i=1 j=1
(25)
where the first and second terms in the above equation
model energy consumption for, respectively, sensing and
packet relaying. Note that the x; term is used to ensure
that the above inequality is active only when the device at
vertex k is a sensor. Note also that the second term is only
active when the sensor at vertex 7 uses micro-server at ver-
tex j (indicated by z;; = 1) and the transmission path from
vertex ¢ to vertex j includes vertex k (indicated by 75]- =1).
If the device in vertex k is a micro-server, its lifetime Ly
obeys

’I“kElLk(l — ij) + Z(rizik)EQ(l — ij)Lk
=1

7BS€’I"’U€’I” S ()7 vk (26)

Note that the (1 — 1) term is used to ensure that this in-
equality is active only when the device at vertex & is a
micro-server.

By definition, \;, = Lik constraints (25) and (26) can be
rewritten as:

n n
rLe1T + Z Z('yfjrizij)egzk — BT\, <0,VEk

i=1 j=1
@7)
reBy (L—2k)+ Y (rizie) Ba(1—ax) — B*™" M\ < 0,k
i=1

(28)

/szj Zij | Tk %kaijfﬂk %kaij
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

Table 4. The values of 7}, z;;x, and 7} z;;. They
have different values only at row 7.

Constraint (27) is not linear. Consider ~/; z;;x), which is a
factor in the second term of (27). In Table 4, we compare
the value of ~/; z;; 2, against that of 4 z;; for all the 8 pos-
sible combinations of its constituent variables, we find that
they only differ in row 7. However, this combination is ex-
cluded by constraint (8). Thus, we can replace constraint
(27) by (3).

Similarly, we use constraint (10) to remove the nonlinear
term in constraint (28) to obtain (4).

Constraints (5, 6, 7, 15)

The requirement that a sensor uses the closest micro-
server as its sink can be enforced by the inequality

dijzij(l - :Ek) S dzk(l - Ik),Vi,j, k (29)

This ensures that a sensor at vertex ¢ will only use the micro-
server at vertex j if the hop count d;; is less than the hop
count to all other micro-servers. This constraint is nonlinear

but can be linearized by defining wfj = 2;;(1 — zy) and
introducing the following additional constraints:

wfj S Zij (30)

wfj < 11—z (31)

f} > Zij — Tk (32)

This shows how constraints (5, 6, 7, 15) are derived. Note
that we do not need to include (31) because it is implied by
(30) and (10) together.



