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Abstract

Fischer-Tropsch synthesis, a major process for converting natural gas to liq-
uid hydrocarbons (GTL) suffers from selectivity limitations. While GTL reactor
produces highly useful hydrocarbons in the form of liquid fuels such as gasoline,
it also produces low-grade hydrocarbons such as methane. Selectivity refers
to the ratio of highly useful hydrocarbons to the total product output. The
literature is replete with various catalyst formulations which seek to improve
selectivity to specific product spectrum via for example, molecular size or shape
exclusion using zeolites or control of growing surface chain length with particle
(site) geometry. Existing strategies for selectivity improvement, such as manip-
ulation of reactor operating factors (temperature, pressure, etc) and catalyst
design preparation variables may be classified as top-down approaches.

In this work, a bottom-up approach is proposed in which surface processes can
be controlled via Nano Sensor Network (NSN) involving the turning on or off of
elementary steps consisting undesired species, and redirection of surface efforts
to step(s) leading to the wanted products. The overall effect of this nano-level
communications will lead to superior selectivity than hitherto possible by re-
ducing the rate of Hydrogenation To Paraffin (HTP) reactions.

Our numerical and simulation results reveal an exponential relationship be-
tween reduction in rates of HTP reactions and selectivity. It also confirms a
considerable improvement of overall selectivity in a catalyst that is equipped by
a high reliable NSN in comparison with extant catalyst technologies and current
commercial Fischer-Tropsch reactors 1.

1 This work was done while the last author was with the School of Chemical Engineering
at University of New South Wales.



1 Introduction

Gas-to-liquid (GTL) compounds are clean fuels and intermediates for the pro-
duction of other petrochemicals. Fischer-Tropsch (FT) synthesis is the main
process for converting natural gas to the liquid hydrocarbons [1]. However, the
reaction is a complex network of many other steps and the requirement for effi-
cient use of the reactants (H2 and CO) to yield specified product spectrum (e.g
only olefins of a particular narrow product weight distribution) is critical and
measured in terms of selectivity - a reaction index termed.

Selectivity =
d

T
(1.1)

which d is amount (or rate of formation) of the desired products and T is
amount (or rate of formation) of both desired and unwanted products. The
conversion of synthesis gas to clean fuels and olefins suffers from selectivity
limitations because the reaction is a polymerization scheme in which surface
unsaturated hydrocarbons are the precursors to olefins and paraffins via des-
orption and hydrogenation. There are many factors that affect the selectivity
of FT. Process conditions, such as temperature, pressure and reactant ratio, as
well as catalyst composition influence the selectivity [2, 3]. Improving selectiv-
ity of FT selectivity by controlling these factors is an ongoing area of intense
research activities [2, 3, 4, 5, 6, 7, 8, 9].

In this work, we propose a new approach to improve selectivity via using
Nano Sensor Networks (NSNs) which are formed by establishing communication
between devices made from nano-materials. The objective of the present work
is to propose a NSN , a network of nano-machines , which can be used to turn
off pathways leading to unwanted products e.g termination to paraffin and/or
amplify the desorption of olefinic surface species. Unlike the conventional control
of H2:CO ratio in the reactor feed, the Nano-machine will have to work at
atomic or molecular level to exert control in the middle of chemical reactions
(after certain steps are completed). This bottom-up approach is evident in
many biological processes and responsible for the high selectivity and specificity
accompanying these reactions (e.g. ATP hydrolysis, photosynthesis, etc).

The contributions of this paper can be summarised as follows:

• We propose a novel methodology to improve chemical synthesis output by
using NSNs and specifically examine the idea for FT reactor to improve
product selectivity.

• We propose an analytical model for FT reactor based on discrete time
Markov Chain (MC) and calculate selectivity and product distribution of
FT via this model.

• We also design and run a simulation based on Stochastic Simulation Al-
gorithm (SSA) and the results confirm analytical model output.

• Based on numerical and simulation results, NSN can improve product se-
lectivity and this boosting has an exponential relationship with reduction
in the rate of hydrogenation to paraffin (HTP) reactions.

The rest of this paper is structured as follows. Section II provides some
general information about the NSNs. Section III reviews the FT synthesis spec-
ifications. In Section IV we discuss the idea of using NSNs to improve selectivity.
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Section V provides an analytical model based on Markov chain to evaluate the
idea followed by SSA simulation framework in Section VI. Some key challenges
discuss in Section VII and conclusions are given in section VIII.

2 Nano sensor networks

Technically, a NSN is a network of nano-scale devices capable of some basic
computing, sensing, actuation, and communication tasks. The seminal paper by
Akyildiz et al. [10] shows that conceptually it is possible to achieve communica-
tion at nano-scale either using electromagnetic or some form of molecular-based
transceivers. This has sparked a flurry of new research activities in a bid to
understand the unique properties of nano-materials that could be utilized for
communication between nano devices [11, 12, 13, 14, 15].

Because a NSN can work at atomic levels, they can be used for totally new
kind of nanotechnology applications which cannot be realized with conventional
sensor networks. Akyildiz and Jornet [11] has outlined a number of interesting
new applications of NSNs in biomedical, environmental, industrial, and military
domains. In all these applications, distributed communication between nano-
machines are envisaged to accomplish the application goal.

In this paper, our goal is to explore the potential of NSN in improving
product selectivity of FT synthesis. A NSN deployed on the catalyst surface
would be able to monitor all the reactions and intermediate steps. This makes it
possible to intervene the FT process and divert the product path from paraffin
to olefin in a more direct and efficient way.

3 Fischer- Tropsch

Fischer-Tropsch synthesis, a major process for converting natural GTL hydro-
carbons is a complex process involving many intermediate chemical reactions or
steps, but we can depict the overall function using the black-box of figure 3.1.
Two top level reactions of FT can be expressed as:
Paraffin : nCO + (2 n + 1 )H2 −−→ CnH2n+2 + nH2O
Olefin : nCO + (2 n)H2 −−→ CnH2n + nH2O

There are two inputs, H2 and CO which are fed to a FT reactor in a prede-
termined ratio.

Figure 3.1: Input and output of Fischer-Tropsch Catalysis.

After several intermediate reactions which have been shown in table 3.1
[3], we obtain two main products, viz; olefin (CnH2n) and paraffin (CnH2n+2).
Olefins are unsaturated hydrocarbons used as building blocks for making other
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petrochemicals and polymers in a wide variety of industrial and consumer mar-
kets such as packaging, transportation, electronic, textile, and construction
[16, 17, 18].
In contrast, paraffins are saturated hydrocarbons that cannot be used for fur-
ther product development and therefore have low commercial value. Thus, the
olefin-paraffin ratio is an important reactor performance index.

3.1 Intermediate Steps and Elementary Reactions

It is important to understand the elementary reactions in the FT chemistry if
we want to control at molecular-level, which is precisely the objective of NSN.
Table I shows the elementary reactions involved in the conversion of H2 and CO
to olefins and paraffins [3].

Table 3.1: Hydrocarbon synthesis via Fischer-Tropsch [3]

All reactions take place on the surface of a catalyst. Before a reaction can
take place, reactants must first be adsorbed onto the catalytic surface. The
surface of a catalyst contains sites where reactants can be adsorbed. A CO
may dissociate into C and O atoms. Similarly, H2 also adsorb to produce two
hydrogen atoms. A CH2 is formed when a C reacts with two neighboring H
molecules and a CH2 in turn may react with an adjacent H to form a CH3. A
CH3 can either react with a H to form a CH4 (methane) or it may kick start
a chain growth by reacting with an adjacent CH2, forming intermediate species
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CnH2n+1, which are the precursors to both olefins and parrafins. A CnH2n+1 can
either lead to olefin, i.e., CnH2n, through desorption or dehydrogenation (losing
one H), or parrafin, i.e., CnH2n+2, through hydrogenation (adding one H). In
order to improve the FT selectivity, our NSN aims to reduce the occurrence of
the latter reaction.

3.2 Current effort to improve FT selectivity

Many attempts have been made to promote selectivity of FT and they can be
categorized as two main groups of controlling operational factors (temperature,
pressure, etc) and catalyst design preparation variables. In the first category,
researchers try to improve selectivity by manipulating the environmental factors
of reactor such as pressure, temperature and CO: H2 feeding ratio [2, 3].

Thermodynamics considerations alone often show that conditions favorable
for the production of the desired product are also good (if not better) for forming
the unwanted materials. This is why we have waste products in many chemical
processes including even some important biological reactions. Therefore, we
cannot rely on thermodynamics alone to help us improve selectivity.

In the surface of the catalyst, several efforts are trying to develop novel
catalyst such as nanostructured catalyst to improve selectivity [6, 7, 19, 20, 21,
22, 23, 24]. However, in a system, where an inorganic catalyst is used to speed
up the reaction rate, rrxn, it is often the case that both the rate of wanted and
undesired products are accelerated in accordance with the law,

rrxn = f1(C)e
(−Erxn

RgT )
(3.1)

where f1(C) is a function expressing the dependency of rate on concentration
of reactants and products while Erxn is the activation energy for the reacting
species on the particular catalyst. The conventional wisdom in catalysis is to
design a suitable catalyst where Erxn for the desired product is considerably
lower than for any other product(s) or indeed the entire reaction.

In this work, we introduce a completely novel approach that would give the
control of the surface of the catalyst to increase the rate of wanted products
via decreasing the Hydrogenation to Paraffin (HTP) reactions rates by NSNs.
Indeed each site of the surface of the catalyst would be equipped by a nano
machine to control operations in that site and also is able to communicate with
its neighbors sites. For this reason, a clear understanding from the surface of
the catalyst is necessary.

3.3 Surface of FT catalyst

The surface of a catalyst contains numerous sites or special locations where re-
actants can be adsorbed and react with each other. Many studies have been
carried out to model the structure of the active sites in the surface of the cat-
alyst [25, 20, 26]. Before modeling the surface we need some evidences from
the surface of real catalysts to find out the morphology of sites. It can be
achieved through techniques such as high-resolution scanning tunneling mi-
croscopy (STM) [25], X-ray absorption spectroscopy (XANES, X-ray absorption
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near-edge spectroscopy) [20], scanning electron microscopy (SEM) and transmis-
sion electron microscopy (TEM) [20] to investigate and elucidate the atomic-
scale structure of the catalytic surfaces. For instance, STM provides a direct,
real-space investigation and structural specification of matter at the atomic level
based on quantum tunneling. It also can provide essential insight about active
sites and any defects in the surface of the catalyst. Figure 3.2 shows two different
STM pictures from the surface of a catalyst with nickel surface.

Figure 3.2: Two STM images of the nickel (1 1 1) surface with 2% (right) and
7% (left) gold coverage, respectively [20].

In recent years, there has been significant progress in the production of nano-
structured catalysts which means the surface of the catalyst can be fashioned in
a predefined morphology at the micro- or nano-scale [19, 27, 23]. In [19] different
types of micro-structured catalytic reactors have also been investigated. Figure
3.3 shows a catalyst with a 2D grid morphology that has been developed via a
thin porous layer of alumina on a metal surface [19].

Figure 3.3: A scanning electron microscopy (SEM) image from the surface of a
micro-structured catalyst [19].

Based on this real pictures from the surface of the catalyst, the morphology
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of the surface can be considered as a regular grid. For instance, in [26] a grid
with a dimension of 66*66 sites has been used to simulate FT synthesis via a
KMC simulation tools. Also the authors have assumed all reactions take place
on three-fold hollow sites that has depicted in figure 3.4.

As a result, the surface of the catalyst can be assumed as a fixed total
number of reactive sites in a 2D grid structure but in reality the site locations
may follow other structures. However, the precise site distribution is not a
concern at this time. Each one of these sites can be either vacant or occupied
by only one atom or molecule. The number of atoms or molecules adsorbing on
sites is proportional to the concentration in the gas phase, or equivalently to
the partial pressure P , and to the number of vacant sites.

Figure 3.4: A schematic which has been used to model surface of the catalyst
[26]. Triangles are sites and reactant must adsorb into these sites before any
reaction take place.

4 Selectivity control with NSNs

In this part, we propose a novel approach in which surface processes may be
controlled via nano-machines involving the turning on or off of elementary steps
(at periodic/aperiodic intervals) involving undesired species, and redirection of
surface efforts to step(s) leading to the wanted products. First we will provide
a general architecture for NSN and then explain how it can control selectivity.

4.1 Proposed Architecture

Recent advancements in electronic enabled nano-materials such as carbon nan-
otubes and graphene have paved the way for the new generation of electronic
nano-components like nano-sensor, nano-memories, nano-batteries and even
nano-processors [11].

Although nano-devices are not yet available commercially, there are signif-
icant relevant developments in recent years that point to a future when such
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devices could be produced in bulk. For example, a miniature hydrogen sensor
consisting of a nano taper coated with an ultra thin palladium film was reported
in [28], where the optical properties of the palladium layer changes when ex-
posed to hydrogen. Yonzon et al. [29] surveys many other types of nano-sensors
that can be used for chemical and biological sensing. Similarly, progress has
been recorded in chemical and biological nano-actuators that can be used to
accomplish some basic tasks at molecular level by harnessing the interactions
between nanoparticles, electromagnetic fields and heat [11, 30].

In this application, let us assume that we can deploy a nano-machine at
each site as part of catalyst preparation . Each nano-machine contains four main
elements of nano-sensor, nano-actuator, nano-transmitter and a nano-processor.
Nano-sensor can sense its site and determine the atom or molecule that the site
contains. Nano-actuator can deactivate (desorb) a molecule of hydrogen from
the site. If an atom of hydrogen adsorbs in the site then nano-processor can run
a simple algorithm to decide whether adsorbed hydrogen should be deactivated
via nano-actuator or not. This decision making process also relies on a specific
type of information which nano-transmitter receives from immediate neighbor
sites. Nano-transmitter is also responsible of sending an acknowledgment to any
direct neighbor in case of forming CnH2n+1 in its related site. A schematic of
such nano-machine has been depicted in figure 4.1.

Transmitter

Processor Sensor

Actuator

Si
te

Surface  of the catalyst

N
an

o
-m
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h

in
e

A B

Nano-machine

Figure 4.1: A network of nano-machines (NSN) in the catalytic surface. A)
Schematic snapshot of the surface of the catalyst as a 2D grid. B) Conceptual
architecture of a nano-machine which has been equipped with 4 operational
units of nano-sensor, nano-actuator, nano-processor and a nano-transmitter.

With these simple capabilities, we will explain in next section how a NSN
can control selectivity of FT.

4.2 Selectivity Control

The main goal of the proposed NSN is to cutoff the path to the production of
paraffin and redirect surface effort to increase olefin productivity. From Table
I we see that H plays a key role to the product selectivity. Paraffin is produced
only when a H reacts with a surface CnH2n+1, which is the elementary reaction
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termed hydrogenation to paraffin (HTP). Therefore, the aim of NSN would be
to prevent H from reacting with CnH2n+1 as much as possible.

Assuming that a H and CnH2n+1 would react only if these two species come
close to each other, say reside in neighboring sites of a catalyst surface, then
one way to reduce reaction rate of HTP would be to control the location of H
adsorption on the catalyst surface based on the knowledge of current content of
each site.

Figure 4.2: An example snapshot from the surface of a catalyst. There are two
unoccupied sites, each having four neighbours occupied with different molecule
species. Hydrogen adsorption in site 1 can lead to a paraffin because of the
presence of an C3H7 in the neighbourhood, but its adsorption in site 2 cannot
produce any paraffin.

For example, figure 4.2 shows the content of a number of sites (represented
by circles) on the catalyst surface. There are two unoccupied sites, marked as
1 and 2. If an H is adsorbed at site 1, then it could lead to paraffin due to
presence of CnH2n+1 (C3H7) in the neighborhood, but an adsorption of an H
at site 2 cannot lead to the production of paraffin. Therefore, the NSN should
allow H adsorption for site 2, but prevent it for site 1.

Such spatial control of H adsorption on a catalyst surface could be achieved
with an NSN in the following ways. More specifically, each nano-sensor is ca-
pable of sensing two events: (1) a CnH2n+1 has just formed at the site from an
elementary reaction and (2) an H is attempting to adsorb to the currently unoc-
cupied site. In detection of first event, the nano-machine should update a local
binary variable, which indicates whether the site currently contains a CnH2n+1.
In detection of the second event, nano-machine queries all the neighboring nano-
machines via its transmitter to learn whether there exists a CnH2n+1 in the
neighborhood (neighborhood search). If CnH2n+1 is present in the neighbor-
hood, the nano-machines should prevent the H adsorption via its actuator (say
by reflecting it back to the feed gas which would be a basic actuation task), but
allow the adsorption otherwise.

It means a nano-machine can process and decide whether the current ad-
sorbed molecule which is in site should be desorbed or not. This decision making
will be based on information which obtain from neighbors and can be imple-
mented by pre-programming each nano-machine with the following algorithm
to be executed in a loop forever via its nano-processor:
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Hydrogen Sensing and Control Algorithm for all nanomachineHydrogen Sensing and Control Algorithm for all nanomachine

Site_Content == CnH2n+1S  and receives a search query then Site_Content == CnH2n+1S  and receives a search query then 

Transmit an acknowledgment to the senderTransmit an acknowledgment to the sender

an H is attempting to occupy  site  and CnH2n+1S   is present in the 

neighbourhood  then  Prevent H adsorption

an H is attempting to occupy  site  and CnH2n+1S   is present in the 

neighbourhood  then  Prevent H adsorption

Figure 4.3: Hydrogen Sensing and Control Algorithm for all nanomachine

The outcome of the above algorithm is following. If a site forms HS within
another site in its neighborhood containing (CnH2n+1s), it will immediately
deactivate the HS to reduce the probability of forming paraffin (note: paraffin
is formed when (CnH2n+1s) binds with HS). The overall impact of the NSN is
reduction in the rate of HTP reactions. Note that the proposed nano-machine
meets its target without requiring any of the nano-sensors moving physically.

As NSNs are in the early stage of development and deployment of a real
NSN on the surface of the catalyst is not possible yet, an analytical model and
extensive simulations have been done to evaluate proposed framework. In next
part, we describe an analytical framework to model Fischer-Tropsch synthesis
and also investigate the effects of any reduction in HTP reaction rates on the
selectivity and product distribution.

5 Modelling using Markov Chain

A network of chemical reactions can be modelled by a Continuous Time Markov
Chain whose states are all different possible chemical compositions during the
reaction [31]. A Continuous Time Markov Chain can be approximated by a Dis-
crete Time Markov Chain (MC) with a sufficiently small sampling time interval
[32].

In such MC model, any consuming or producing of input, intermediate or
output species or any changing in their populations leads to changing in the
state of the system. For example, a simple reaction such as A + B −−→ C with
initial composition of A=1, B=1 and C=0 can be considered as a MC with
two different states of S0 (A=1, B=1, C=0) and S1 (A=0, B=0, C=1). In
this simple instance, if we increase initial reactants then number of states will
increase. For instance, if we put A=2, B=2 it leads to 3 different states of S0

(A=2, B=2, C=0), S1(A=1, B=1, C=1), S2(A=0, B=0, C=2).
The probability of transition from one state to another state can be obtained

from reaction rate ,r , (r = XA ∗XB ∗ k; that XA/XB is number of molecules
of species A/B respectively in that specific state and k is kinetic constant of the
reaction). For instance in a system with two possible reactions of R1 and R2 to
move from S1 to S2 with rate of r1=66 and r2=33, the probability of transition
from S1 to S2 via R1 is 66/99 (0.66) and via R2 is 33/99 (0.33).

A. Problem Formulation In our application, FT reactor, system starts with
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specified molecules of CO and H2 and states changes as far as there is a possi-
bility to take place any intermediate reaction based on Table I. In each state,
all possible reactions, based on current composition, would be considered to
generate complete state space. System stops in some states when there is no
further possible reaction called absorbing states in MC terminology and that
means once system entered in these states, will never leave. By denition, state
i is absorbing when P(i,i) = 1 and hence P(i,j) = 0 for all j i. Absorbing state
is not unique and in some scenarios system can terminate in many different ab-
sorbing states with different probabilities. Probability of eventually reaching to
each of these absorbing states can be extracted from fundamental matrix that
obtains by performing some operation on the transition probability matrix [33].

Figure 5.1: A modelling of a simple FT synthesis via a Markov chain for an initial
reactants of C=2, H=4. S6 and S8 are absorbing states. The blue number in
the parentheses are probability of transition from one state to another state.
NSN goal is reducing the rate of HTP reactions e.g. in this sample it would try
to reduce probability of going from state 4 to state 6 via R4.

Figure 5.1 demonstrates a snapshot of a very small MC model from the
surface of the FT synthesis with only 2 and 4 starting species of Carbon and
Hydrogen respectively. For simplification of this instance, we ignore water for-
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mation reactions but in the analytical model and also simulation we consider
the whole intermediate reactions of FT. In this example, due to small number
of initial molecules, we have only five reactions that have been mentioned in
Table II. System starts from initial states (S0) with 2 molecules of carbon and 4
molecules of hydrogen. The only possible reaction based on composition of S0 is
R1 (C + H −−→ CH) that leads to transit to state 1 with probability of 1 via R1.
Then system can move via two different paths; to S3 via R1 (C + H −−→ CH) or
S2 via R2 (CH + H −−→ CH2). As the rate of R1 and R2 based on composition
of state 2 are equal then these two transitions have equal probabilities of 0.5.
The rest of probable states and possible transitions have been depicted in the
figure 5.1.

Table 5.1: REACTIONS OF FIGURE 5.1.

There are 9 different compositions in this sample and state S6 and S8 are
absorbing states and also final states that means there is no further possible
reactions based on composition of these two states. As NSN aims to reduce
HTP reactions rates, we focus on S4 that is a potential state for HTP reactions.
S4 has three different options; back to the S2 with 33%, move to S7 with 33% or
transit to S6 with probability of 0.33 via a HTP reaction (CH3 + H −−→ CH4).
In order to capture the effect of NSN in the MC model we assume NSN would
be able to reduce rate of all HTP reactions by δ percentage. For example, in
case of δ=20 that means NSN can reduce rate of HTP reactions by 20%, in
figure 5.1 the probability of going from state 4 to state 6 via R6 will decrease
by 20% and drops from 0.33 to around 0.266.

5.1 Calculating selectivity via analytical model

As we model FT system as a MC, composition of absorbing states can be con-
sidered as final probable composition to calculate selectivity and product dis-
tribution analysis. We consider all olefins and paraffins species in all possible
absorbing states to extract overall selectivity. For example, in sample of figure
5.1 selectivity of S6 is 0 because there is no olefin in its composition. At the
other hand, as there are two CH2 in S8 without any paraffin, selectivity of S8

is 1. In a real F-T, system eventually converge to one of these absorbing states.
Hence, it is necessary to involve probability of reaching these absorbing states
to calculate selectivity and analyse product distribution.

Probability of eventually reaching a specific absorbing state m from initial
state 0 can be extracted from fundamental matrix [33] of our MC model. If we
have n states and a transition probability matrix of P (n-by-n) then fundamental
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matrix can be obtained as:

• Re-number the states so that the absorbing states are the first f states.
As a result, the one-step transition probability matrix will take the form
of P

P =

(
I 0
R Q

)
which I is f-by-f identity matrix, 0 is a is a f-by-(n-f) zero matrix, R is a
rectangular sub-matrix giving transition probabilities from non-absorbing
to absorbing states, Q is the square sub-matrix giving these probabilities
from non-absorbing to non-absorbing states.

• Calculate fundamental matrix N as :

In this case matrix of B=NR gives the probability of eventually reaching to
absorbing states. B(i,j) is the probability of eventually reaching to absorbing
state j from non- absorbing state For instance, in sample of figure 5.1 after
performing all those steps B(0,6)= 0.102 , B(0,8)= 0.898.

Generally, to analyze the output of each experiment based on MC model,
we process the composition of each absorbing state Sj to extract amount of
olefin (CnH2n) as Olej and paraffin (CnH2n+2) as Parj. Then we calculate total
olefins/paraffins as:

Which B(0,j) is probability of reaching absorbing state j from initial state
and m is number of absorbing states in the model. After extracting total
olefins/paraffins we use Equation (1.1) to calculate overall selectivity.

5.2 Numerical Experiments

We examine the idea based on this model for initial molecules of CO:5 and H:15.
It implies n <= 5 meaning that the chain growth is limited to C5H11, i.e., the
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longest olefin and paraffin produced would be, respectively, C5H10 and C5H12.
Thus, based on Table I we have a total of 20 reactions (3 chain initiation, 5 chain
growth, 2 water formation, 5 hydrogenation to paraffin and 5 dehydrogenation
to olefin). Similarly, we have a total of 21 species including C, H, CH, O, OH,
H2O, 5 intermediate species as (CnH2n+1), 5 final olefin products (CnH2n), and 5
final paraffin products (CnH2n+2). We assume kinetic constant of all 20 different
reactions is 7. With this setting, after running the model in MATLAB, we found
system has 3271 different states (different distinct possible compositions) with
257 different absorbing states.

Figure 5.2: Product distribution and selectivity after running the analytical
model with initial molecules of CO: 5 and H: 15 for 10 different scenarios of
HTP rate reduction (δ from 0 to 100%).

Figure 5.2 shows changing in product distribution and selectivity for any
value of δ, reduction in HTP reaction rates. The direct implication of reduction
in HTP rates is increasing the ratio of olefin and also decreasing in amount of
paraffin species. Olefin ratio starts from 40.2% when there is no reduction in
HTP and reaches 100% when the NSN would be able to cut off all HTP reaction.
Paraffin drops from 59.7% to 0 and selectivity raises from 38.9% to 100%. shows
changing in product distribution and selectivity for any value of δ, reduction in
HTP reaction rates.

In figure 5.3 there is a clear trend of increasing in selectivity with more
successful reduction in HTP reactions rates. Selectivity starts from around 40%
in a normal synthesis without any changing in reactions rates (δ=0) and reaches
to 100% in case of no HTP reaction (δ=1). We found there is an exponential
relationship between δ and selectivity.

Figure 5.4 reveals partial selectivity of different hydrocarbons in the model.
It shows hydrocarbons with higher degree have less selectivity in any assumed
value of δ and that points to a natural phenomenon in a real FT reactor.

For large and complex systems, traditional Markov models face with the state
explosion problem and quickly become intractable [34]. In this experiment as
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Figure 5.3: Selectivity for different successful reduction in HTP reaction rates
based on results of model with initial molecules of CO: 5 and H: 15.

Figure 5.4: Partial selectivity of hydrocarbon with degree smaller than 6 in 5
different successful reductions in HTP reduction rates.
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we have different types of intermediate reactions and also MC model considers
all possible reactions in all possible states, it generates a huge state space. For
example, in case of only 10 initial molecules of CO and 20 molecules of H
we have more than 35000 different states which is huge in terms of required
computational power and memory to build and solve the model. To run such
simple instance for 21 different amount of δ, ranging from 0 to 100% we used
a cluster of 21 machines with 84 cores and totally 168GB ram for 35 hours.
Figure 5.5 Shows how state space exponentially growths with linear increasing
of the feeding molecules.

Figure 5.5: State Space complexity. Number of states in MC model growths
exponentially with increasing number of initial molecules. For a scenario with
just CO=10 and H=20 molecules we have 36593 different states.

Due to such limitations, a real FT synthesis cannot be modeled via a MC
framework. However, we can use a standard simulation algorithm (SSA) that
benefits from Markov model and also produces a smaller state space by choosing
one of possible reactions in each states. In next section, simulation via SSA
would be presented.

6 Simulation

Chemical reactions can be modeled by Markov chains and a standard algorithm
to simulate them is the Stochastic Simulation Algorithm (SSA) by Gillespie [35].
The standard SSA algorithm takes three inputs: (1) a set of reactions, (2) a
set of kinetic constants corresponding to each reaction, and (3) initial counts
for each species, which define the initial state of the simulation. In general, the
state in SSA is defined as the number of each chemical species in the system. At
each state, the simulator determines a candidate reaction to take place from the
set of all possible reactions and updates the state (species counts) accordingly.
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Simulation stops when there are no reactions to take place. The output of the
algorithm is the number of each chemical species at the end of the simulation.

6.1 SSA Platform

We consider a FT catalysis with n <= 10. It means, we have a total of 36
species including C, H, CH, O, OH, H2O, 10 intermediate species as (CnH2n+1),
10 final olefin products (CnH2n), and 10 final paraffin products (CnH2n+2).
We set the initial species counts as C=10000, H=20000, and zero for all other
species. Figure 6.1 shows how the states change for a given simulation. We
can see that although we start with only two species, C and H, new species
start to form as different reactions take place during the simulation. At the end
of the simulation, we analyze all olefin and paraffin products and the resulting
selectivity for the simulated FT catalysis.

Figure 6.1: A snapshot of state changes during simulation (CO=7000,H=16000).
Species concentrations continue to evolve as elementary reactions take place.

Although there are a total of 34 kinetic constants for 34 reactions in 4 dif-
ferent categories (based on Table I), for simplification, it can be assumed that
all reactions in a given category have the same kinetic constant. We simulated
a total of 4 different sets of kinetic constants. We only present results for the
set where all k = 7, as the results for other settings were similar.

To simulate the effect of proposed NSNs in the surface of the catalyst we
assume a successful reduction in HTP reactions of δ and then we run an exper-
iment with a modified ktp (kinetic constant of HTP group of reactions) that
has been decreased by δ. Other kinetic constants remain same. For each of the
4 sets of kinetic constants, we simulated a total of 21 different δ ranging from
0 to 100%, leading to a total of 4*21 = 84 simulation configurations. For each
configuration, the simulation is repeated 10 times and the average results over
10 runs are presented.

6.2 Simulation Results

In order to validate the numerical and simulation results first we compare selec-
tivity over δ for both numerical and simulation for initial setting of CO=5 and
H=15.

We found the simulation results are similar to the results of Markovian model
which has been depicted in figure 6.2. Hence, we just mention two main graphs
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Figure 6.2: Selectivity for different reduction in HTP rate (δ) for CO=5, H=15
based on numerical (solid line) vs. simulation (squares) results.

Figure 6.3: Product distribution and selectivity after running the simulation
with initial molecules of CO: 10000 and 20000 for different values of δ.
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of selectivity and product distribution from simulation results. Figure 6.3 shows
product distribution and selectivity for 21 different value of δ ranging from 0 to
100 in a large scale experiment of CO=10000 and H=20000. It confirms by in-
creasing δ (successful reduction in rate of HTP reactions) from 0-100 selectivity
increase from 42 to 100 , the ratio of olefin (CnH2n) raises from 42 to 100 and
finally the ratio of paraffin species (CnH2n+2) drops from 58 to 0.

Figure 6.4: Selectivity for different reduction in HTP rate based on large scale
simulation (CO=10000, H=20000).

Figure 6.4 reveals an exponential relationship between successful reduction
in the rate of HTP reaction (δ) and selectivity. Selectivity starts from 42 in δ=0
and raise exponentially to 1 in case of δ=100 which means there is no possibil-
ity for HTP reaction. This near real experiment is revealing more selectivity
improvement in comparison with its correspondence figure (figure 5.3) in nu-
merical results for small initial reactants. For instance, It shows we can achieve
selectivity of 62 which means 53 boosting in selectivity by cutting 60 of HTP
reactions (δ=60).

6.3 Validating Chemical Properties

The purpose of this part is validating the generated results, specifically prod-
uct distribution, via acceptable chemical criteria. FT product distribution has
initially described with the so called Anderson-Schulz-Flory (ASF) distribution
characterized by the chain growth probability factor () [3]. According to An-
derson [36], the product distribution of hydrocarbons can be described by the
ASF equation:

mn = (1− α)α(n−1) (6.1)

which mn is the mole fraction of a hydrocarbon with chain length n (CnH2n

+ CnH2n+2) and is the chain growth probability factor. To calculate chain
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growth probability, , we draw the graph of ln(CnH2n + CnH2n+2) for different
value of chain length (n) from results of one experiment of δ=0. The slope
of such curve would be chain growth probability and its equal to 0.6527 for
δ=0. After calculating chain growth probability then we use equation (2) to
draw product distribution based on ASF. To draw product distribution based
on simulation results we use the output of SSA to calculate the ratio of each
hydrocarbon with degree of n (CnH2n + CnH2n+2).

Figure 6.5: Product distribution of a normal FT based on ASF model and
simulation results. Both follow same trend and it means our simulation results
are valid.

As figure 6.5 reveals, our product distribution for a normal FT synthesis
(δ=0) which has been obtained via simulation follows the standard ASF model.

7 Discussion

It is clear that success of the proposed NSN in exerting spatial control over H
adsorption would depend in turn on its sensing, actuation, and communication
capabilities. While NSNs are in their embryonic stages of development, there
would be issues with all three dimensions, sensing, actuation, and communica-
tion. In [37] we have modeled the effect of the communication reliability on the
selectivity assuming perfect sensing and actuation capabilities. But other po-
tential issues from sensing and actuating should be investigated in future works.
In a real chemical system, changing in the rate of any reaction will affect other
possible reactions if they have common reactants. In FT synthesis, any probable
reduction in rate of HTP reactions leads to some side effects via providing more
CnH2n+1 and hydrogen for other reactions which consume CnH2n+1 or H. As a
result, it can lead to at least three main effects: (1) B-dehydrogenation to olefin
(DTO) reactions would be more likely to happen as it can find more CnH2n+1

(2) increasing in the rate of chain growth as it consumes CnH2n+1 (3) raising in
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the rate of water formation reaction as it consume H. In this work, we capture
the direct effect of reduction in HTP on the selectivity and product distribution.
While some of these effects such as increasing BTO rate has a positive impact
on the product selectivity, to capture the real effect of NSN it would be more
realistic to involve these side effects as well.

8 Conclusion

We have proposed a network of nano-machines, NSN, for monitoring and con-
trolling of the surface of Fischer-Tropsch steps involving hydrogenation to paraf-
fin (HTP) and olefin production at the molecular-level. NSN prevents adsorp-
tion of H on sites adjacent to those containing CnH2n+1 with the ultimate goal
of improving olefin selectivity of FT catalysis. We have developed an analytical
model based on Markov chain to capture the effect of any reduction in rate of
HTP reactions (δ). The numerical results revealed a decrease in the paraffin
(CnH2n+2) formation with concomitant increase in olefin production. Indeed,
there is an exponential relationship between δ and product selectivity. Comple-
mentary extensive simulations based on SSA for a large-scale FT synthesis were
also in agreement with the MC computational results.

Bibliography

[1] Mark E. Dry. Commercial conversion of carbon monoxide to fuels and
chemicals. Journal of Organometallic Chemistry, 372(1):117–127, August
1989.

[2] AA Adesina. Hydrocarbon synthesis via Fischer-Tropsch reaction: travails
and triumphs. Applied Catalysis A: General, 138(2):345–367, May 1996.

[3] Gerard P. Van Der Laan and a. a. C. M. Beenackers. Kinetics and Se-
lectivity of the FischerTropsch Synthesis: A Literature Review. Catalysis
Reviews, 41(3-4):255–318, January 1999.

[4] Wei Chen, Zhongli Fan, Xiulian Pan, and Xinhe Bao. Effect of confine-
ment in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst.
Journal of the American Chemical Society, 130(29):9414–9, July 2008.

[5] Nguen Man Tyong, Nguen Chan Khung, I. G. Ivanov, I. V. Baronin, and
E. G. Rakov. Fabrication of catalysts for synthesis of carbon nanotubes by
wet burning method in continuous apparatus. Russian Journal of Applied
Chemistry, 82(5):763–766, June 2009.

[6] Qinghong Zhang, Jincan Kang, and Ye Wang. Development of Novel Cata-
lysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. Chem-
CatChem, 2(9):1030–1058, September 2010.

[7] NakhaeiPour Ali, Mohammad Reza Housaindokht, Sayyed Faramarz Tay-
yari, and Jamshid Zarkesh. Deactivation studies of nano-structured iron
catalyst in Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry,
19(3):333–340, May 2010.

20



[8] P. C. Thüne, C. J. Weststrate, P. Moodley, a. M. Saib, J. van de Loos-
drecht, J. T. Miller, and J. W. Niemantsverdriet. Studying FischerTrop-
sch catalysts using transmission electron microscopy and model systems of
nanoparticles on planar supports. Catalysis Science & Technology, 1(5):689,
2011.

[9] B Todica, T Olewskia, N Nikacevicb, and DB Bukur. Modeling of Fischer-
Tropsch Product Distribution over Fe-based Catalyst. CHEMICAL ENGI-
NEERING, 32(2007):793–798, 2013.

[10] Ian F. Akyildiz, Fernando Brunetti, and Cristina Blázquez. Nanonetworks:
A new communication paradigm. Computer Networks, 52(12):2260–2279,
August 2008.

[11] Josep Miquel Jornet, Joan Capdevila Pujol, and Josep Solé Pareta.
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