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Abstract—We consider molecular communication networks
consisting of transmitters and receivers distributed in a fluidic
medium. In such networks, a transmitter sends one or more
signalling molecules, which are diffused over the medium, to the
receiver to realise the communication. In order to be able to engi-
neer synthetic molecular communication networks, mathematical
models for these networks are required. This paper proposes
a new stochastic model for molecular communication networks
called reaction-diffusion master equation with exogenous input
(RDMEX). The key idea behind RDMEX is to model the
transmitters as time series of signalling molecule counts, while
diffusion in the medium and chemical reactions at the receivers
are modelled as Markov processes using master equation. An
advantage of RDMEX is that it can readily be used to model
molecular communication networks with multiple transmitters
and receivers. For the case where the reaction kinetics at the
receivers is linear, we show how RDMEX can be used to
determine the mean and covariance of the receiver output signals,
and derive closed-form expressions for the mean receiver output
signal of the RDMEX model. These closed-form expressions
reveal that the output signal of a receiver can be affected by the
presence of other receivers. Numerical examples are provided to
demonstrate the properties of the model.

Keywords: Molecular communication networks, nano com-
munication networks, synthetic molecular communication net-
works, master equations, stochastic models, synthetic biology

I. INTRODUCTION

We consider molecular communication networks consisting
of transmitters and receivers distributed in a fluidic medium.
In such networks, a transmitter sends one or more signalling
molecules, which are diffused over the medium, to the receiver
to realise the communication. The study of molecular commu-
nication has its origin in biology and biophysics. Molecular
communication is a vital mechanism in multi-cellular organ-
isms. The human body, which has an estimated 1014 cells,
uses molecular communication to keep the body in a healthy
state. In fact, cells in the human body constantly communicate
with other cells using molecular communication.

There are a couple of reasons why synthetic molecular
communication networks, which are inspired by molecular
communication in living organisms, should be studied [1],
[2], [3]. Firstly, synthetic molecular communication networks
can be combined with nano-sensors and molecular computing
[4] to form nano-sensor networks [5] for health monitoring,
medical diagnosis and cancer therapy. Secondly, the study of
synthetic molecular communication networks can be used to
enhance our understanding of their biological counterparts.
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In order to be able to engineer synthetic molecular commu-
nication networks, we need mathematical models which can
be used to predict the performance of these networks. For
example, if a transmitter in a molecular communication net-
work emits a number of signalling molecules to communicate
with a receiver, we would like to be able to determine the
receiver output signal in order to determine the probability
of correct reception at the receiver. Such evaluations can be
realised if a mathematical model is available to determine
receiver output signal based on the transmitter’s input signal.
The main contribution of this paper is that we propose a
new stochastic model for molecular communication networks.
Our model is based on reaction-diffusion master equation
(RDME) [6] which is a well known model in physics and
chemistry for modelling systems with both diffusion and
chemical reactions. In this paper, we propose an extension to
RDME, which we call reaction-diffusion master equation with
exogenous input (RDMEX). The key idea behind RDMEX is
to model the transmitters as time series of signalling molecule
counts, while diffusion in the medium and chemical reactions
at the receivers are modelled by RDME. An advantage of
RDMEX is that it can readily be used to model molecular
communication networks with many transmitters and many
receivers. For the case where the reaction kinetics at the
receivers is linear, we show how RDMEX can be used to
determine the mean and covariance of receiver output signal
of molecular communication networks. These results allow us
to derive closed-form expressions showing how the receiver
outputs relate to the transmitter signals when there are multiple
transmitters and receivers. These expressions show that the
output of a receiver can be influenced by the presence of other
receivers in a molecular communication network. They also
reveal the coupling between diffusion and chemical reactions
at the receivers.

This paper is organised as follows. In Section II, we present
background materials on master equations. In Section III, we
present the RDMEX and show how it can be used to model
molecular communication networks with multiple transmitters
and receivers. We also show, for the case where the reaction
kinetics at receivers is linear, how we can determine the mean
and covariance of the receiver output signals in molecular
communication networks. The rest of the paper is focused on
determining the mean receiver output signal. We approach this
by using two methods, which will be discussed in sections
IV and V. In Section IV, we determine the continuum limit
(i.e. infinite spatial resolution) of the RDMEX and show that
it results in a reaction-diffusion partial differential equation
(RDPDE). We derive a closed-form solution to this RDPDE
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and interpret the results. In Section V, we determine the mean
receiver output signal of RDMEX with finite spatial resolution
and derive another closed-form solution. Numerical results
are then presented in section VI to show the accuracy of
our solutions. Finally, section VII discusses related work and
section VIII gives the conclusions.

II. BACKGROUND ON MASTER EQUATIONS

This section aims to provide the necessary background on
master equations. The treatment here includes only the results
needed for this article. The reader can refer to the texts
[6], [7] or tutorial article [8] for a more complete treatment
of this subject. This section is divided into two parts. We
first introduce the general master equation and give a simple
example on how to use master equation to model a chemical
reaction. We then quote some results on mean and covariance
of the Markov processes modelled by master equations.

A. General master equation

Consider a continuous-time integer-value vector Markov
process Q(t) ∈ Zp, where p is the number of vector com-
ponents, Z is the set of all integers and t is time. When the
Markov process Q(t) is in state q ∈ Zp, it jumps to the state
q + rj (where rj ∈ Zp with j = 1, 2, ...J and J is the total
number of possible jumps) at a transition rate of Wj(q). Let
P (q, t|q0, t0) denote the conditional probability that Q(t) = q
given that Q(t0) = q0.

We are interested to determine how P (q, t|q0, t0) evolves
over time. We can do this by using a coupled set of ordinary
differential equations (ODEs) known as the master equation:

dP (q, t|q0, t0)

dt
=

J∑
j=1

Wj(q − rj)P (q − rj , t|q0, t0)

−
J∑
j=1

Wj(q)P (q, t|q0, t0) (1)

where one equation of the form (1) is needed for each valid
state q. Note that the first and second terms on the right-hand
side of (1) can be interpreted, respectively, as the rates of
entering and leaving the state q. In order to simplify notation,
we will write P (q, t) instead of P (q, t|q0, t0) from now on.

A common application of master equation is to model the
dynamics of chemical reactions [9]. We will give a simple
example to illustrate that.

Example 1: Consider the chemical reaction:

L + R
k+−−⇀↽−−
k−

C

where the chemical species are L, R and C, and the forward
and reverse reaction constants are k+ and k− respectively.
This chemical reaction can be described by a Markov process
with state space q = [nL, nR, nC ]T where nL is the number of
molecules of chemical L etc., and T denotes matrix transpose.

There are two possible types of jumps (i.e. J = 2) in this
system. The forward reaction is modelled by the jump r1 =
[−1,−1, 1]T where the entries of r1 reflects the fact that one
molecule of L and one molecule of R react to form a molecule
of C. The rate of jump, which according to standard result in

chemical kinetics, is W1(q) = k+q(1)q(2) = k+nLnR where
q(1) is the first component of the vector q, etc. Similarly, the
reverse reaction is modelled by the jump r2 = [1, 1,−1]T

with W2(q) = k−q(3) = k−nC . The master equation for this
chemical reaction is:

dP (q, t)

dt
=

2∑
j=1

Wj(q − rj)P (q − rj , t)−
2∑
j=1

Wj(q)P (q, t)

(2)
Equations of type (2) are known as chemical master equations.

B. Results on mean and covariance

The master equation (1) shows the time evolution of the
state probability of the Markov process Q(t). However, (1)
can be difficult to work with because we need one equation
for each valid state, hence the number of equations can be very
large. Therefore, it is easier if we can determine the mean and
covariance of the Markov process Q(t), which is defined as
follows:

〈Q(t)〉 =
∑
q

qProb(Q(t) = q) =
∑
q

qP (q, t) (3)

Σ(t) =
∑
q

(q − 〈Q(t)〉)(q − 〈Q(t)〉)TP (q, t) (4)

where 〈•〉 will be used in this paper to denote the mean
operator.

It is possible to use (1) to derive how the mean and
covariance of the state of the Markov process Q(t) evolve
over time. The following proposition is taken from [10].

Proposition 1: For the general master equation (1), we have

d〈Q(t)〉
dt

=

J∑
j=1

rj〈Wj(Q(t))〉 (5)

In particular, if Wj(q) is a linear function of q. Let∑J
j=1 rjWj(q) = Aq, then

d〈Q(t)〉
dt

=A〈Q(t)〉 (6)

dΣ(t)

dt
=AΣ(t) + Σ(t)AT +

J∑
j=1

rjr
T
j Wj(〈Q(t)〉) (7)

III. MODELLING MOLECULAR COMMUNICATION
NETWORK USING RDMEX

We consider a molecular communication network with mul-
tiple transmitters and multiple receivers in an isotropic fluidic
medium, see Figure 1. The communication takes place by the
transmitter emitting one or more signalling molecules over
time. Once the molecules leave the transmitter, they diffuse in
the medium according to Brownian motion. The receivers are
assumed to consist of one or more receptors. When a signalling
molecule L reaches a receptor R, they may bind together to
form a complex C. We will consider the number of complexes
at the receiver as the output of the receiver. For example, a
receiver may infer that a bit has been sent by the transmitter
when the number of complexes exceeds a threshold. Note that
this definition of output is also used in chemotaxis models in
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Fig. 1. An illustration of a molecular communication network with two
transmitters and two receivers. The signalling molecules diffuse in a fluidic
medium and may bind with the receptors at the receviers.
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Fig. 2. The voxels in the 1-dimensional RDMEX model.

biophysics [11], [12] and molecular communication network
models in engineering [13].

Based on the above description, we see that a model for
molecular communication networks must at least capture the
diffusion of signalling molecules and the reactions at the
receivers. Both reactions and diffusion can be modelled as
Markov processes, so the master equation (1) is a natural
choice. The remaining issue is how we can model the trans-
mitter. In this paper, we model the transmitter by a time
sequence which specifies the number of molecules emitted
by the transmitter at a particular time. This approach is fairly
general and can be used to model encoding methods that have
been considered in the literature, such as molecular coding
[1] and concentration coding [14]. We will consider other
modelling approaches, e.g. modelling the internal mechanism
of the transmitters, in future work.

In section III-A, we introduce the RDMEX model by way
of an example and then we prove some results on mean and
covariance of the RDMEX model in section III-B.

A. The RDMEX model

In this section, we introduce the RDMEX model for a
molecular communication network with 2 transmitters, 2 re-
ceivers in a 1-dimensional medium. The reason for that is
to simplify the presentation. It is fairly simple to generalise
to multiple transmitters, multiple receivers in a 3-dimensional
medium, which we will discuss at the end of the section.

Another simplification is that we will assume, at the re-
ceiver, the rate at which the complexes are formed is a
linear function of the number of local signalling molecules

and is independent of the number of receptors. (This will be
made precise below.) This simplification allows us to produce
closed form expressions in the continuum limit. Note that,
it is straightforward to model non-linear reaction rates or
incorporate more complex receivers in our model.

The following is a list of model assumptions, parameters
and notation.

1) We assume that both transmitters use one and the same
type of signalling molecule L.

2) For transmitter 1, we assume that it emits k1,1 signalling
molecules of L at time t1,1, k1,2 molecules of L at time
t1,2, ..., k1,b molecules of L at time t1,b, where k1,b (b =
1, 2, 3, ...) are positive integers and t1,b ∈ R. Similarly,
transmitter 2 emits k2,b signalling molecules of L at time
t2,b where b = 1, 2, 3, .... The number of molecules ka,b
emitted at time ta,b is assumed to be independent of the
state of the system at or before ta,b.

3) The medium is assumed to be a 1-dimensional space
of length X . The medium is partitioned into N equal
width voxels of width ∆x such that N ∆x = X . We
index the voxels by using 1, ..., N . See Figure 2 for an
illustration.

4) The medium is assumed to be isotropic. The rate at
which a signalling molecule L diffuses from one voxel
to a neighbouring voxel is d̆ per molecule per unit time.
The rate of diffusion from a voxel to a non-neighbouring
voxel is zero. Also, the molecule cannot leave the
medium and we assume the boundary is reflective. The
parameter d̆ is related to one-dimensional macroscopic
diffusion constant D̆ by d̆ = D̆

∆x2 .
5) We assume that each transmitter or receiver occupies

only one voxel. Transmitters 1 and 2 are located respec-
tively in the voxel indexed by T1 and T2. Similarly, we
assume that receivers 1 and 2 are located in the voxels
indexed by R1 and R2. The indices T1, T2, R1 and R2

are integers in the interval [1, N ] and are assumed to be
distinct. (Note that it is simple to modify the model so
that a transmitter or a receiver occupies multiple voxels.)

6) We assume both receivers 1 and 2 use the same type
of receptors R and these receptors are fixed in space,
i.e. do not diffuse. With the simplification mentioned
in the introductory part of this section, we assume that
the reaction between the signalling molecule L and the
complex C is:

L
k+−−⇀↽−−
k−

C

where k+ and k− are the macroscopic reaction rate
constants. With this assumption, the rate of formation
of complexes at receiver 1, at any time, is proportional
to the number of signalling molecules L in the R1-th
voxel. The situation at receiver 2 is similar.
Remark 1: The reaction kinetics assumed above can be
viewed as a linearisation of the second order reaction
L + R −⇀↽− C. Similar assumption is also used in [11],
[12] to model receptor kinetics in chemotaxis.

7) The state vector q consists of (N + 2) elements where

q =
[
nL,1 nL,2 .... nL,N nC,1 nC,2

]
(8)
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where nL,j represents the number of signalling
molecules at the j-th voxel and nC,u represents the
number of complexes at the u-th receiver.

8) We define two indicator vectors 1T1
,1T2

∈ ZN+2. The
T1-th element of 1T1

is 1 and are otherwise zero. 1T2

is similarly defined.
9) In order to write down the diffusion and reaction within

the molecular communication network, we define the
following state transition vectors rj and transition rates
Wj . The total number of possible jumps in this system is
J = 2N +4 where 2N of them model diffusion and the
rest models reactions at the receivers. We will state these
jumps below in four categories. Note that all rj ∈ ZN+2

and only the non-zero elements of rj are stated, and q
is the state vector defined in (8).

a) The diffusion of L from voxel j to j + 1, where
1 ≤ j ≤ N − 1, is modelled by rj and Wj(q).
Specifically, rj(j) = −1, rj(j + 1) = 1 and
Wj(q) = d̆q(j) = d̆nL,j .
Explanation: If a signalling molecule diffuses from
voxel j to j+1, it means the number of signalling
molecules in voxel j is decreased by one (hence
rj(j) = −1) and that in voxel j+1 is increased by
one (hence rj(j + 1) = 1). The rate at which this
particular type of jumps takes place is proportional
to the number of molecules in the j-th voxel, which
is given by the j-th element of the state vector q.
For convenience, we define rN to be a zero vector
and WN (q) = 0.

b) For the diffusion of L from voxel j to j−1 where
2 ≤ j ≤ N , rN+j(j) = −1, rN+j(j − 1) = 1 and
WN+j(q) = d̆q(j) = d̆nL,j . For convenience, we
define rN+1 to be a zero vector and WN+1(q) = 0.

c) For receiver 1, the vector r2N+1 and the rate
W2N+1(q) are used to model the forward reaction
of the conversion of a signalling molecule L to
a complex C. Specifically, r2N+1(R1) = −1,
r2N+1(N + 1) = 1 and W2N+1(q) = k+

∆xq(R1) =
k+
∆xnL,R1

.
Explanation: In the forward reaction, a signalling
molecule is removed in the R1-th voxel, hence
r2N+1(R1) = −1 and a complex is formed, hence
r2N+1(N + 1) = 1 because the number of com-
plexes at receiver 1 is the (N+1)-th element in the
state vector (8). The rate W2N+1(q) is proportional
to the number of signalling molecules in the R1-th
voxel where the receiver is located.
For the reverse reaction, r2N+2(N + 1) = −1,
r2N+2(R1) = 1 and W2N+2(q) = k−q(N + 1) =
k−nC,1.

d) For receiver 2, the forward reaction: r2N+3(R2) =
−1, r2N+3(N + 2) = 1 and W2N+3(q) =
k+
∆xq(R2) = k+

∆xnL,R2
. For the reverse reaction,

r2N+4(N + 2) = −1, r2N+4(R2) = 1 and
W2N+4(q) = k−q(N + 2) = k−nC,2.

The RDMEX model for the 2-transmitter 2-receiver molec-
ular communication network is given in equation (9) where

δ(t) denotes the Dirac delta function.
Let us, for the time being, assume that the first term on

the right-hand side of (9) is not there. If this is the case, then
(9) is of the same form as the master equation (1) and the
equation models a Markov process. Given this model includes
both reaction and diffusion, equation (9) without the first term
is known in the literature as reaction-diffusion master equation
(RDME).

The novelty of the RDMEX model is the introduction of
the first term on the right-hand side of (9). This term can be
viewed as a deterministic input because molecules are emitted
by the transmitters at pre-determined times. Let us look at
this term more closely. At time ta,b, the a-th transmitter emits
ka,b signalling molecules into the Ta-th voxel (where the a-
th transmitter is located). This means that if the system is in
the state q just before the time ta,b (denoted as t−a,b), then it
will be in state q + ka,b1Ta just after ta,b (denoted as t+a,b).
In addition, we have P (q, t−a,b) = P (q+ ka,b1Ta

, t+a,b), which
is modelled by the first term in (9). Note that it is possible to
give a stochastic interpretation of ka,b, see Remark 2.

The deterministic input in (9) can be thought of as an
external arrival of the system. We will refer to (9) as reaction-
diffusion master equation with exogenous input, or RDMEX
for short. The name is inspired by time series models such as
ARX and ARMAX [15].

Note that the RDMEX model is no longer a Markov
process due to the deterministic arrivals. However, RDMEX
is piecewise Markovian in the sense that, it is Markovian in
between two consecutive deterministic arrivals.

We have given an example of RDMEX for a 2-transmitter
2-receiver model in 1-dimension. The model can be readily
generalised to include more transmitters and receivers. Gener-
alisation to 3-dimensional space can be achieved by dividing
the space into cubic voxels of equal volume. (The use of more
complicated geometry is possible, see [16].) The molecules in
a voxel are only allowed to diffuse to any of its neighbouring
voxels. This can also be readily be done. Lastly, we remark
that it is also possible to use more complex receiver structure
or to consider non-isotropic medium.

B. Mean and covariance of receiver output of RDMEX

We will now generalise the result of Proposition 1 to the
case of RDMEX model.

Proposition 2: For the RDMEX model in (9), assuming that
Wj(q) is a linear function of q. Let

∑J
j=1 rjWj(q) = Aq, then

d〈Q(t)〉
dt

= A〈Q(t)〉+

2∑
a=1

∞∑
b=1

ka,b1Ta
δ(t− ta,b) (10)

dΣ(t)

dt
= AΣ(t) + Σ(t)AT +

J∑
j=1

rjr
T
j Wj(〈Q(t)〉) (11)

Proof: For the time evolution on the mean 〈Q(t)〉, we can start
with the derivative of (3): d〈Q(t)〉

dt =
∑
q q

dP (q,t)
dt and then use

(9) for dP (q,t)
dt . This is fairly straightforward and uses exactly

the same argument as the proof in [10].
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dP (q, t)

dt
=

2∑
a=1

∞∑
b=1

{P (q − ka,b1Ta
)− P (q, t)}δ(t− ta,b) +

J∑
j=1

Wj(q − rj)P (q − rj , t)−
J∑
j=1

Wj(q)P (q, t) (9)

Alternatively, one can argue the correctness of (10) as
follows. Given that the difference between (1) and (9) is the
deterministic arrivals modelled by impulses, this means that
between two consecutive deterministic arrivals, the evolution
of the state in RDMEX can be described by a standard
master equation. Hence, (6) holds between two consecutive
deterministic arrivals. It can be readily shown that the effect
of ka,b molecules arriving at time ta,b is to add ka,b1Ta

to the
state vector. Hence the form of (10).

For the evolution of covariance, one can follow the deriva-
tion in [10] provided that the impulses are handled correctly
because the multiplication of Dirac deltas (or distributions) is
not well defined. However, one can argue the correctness of
(11) using the same argument in the last paragraph. We know
that between two consecutive deterministic arrivals, (7) holds
for the RDMEX model. It remains to show that the covariance
matrix just before a deterministic arrival is equal to that just
after the deterministic arrival.

Let Q(t−a,b) and 〈Q(t−a,b)〉 be the state and mean state
just before the deterministic arrival at time ta,b. At time
t+a,b, just after ta,b, the state of the system will become
Q(t−a,b) + ka,b1Ta

. Also, the mean state at t+a,b is:

〈Q(t+a,b)〉 =
∑
q

qP (q, t+a,b) =
∑
q

qP (q − ka,b1Ta , t
−
a,b)

=
∑
q

(q + ka,b1Ta)P (q, t−a,b) = 〈Q(t−a,b)〉+ ka,b1Ta

Note that we have used the fact that P (q, t+a,b) = P (q −
ka,b1Ta

, t−a,b) in the above derivation. The overall result is
that, at time ta,b, the state Q(t) and mean state 〈Q(t)〉 are
incremented by the same vector ka,b1Ta

.
Given that, at any deterministic arrival, both the state and

mean state change by exactly the same amount, therefore,
deterministic arrivals do not cause discontinuity in covariance.
Hence (11). �

For the rest of the paper, we will focus on studying the
properties of (10), though we will present a numerical example
in Section VI to show the accuracy of (11). A detail study on
(11) is important and will be done in a future paper.

Remark 2: We briefly discuss a generalisation of the RD-
MEX model. Instead of assuming a deterministic emission of
exactly ka,b signalling molecules by the a-th transmitter at
time ta,b, one may assume the number of molecules emitted
is a random variable Ka,b with mean 〈Ka,b〉 and covariance
cov(Ka,b). If the random variable Ka,b is independent of the
state q at time ta,b or earlier, similar results to Proposition 2
can be derived. For equation (10), we need to replace ka,b by
〈Ka,b〉, and we need to add cov(Ka,b) to the right-hand side
of (11). This generalisation says that one can interpret ka,b in
(10) as the mean number of molecules emitted at time ta,b by
the a-th transmitter. With this stochastic interpretation of ka,b,

one can consider the signalling molecules are generated by an
irreversible chemical reaction.

IV. CONTINUUM LIMIT OF RDMEX

In section III-A, we present an example of the RDMEX
model for a 2-transmitter, 2-receiver molecular communication
network in an isotropic 1-dimensional medium. We also show
that if the reaction kinetics at the receiver is linear, then the
mean number of molecules in the network evolves according
to the ODE (10). In section IV-A, we will determine the
continuum limit of (10) as ∆x → 0. In order to simplify the
presentation, we have so far limited our study to 1-dimensional
but given most molecular communication networks are 3-
dimensional, we will generalise the continuum limit to 3-
dimensional case as well.

The continuum limit of the RDMEX is in fact a RDPDE.
A nice property of the resulting RDPDE is that a closed form
solution is available. This closed form solution shows that the
output signal of a receiver can be affected by the presence
of other receivers in the network. This will be discussed in
section IV-B.

A. Continuum limit and generalisation to 3-dimensional space

In this section, we will study the continuum limit of
equation (10) and show that in the limit, when the interval
∆x goes to zero, (10) converges to a RDPDE and a number
of chemical kinetics ODEs. In order that we will be able to
solve the RDPDE analytically later on, we will assume from
now onwards that the 1-dimensional medium is infinite, which
means that the molecules in each voxel can diffuse to either
of its neighbouring voxel and the state vector q is

q =
[
.... nL,−1 nL,0 nL,1 .... nC,1 nC,2

]
where, as before, nL,j is the number of L in the j-th voxel
where j ∈ Z, and nC,u is the number of complexes formed at
the u-th receiver. Given this state vector, we can write equation
(10) as

d〈nL,j(t)〉
dt

= d̆(〈nL,j−1(t)〉 − 2〈nL,j(t)〉+ 〈nL,j+1(t)〉) +

2∑
a=1

∞∑
b=1

δK(j − Ta)ka,bδ(t− ta,b)

−
2∑

u=1

δK(j −Ru)
d〈nC,u(t)〉

dt
∀j ∈ Z (12)

d〈nC,u(t)〉
dt

=
k+

∆x
〈nL,Ru

(t)〉 − k−〈nC,u(t) (u = 1, 2)(13)

where δK(j) is the Kronecker delta1 .

1Note: We use both Konecker delta and Dirac delta in this paper. They are
denoted, respectively, as δK(•) and δ(•).
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Suppose the centre of the voxel j is at position xj , we
replace 〈nL,j(t)〉 by `(xj , t)∆x where `(xj , t) is the mean
concentration in voxel j at time t. By dividing both sides
of (12) by ∆x, taking the limit ∆x → 0 and noting that
d̆(∆x)2 = D̆, we have

∂`

∂t
= D̆

∂2`

∂x2
+

2∑
a=1

δ(x− xT,a)

∞∑
b=1

ka,bδ(t− ta,b)︸ ︷︷ ︸
=ka(t)

−
2∑

u=1

δ(x− xR,u)
d〈nC,u(t)〉

dt
(14)

d〈nC,u(t)〉
dt

= k+`(xR,u, t)− k−〈nC,u(t)〉 (u = 1, 2) (15)

where xT,a (resp. xR,u) is the centre of the voxel Ta (Ru)
where the a-th transmitter (u-th receiver) is located. Note
that we have also used the following conversion between the
Kronecker and Dirac deltas: lim∆x→0

δK(j)
∆x = δ(x).

This shows that in the continuum, the RDMEX converges
to a RDPDE (14) and a number of ODEs describing the
kinetics at the receivers (15). The RDPDE (14) has a simple
interpretation. The second term in (14) says that the transmitter
at Ta adds signalling molecules to the system according to
time sequence ka(t), while the third terms says the sig-
nalling molecules are absorbed from the system if they form
complexes at the receivers. Given that we assume that one
signalling molecule reacts to form one complex, therefore the
rate of absorption of signalling molecules is equal to the rate
of complex formation, which is given by (15).

Note that it is well known in literature, see [6], [16], that
a RDME with linear reaction rates converges to a RDPDE in
continuum. In the above, we show analogues result holds for
the RDMEX model.

1) Generalisation to 3-dimensional space: In order to
simplify the presentation, we have so far limited to the 1-
dimensional case. Given that most molecular communication
networks are 3-dimensional, we state that in a 3-dimensional
infinite medium the RDMEX will converge to the following
RDPDE in the continuum. Here v denotes a point in the 3-
dimensional space (i.e. v is a 3-dimensional vector) and `(v, t)
is the mean concentration of the signalling molecule at the
location v at time t.

∂`

∂t
= D∇2`+

2∑
a=1

δ(v − vT,a)ka(t)

−
2∑

u=1

δ(v − vR,u)
dcu(t)

dt
(16)

dcu(t)

dt
= k+`(xR,u, t)− k−cu(t) for u = 1, 2 (17)

where ∇2 is the Laplacian in 3-dimensional space, and vT,a
(resp. vR,u) is a 3-dimensional vector specifying the location
of a-th transmitter (u-th receiver). Note that we have also
introduced a new notation cu(t) to denote the mean number

of complexes 〈nC,u(t)〉 at receiver u; this is to simplify the
notation later.

The derivation assumes that the molecule in a voxel diffuses
to a neighbouring voxel at a rate of d per molecule per unit
time and each voxel is a cube of size ∆3. The parameter d
is related to the 3-dimensional macroscopic diffusion constant
D by d = D

∆2 . Also, the rate of formation of complexes at the
receiver voxel is given by k+

∆3 times the number of signalling
molecules L in the receiver voxel. Given that the derivation for
the 3-dimensional is essentially the same as the 1-dimensional
case, we do not present it here.

B. Solution to RDPDE

In this section, we present a solution to the RDPDE (16)
and (17), which is the continuum limit of the 3-dimensional
RDMEX model. The key result is a closed-form expression of
the multivariate transfer function from the transmitter signals
k1(t) and k2(t) (which models the number of molecules
injected by the transmitters into the medium at time t and can
be viewed as the inputs to the system) to the mean number
of complexes formed at the receivers c1(t) and c2(t) (which
can be viewed as the outputs). We will divide this section into
two parts. We will first derive the transfer function and then
provide an interpretation of the transfer function.

1) Derivation of transfer function: The aim of this part is
to derive a multivariate transfer function from k1(t) and k2(t)
to c1(t) and c2(t) using (16) and (17).

We first define a few notation. Let ι =
√
−1, and Cu(ω),

Ka(ω) and L̃(v, ω) be the temporal Fourier transform of,
respectively, cu(t), ka(t) and `(v, t) where ω is the transform
variable. It is shown in Appendix A that

L̃(v, ω) =

2∑
a=1

φ(v − vT,a, ω)Ka(ω)

−
2∑

u=1

φ(v − vR,u, ω)ιωCu(ω) (18)

where

φ(v, ω) =
1

4πD‖v‖ exp(−
√
ιω

D
‖v‖) (19)

is the temporal Fourier transform of the 3-dimensional dif-
fusion kernel 1

(4πDt)
3
2

exp(−‖v‖
2

4Dt ). Given (18) holds for any

location v, we can use it to determine the concentration of
the signalling molecules at the two receivers. By substituting
v = vR,1 and then v = vR,2 in (18), we have:

L̃(vR,1, ω) = φ11(ω)K1(ω) + φ12(ω)K2(ω)−
φ0(ω)ιωC1(ω)− φ∆R(ω)ιωC2(ω) (20)

L̃(vR,2, ω) = φ21(ω)K1(ω) + φ22(ω)K2(ω)−
φ∆R(ω)ιωC1(ω)− φ0(ω)ιωC2(ω) (21)

where

φua(ω) = φ(vR,u − vT,a, ω) for u, a = 1, 2 (22)
φ∆R(ω) = φ(vR,1 − vR,2, ω) (23)
φ0(ω) = φ(0, ω) where 0 = zero vector (24)
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One can interpret φua(ω) as the transfer function which
models the dynamics of the diffusion of molecules from the a-
th transmitter located at vT,a (where the molecules are injected
into the medium) to the u-th receiver located at vR,u.

When signalling molecules are absorbed to form complexes,
it creates a concentration gradient. The diffusion dynamics
between the two receivers are modelled by φ∆R(ω). Given that
we assume that the locations of the transmitters and receivers
are distinct, both φua(ω) and φ∆R(ω) are well defined.

The transfer function φ0(ω) models the local impact of
absorption of signalling molecule at each receiver. This trans-
fer function is unfortunately not well defined as can be seen
from substituting v = 0 in the definition of φ(v, ω) in (19).
The transfer function φ0(ω) also appears in the modelling
of receptor noise in chemotaxis in the biophysics literature
[11], [12]. In fact [11, Equation (18)] and [12, Equation (6)]
are special cases of (16) where the input terms ka(t) are
absent. Both [11], [12] deal with the indefiniteness of φ0(ω) by
cutting off an integral to evaluate φ0(ω) at a finite frequency.
However, this requires us to make an assumption on the size
of the receptor molecule. Instead, in section V, we derive a
new method to approximate φ0(ω), and we will show using
numerical examples in section VI that our approximation gives
accurate results. For the rest of this section, we will continue
to use equations (20) and (21) with the understanding that
φ0(ω) is not well defined but can be well approximated.

Both equations (20) and (21) are obtained from (16). We
still need to work on (17). By taking the Fourier transform of
(17), we have

ρ1(ω) =
C1(ω)

L̃(vR,1, ω)
=

k+

ιω + k−
(25)

ρ2(ω) =
C2(ω)

L̃(vR,2, ω)
=

k+

ιω + k−
(26)

where ρ1(ω) and ρ2(ω) are transfer functions that model the
reaction kinetics at the receivers. Given that we have assumed
that the binding and unbinding rate constants at both receivers
are identical, it is not surprising that ρ1(ω) and ρ2(ω) are the
same here. It is straightforward to generalise to the case where
the receivers have different reaction kinetics.

By using equations (20), (21), (25) and (26), we can
eliminate L̃(vR,1, ω) and L̃(vR,2, ω) to obtain the transfer
function from the inputs k1(t) and k2(t) to the outputs c1(t)
and c2(t) in (27), where, for conciseness, we have dropped
the dependence on transform variable ω. Equation (27) is the
key result of this section. It is the solution to the RDPDE
(16) and (17), which are in turn the continuum limit of the
mean concentration in the stochastic RDMEX model. We will
provide some physical interpretation of (27) in a moment.
Before that, we want to point out that (27) can be used to
compute c1(t) and c2(t) given k1(t), k2(t) and the system
parameters by numerical Laplace transform. This will be done
in Section VI.

Note that it is numerically more efficient to solve for the
receiver outputs using (27) rather than (10). This is because
one also needs to solve for the number of signalling molecules
in the voxels in (10) but this is not needed when (27) is used.

ιωφ0(ω)

φ11(ω) ρ1(ω)
k1(t) c1(t)

�(vR,1, t)

−

Fig. 3. Block diagram showing the transfer function from the input k1(t) to
the output c1(t) of a molecular communication network with one transmitter
and one receiver.

Since the number of voxels is much larger than the number of
transmitters and receivers, numerical solution via (27) is more
efficient.

2) Interpretation of transfer function (27): Equation (27)
may not look easy to interpret in the first instance, so we will
first specialise it to the case of 1-transmitter and 1-receiver. In
this case, we have

C1 =
ρ1φ11

1 + ιωφ0ρ1
K1 (28)

One can readily show that the input-output transfer function
in (28) corresponds to the block diagram representation of
figure 3. The negative feedback loop occurs because the net
number of signalling molecules at the receiver `(vR,1, t) is
given by the difference between those that arrive via diffusion
(modelled by the feedforward block of φ11) minus those
reacted to form the complexes (modelled by the feedback
block of ιωφ0). The forward loop consists of φ11 which
models the diffusion dynamics of signalling molecule from
the location of the transmitter to that of the receiver, and ρ1

which models the conversion of the signalling molecules to
complexes.

We will now take a closer look at the denominator of (28)
with the aim to determine the strength of the feedback term
ιωφ0ρ1. It has been shown in [11], [12] that φ0 ∝ 1

2πD at
low frequency. Consider the case where D � k+ or k+

D ≈ 0,
which corresponds to the situation where the chemical kinetics
is not diffusion-limited. We have ιωφ0ρ1 ≈ 0 base on the
expression of ρ1 in (25) and consequently C1 ≈ ρ1φ11K1.
Since the chemical kinetics is not diffusion-limited, the chem-
ical kinetics and diffusion are basically ”decoupled”, so the
transfer function from K1 to C1 is the multiplication of the
transfer function φ11 from K1 to L̃(vR1

, ω) (which models
diffusion) and the transfer function ρ1 from L̃(vR1 , ω) to C1

(which models reaction kinetics). We will show in section VI
using numerical examples to show that the transfer function
ρ1φ11

1+ιωφ0ρ1
≈ ρ1φ11 holds when D � k+.

An end-to-end frequency model for molecular communica-
tion with one transmitter and one receiver has earlier been
derived in [13]. The model assumes decoupling of diffusion
and chemical kinetics [13, Equation 1] which means that the
model in [13] holds when diffusion occurs at a faster rate than
reactions.

Given the interpretation of the 1-transmitter 1-receiver case
as a system with feedback in figure 3, it can be shown that
equation (27) corresponds to multivariate feedback system
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[
C1

C2

]
=

I + ιω

[
ρ1 0
0 ρ2

]
︸ ︷︷ ︸

R

[
φ0 φ∆r

φ∆r φ0

]
︸ ︷︷ ︸

Φ0


−1 [

ρ1 0
0 ρ2

] [
φ11 φ12

φ21 φ22

]
︸ ︷︷ ︸

Φ

[
K1

K2

]
(27)

with 2 inputs and 2 outputs. The block structure of the
multivariate feedback system is the same as that in figure 3
but we need to replace the single-input single-output transfer
functions φ11, ρ1 and φ0 by their multivariate counterparts of
Φ1, R and Φ0 in (27).

For the 2-transmitter 2-receiver case, we see from (27) that
the response at each receiver is affected by both transmitters,
as well as by the other receiver. Let us assume that the trans-
mitters and receivers form two communication pairs where
transmitters 1 and 2 intend to communicate with, respectively,
receivers 1 and 2. We want to determine the unintended signal
at the receivers. Let us assume for the time being that the
two receivers are sufficiently far apart so that φ∆r(ω) is
negligible compared with φ0(ω). In addition, we assume the
two receivers are identical, so ρ1(ω) = ρ2(ω). In this case,
we can simplify (27) to[

C1

C2

]
≈ ρ1

1 + ιωφ0ρ1

[
φ11 φ12

φ21 φ22

] [
K1

K2

]
(29)

Comparing with the single-transmitter single-receiver transfer
function in (27), we can see that the unintended signal due to
transmitter 2 on receiver 1 is ρ1φ12

1+ιωφ0ρ1
K2. One can readily see

that the magnitude of this unintended signal can be reduced if
transmitter 2 is well separated in space from receiver 1 because
φ is a decreasing function of distance. Similar conclusion can
be drawn for transmitter 1 and receiver 2. Note that the above
argument requires that the receivers are well separated. If
this is not the case, the matrix inverse in (27) will create a
complicated mixture of signal at both receivers.

In general, spatial separation is a strategy to reduce the
magnitude of unintended signal that one communication pair
has on the others. It is interesting to point out that (27) allows
one to explore other methods to reduce the magnitude of
the unintended signal. An interesting case to study is if the
transmitters emit molecules at different frequencies and the
receivers are frequency sensitive. We will not explore this
further here and leave this for future work.

V. DISCRETE SOLUTION FOR MEAN CONCENTRATION IN
RDMEX

In the last section, we presented a closed-form solution to
the RDPDE (16). A problem that we face is that the frequency
response φ0(ω) in (24) is not well defined. This problem arises
because the size of voxel, in the continuum limit, becomes
zero. Therefore, a solution to overcome this problem is to
consider finite voxel size instead. This means that we need to
work with the 3-dimensional analogue of equations (12) and
(13).

Consider an isotropic 3-dimensional space. We divide the
space into identical cubic voxels of volume ∆3 each. We index

the voxel using a 3-dimensional vector ξ = [i j k] where
i, j, k ∈ Z; note that we will use ξ and [i j k] interchangeably
in this section. We use ξT,a (ξR,u) to index the voxel that
the a-th transmitter (u-th receiver) is located. We will also
use `R,u(t) to denote the mean concentration of signalling
molecules at the voxel where the u-th receiver is located.
Let c̃u(t) denote the mean number of complexes at the u-th
receiver for this discrete model and C̃u(ω) be its continuous
Fourier transform. (Just to avoid any possible confusion. We
discretise only space, not time. So, t remains continuous.)

Let `i,j,k(t) denotes the mean concentration of the signalling
molecule in voxel i, j, k. The mean concentration in a voxel
is given by the mean number of molecules divided by the
volume of a voxel which is ∆3. One can show that the
generalisation of (12) and (13) to 3-dimensional space — with
mean concentration of signalling molecules, rather than mean
number, per voxel — is:

d`i,j,k(t)

dt
= d(`i−1,j,k(t)− 2`i,j,k(t) + `i+1,j,k(t)) +

d(`i,j−1,k(t)− 2`i,j,k(t) + `i,j+1,k(t)) +

d(`i,j,k−1(t)− 2`i,j,k(t) + `i,j,k+1(t)) +
2∑
a=1

1

∆3
δK(ξ − ξT,a)ka(t) +

−
2∑

u=1

1

∆3
δK(ξ − ξR,u)

dc̄u(t)

dt
(30)

dc̃u(t)

dt
= k+`R,u(t)− k−c̃u(t) for u = 1, 2 (31)

where D = d
∆2 . One can readily show that the continuum

limit of (30) and (31) is (16) and (17)
Let L̃d(ξ, ω) denote the temporal Fourier transform of

`i,j,k(t). (Recall that ξ = [i, j, k].) It is shown in Appendix
B that

L̃d(ξ, ω) =

2∑
a=1

ψ(ξ − ξT,a, ω)Ka(ω) +

−
2∑

u=1

ψ(ξ − ξR,u, ω)ιωC̃u(ω) (32)

where

ψ(ξ = [i, j, k], ω)

=
1

4π2D̃∆

∮
C

∮
C

W
|k|+1
z∗

W 2
z∗ − 1

W i−1
x W j−1

y dWxdWy (33)

where Wx and Wy are complex variables and the contour C is
the unit circle on the complex plane; also, Wz∗ is the solution
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of the following quadratic equation in Wz with modulus less
than unity:

0 = W 2
z − (2 + (Wx −W−1

x )2 + (Wy −W−1
y )2

+ιω
∆2

D
)Wz + 1 (34)

Note that (32) is the discrete space analogue of (18). Thus
one can identify φ(0, ω) with ψ(0, ω). In additional, equation
(35) gives the transfer function where for conciseness we
have dropped the dependence on ω, and ψua(ω) = ψ(ξR,u −
ξT,a, ω), ψ∆r(ω) = ψ(ξR,1 − ξR,2, ω) and ψ0(ω) = ψ(0, ω).
Numerical integration can be used to compute ψ(ξ, ω) in (33).

VI. NUMERICAL EXAMPLES

A. Overview

In this section, we will give a number of numerical examples
to show that equations (27) in section IV-B and (35) in section
V can be used to accurately predict the mean output of the
receivers in the stochastic model RDMEX. We will also use
these numerical examples to illustrate the issues of using
molecular signalling for communication. We will present three
sets of results: single-transmitter single-receiver in section
VI-B, single-transmitter two-receiver in section VI-C and two-
transmitter two-receiver in VI-D.

In order to verify the accuracy of (27) and (35), we will
use simulation to compute the mean receiver output. One
method is to simulate RDMEX many times and compute the
mean. Alternatively, one can use the fact that if the number
of molecules is large, then the behaviour of one simulation
run is fairly close to the mean. We will mainly use the latter
method in this paper. We simulate the RDMEX model using
the τ -leaping method [17]. The τ -leaping algorithm uses a
constant time step to advance the simulation and is a faster
alternative to the Gillespie’s algorithm [17]. We will refer to
the simulation result as RDMEX-τ .

The fluidic medium is assume to have a D of 0.05. (Since
the parameters in the diffusion-reaction system can be scaled
to some dimensionless quantities [18, Section 8.2], we do not
specify the units for the parameters here.) The locations of
the transmitters and receivers, as well as the reaction rate
constants, vary between experiments and will be specified
later. Different transmitter signals will be used to demonstrate
the accuracy of the RDMEX model. Our goal is to compare
the output c1(t) and c2(t) from RDMEX-τ with that from the
following analytical models:

1) Equation (35). We will refer to this as RDMEX-M.
2) Equation (27) of the continuum model with φ(0, ω)

replaced by ψ(0, ω). We will refer to this as RDPDE.
3) Equation (27) of the continuum model with φ(0, ω)

approximated by 1
2πD∆ . This approximation is inspired

by the one used in [11], [12] where we have replaced
the size of receptors by the voxel dimension parameter
∆. We will refer to this as RDPDE-X.

4) For the single-transmitter and single-receiver case, we
consider the “decoupled” model C1 = ρ1φ11K1. This
will be referred to as DE.
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Fig. 4. The mean number of complexes in the 1-transmitter 1-receiver
network for K = 2.5× 10−3. (Section VI-B1)

For all these analytical models, we first determine the
Laplace transforms C1 and C2 by using the Laplace trans-
forms K1 and K2, and the transfer function. We then invert
the Laplace transform numerically using the matlab function
invlap.m [19].

B. Single-transmitter single-receiver case

The system consists of a transmitter at the voxel [0, 0, 0]
and a receiver at voxel [3, 0, 0].

1) Model accuracy and the effect of k+: In this set of
experiments, the transmitter emits 10 molecules every 10−4

time units for a duration of 0.2 time units and then stops
emitting for 0.3 time units. The signal k1(t) is obtained by
concatenating this emission pattern 3 times. The value of k−
is 0.05. We determine the output signal c1(t) for t ∈ [0, 2].

We use two different values for k+. Figure 4 shows the
results for k+ = 2.5 × 10−3. The figure compares the mean
number of complexes formed in the time interval [0, 2]. Re-
sults are obtained from RDMEX-τ (simulation) and RDPDE,
RDMEX-M, RDPDE-X and DE (analytical models). It can
be seen that both RDPDE and RDMEX-M (our analytical
solutions) match RDMEX-τ well. The model RDPDE-X does
not give good approximation because the voxel size is not a
good approximation for the receptor size. Henceforth, we will
not consider RDPDE-X further. The decoupled model DE does
not match RDMEX-τ for this value of k+.

We then change k+ to 2.5 × 10−4. The results are plotted
in Figure 5. Both RDMEX-M and RDPDE again match
RDMEX-τ well. We also see that the decoupled model DE
gives better prediction than before. This validates the discus-
sion in Section IV-B2 that the decoupled model holds when
k+ is sufficiently small.

2) Accuracy of mean and standard deviation computation:
In this experiment, we use a different transmitter signal to
show the accuracy of RDMEX-M and RDPDE. We define two
transmitter symbols s0 and s1. The symbol duration is 2 time
units. When a transmitter sends s1, it emits 10 molecules every
10−4 time units for a duration of 0.2 time units and then stops
emitting for 1.8 time units. When a transmitter sends s0, it does
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[
C̄1

C̄2

]
=

(
I + ιω

[
ρ1 0
0 ρ2

] [
ψ0 ψ∆r

ψ∆r ψ0

])−1 [
ρ1 0
0 ρ2

] [
ψ11 ψ12

ψ21 ψ22

] [
K1

K2

]
(35)
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Fig. 5. The mean number of complexes in the 1-transmitter 1-receiver
network for K = 2.5× 10−4.(Section VI-B1)

not emit any molecules for 2 time units. The transmitter signal
k1(t) in this experiment is simply s1. The receiver parameters
are k+ = 2.5 × 10−3 and k− = 8. We determine the output
signal c1(t) for t ∈ [0, 2].

We first verify the accuracy of using RDMEX-M and
RDPDE to compute the mean of receiver output. For this
experiment, we simulate the system using RDMEX-τ 125
times and compute the mean receiver output as the reference.
Figure 6 shows the mean receiver output from RDMEX-M,
RDPDE and RDMEX-τ . It can be seen that RDMEX-M and
RDPDE are accurate also for a different transmitter signal.

Our next goal is to verify the accuracy of using equation
(11) to determine the standard deviation of the receiver output.
We extend the RDMEX-M to solve for both the receiver output
as well as the system states, which are the number of signalling
molecules in the voxels. The system states are used as the input
to (11) and numerical integration is used to solve for (11).
For verification, we simulate the system using RDMEX-τ 125
times to compute the standard deviation of the receiver output.
Figure 7 plots the standard deviation of the receiver output
from the two methods. It can be seen that (11) is accurate.

One can envisage using the symbols s1 and s0 to encode
the communication between the transmitter and the receiver.
The communication scheme is similar to ON-OFF keying.
For decoding, the receiver can use, say, the peak number
of complexes to detect the symbol transmitted. If the peak
number of complexes is above a threshold, then s1 has been
transmitted; otherwise, s0 has been transmitted.

3) Assumption of linear receiver model: In this paper, we
assume that the rate of formation of complex C is a linear
function of the number of signalling molecules in the receiver
voxel, according to the following chemical reaction kinetics:

L
k1+−−⇀↽−−
k1−

C (36)

−0.5 0 0.5 1 1.5 2
0

100

200

300

400

500

600

700

time

m
e
a
n
 n

u
m

b
e
r 

o
f 
c
o
m

p
le

x
e
s

mean

 

 

RDPDE

RDMEX−X

RDMEX−τ

Fig. 6. The mean number of complexes in the 1-transmitter 1-receiver
network with transmitter symbol s1. (Section VI-B2)
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Fig. 7. The standard deviation of the number of complexes in the 1-
transmitter 1-receiver network with transmitter symbol s1. (Section VI-B2)

Under certain assumptions, the above reaction kinetics can
be used to approximate more complex reactions. Consider the
following chemical reactions:

L + E
g1+−−⇀↽−−
g1−

I
g2−→ C + E (37)

C
g3−→ L (38)

Reaction (37) is of Michaelis-Menten [20] type where a
molecule L reacts with an enzyme E to form an intermediate
product I , following by the decomposition I into a product C
and the enzyme E. It can be shown that, for suitable choice
of reaction constants in (37), the reaction kinetics of (37) can
be approximated by the forward reaction in (36). Similarly,
reaction (38) can be made identical to the reverse reaction in
(36) by choosing g3 = k−.

We want to show that a receiver with reactions (37) and (38)
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Fig. 8. The mean number of complexes in the 1-transmitter 1-receiver
network for section VI-B3.

gives similar output signal compared to one with reactions
(36). We implement the receiver kinetics (37) and (38) in
τ -leaping simulation and refer to this method as RDMEX-
τ -MM. We compare this against RDMEX-M with identical
parameters to those used in section VI-B2. The parameters in
reactions (37) and (38) have been chosen to approximate those
in (36). The results are plotted in Figure 8 and it can be seen
that RDMEX-M can approximate more complicated reactions.

C. Single-transmitter two-receiver case

Equation (27) shows that when there are multiple receivers,
it is possible for a receiver to affect the output of another
receiver. We will illustrate this phenomenon. We consider three
different networks. Network 0 consists of a transmitter and two
receivers, called 1 and 2. The transmitter, receivers 1 and 2
are located, respectively, at voxel [0, 0, 0], [1, 0, 0] and [2, 0, 0].
Network 1 is composed of the transmitter and receiver 1 of
network 0. Network 2 consists of the transmitter and receiver
2 of network 0. For all the three networks, the transmitted
signal is s1 and the receiver parameters are k+ = 2.5× 10−3

and k− = 8.
Figure 9 shows the output for receiver 1 for networks 0 and

1, while Figure 10 shows the output for receiver 2 for networks
0 and 2. (The curve with labelled 1t15r in Figure 10 will be
explained later.) It can be seen that the output of receiver 1 is
almost the same for both network 0 (receiver 2 present) and
network 1 (receiver 2 absent). However the output of receiver
2 for network 0 (receiver 1 present) is very different from that
in network 2 (receiver 1 absent). Specifically, when receiver 1
is present, the output of receiver 2 has a lower peak number
of complexes and a higher number of complexes at the tail.

An explanation of how receiver 1 affects the output of
receiver 2 is as follows. Note that receiver 1 is situated
in between the transmitter and receiver 2. Some signalling
molecules that reach receiver 2 have to pass through the voxel
containing receiver 1. When these signalling molecules are in
the receiver 1 voxel, some of them react to form complexes and
are held up in the voxel. This means less signalling molecules
reach receiver 2 in the early part of the symbol duration, thus
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network 0: Both receivers 1 and 2 are present

network 1: Only receiver 1 is present

Fig. 9. This figure compares the output signal of two different networks.
Network 0 consists of a transmitter and 2 receivers (receivers 1 and 2).
Network 1 consists of the transmitter and receiver 1 of Network 0. The figure
shows the output signal of receiver 1 for these two networks.

resulting in a lower peak number of complexes in receiver 2.
During the later part of the symbol duration, the complexes
in receiver 1 dissociate to release the signalling molecules.
Some of these signalling molecules, which are held up earlier
in receiver 1, reach receiver 2 later on. This means more
signalling molecules reach receiver 2 in the later part of the
symbol duration if receiver 1 is present. This explains the
behaviour at the tail of the output of receiver 2.

When the number of receivers in a network is high, the
output of some receivers in a network can be highly affected
by the presence of the other receivers. We create a network
with a large number of receivers by adding an additional 14
receivers to network 2, making a total of 15 receivers in the
network. We again focus on the output of receiver 2. The
curve labelled with 1t15r in Figure 10 shows the output of
receiver 2 for this 1-transmitter 15-receiver network. It can be
seen that the receiver output in this network is very different
from that receiver 2 in network 2. The reason is that the other
14 receivers are affecting the output of receiver 2.

The above results mean that the design of molecular com-
munication may need to take all receivers in the network into
consideration. For example, if receiver 2 uses a threshold on
peak number of complexes to detect s1, we can see from
Figure 10 that a threshold that works for the 1-transmitter 2-
receiver network may not necessary work for the 1-transmitter
15-receiver network.

D. Two-transmitter Two-receiver case

We consider a molecular communication network with 2
transmitters located at [0, 0, 0] (transmitter 1) and [4, 0, 0]
(transmitter 2), and 2 receivers located at [1, 1, 0] (receiver
1) and [2, 0, 1] (receiver 2). Both transmitters use s1 and s0

defined earlier as their transmission symbols. The signals for
transmitters 1 and 2 are, respectively, s0s1 and s1s0.

We first verify the accuracy of our proposed models. Figures
11 and 12 show the output signals for, respectively, receivers
1 and 2. The three curves in each figure are obtained from
RDMEX-τ (simulation) and RDPDE and RDMEX-M (our
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network 0: Both receivers 1 and 2 are present

network 2: Only receiver 2 is present

1t15r

Fig. 10. This figure compares the output signal of three different networks.
Network 0 consists of a transmitter and 2 receivers (receivers 1 and 2).
Network 2 consists of the transmitter and receiver 2 of Network 0. The third
network (label as 1t15r) consists of network 2 plus another 14 receivers. The
figure shows the output signal of receiver 2 for these networks.

analytical solutions). It can be seen from both figures that
the prediction from both RDPDE and RDMEX-M match that
of RDMEX-τ . In fact, the curves in the figures match so well
that they overlap.

We now assume the transmitters and receivers form two
unicast communication pairs: transmitter 1 communicates with
receiver 1 while transmitter 2 communicates with receiver 2. If
transmitter 1 were the only transmitter, then receiver 1 should
have a zero signal in the first symbol duration (between 0 and
2 time units). However, Figure 11 shows that receiver 1 has
a non-zero signal during the first symbol duration due to the
transmitter 2 sending an s1 during this time. During the second
symbol duration, the output signal of receiver 1 is due entirely
to transmitter 1. If receiver 1 uses a threshold based detector,
then a suitable choice of threshold will enable receiver 1 to
correctly decode the two symbols sent by transmitter 1.

Let us now consider the output signal of receiver 2 in Figure
12. The signal in the first symbol duration is due to transmitter
2 (the intended signal) while that in the second symbol is due
to transmitter 1 (the unintended signal). If receiver 2 uses a
threshold based detector, then due to the unintended signal,
a bit error will occur in the second symbol duration. This is
a typical example of bit error when multiple transmitters and
receivers share a common communication channel.

VII. RELATED WORK

Molecular communication networks can be divided into two
categories, according to whether they are natural or synthetic.
Natural molecular communication networks are prevalent in
living organisms. Their synthetic counterparts, though still
rare, do exist. For example, [21] presents a system with
multiple genetically engineered cells that use cell signalling
to coordinate their behaviour.

The modelling of natural and synthetic molecular communi-
cation networks is studied in different disciplines. The former
is mainly studied in biophysics and mathematical physiology,
while the latter in synthetic biology. There is also a recent
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Fig. 11. The output signal of receiver 1 in the 2-transmitter 2-receiver
network.
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Fig. 12. The output signal of receiver 2 in the 2-transmitter 2-receiver
network.

interest in the engineering community to study molecular
communication networks from a communication theory point
of view [13], [22], [23]. This gives rise to a new research area
called nano communication networks [1].

Despite the fact that molecular communication networks are
studied in diverse disciplines, the set of mathematical models
that are being used are similar. This is not surprising given that
the primary goal is to model diffusion and reaction kinetics.
The classes of mathematical models being used include molec-
ular dynamics, master equation, partial differential equation
(PDE), Fokker-Planck equation, Langevin equation and others
[6]. We will focus on the first three classes of models.

Molecular dynamics is commonly used in simulation of
molecular communication networks. Many examples of sim-
ulators exist, especially for natural molecular communication
networks, see [24] for a recent overview. For synthetic net-
works, a recent example is [25]. By analysing the molecular
dynamics of transmitters and receivers, [26] characterises the
noise in transmitters and receivers as, respectively, sampling
and counting noise.

There are ample examples in using PDE — in particular
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diffusion PDE, telegraph equation and RDPDE — to model
molecular communication. For natural networks, [11], [12] use
RDPDE to study the noise in receptor binding in chemotaxis,
and [27] uses RDPDE to study signalling cascades. However,
these papers do not consider the transmitters. For synthetic
networks, telegraph or diffusion PDEs (or their kernels) have
been used to characterise the diffusion of signalling molecules
in [28], [14], [29], [22], [23] and others. However, these papers
do not consider the coupling effect between diffusion and
receiver reaction kinetics. In our earlier work in [30], we use
a RDPDE in the form of (16), as a deterministic model for
molecular communication network. The RDPDE in [30] is
solved numerically and no analytic solution is provided. In
this paper, we derived a RDPDE model (16) for molecular
communication and provide an interpretation of the model
as the mean receiver output of molecular communication
networks. In addition, we present an analytical solution to this
RDPDE and show that it can be used to accurately predict
mean receiver output in molecular communication networks.

For some time, RDME has been considered to be a phe-
nomenological model because it diverges in certain cases [31].
Fortunately, the problem has been resolved in [32] and there
is now a firm theoretic basis for RDME. There are many
examples of work that use RDME to model natural molec-
ular communication networks, see [16], [33]. However, these
papers do not consider the transmitters. The use of RDME in
studying synthetic molecular communication networks appear
to be novel. To the best of our knowledge, our RDMEX model,
which is formed by coupling time sequences of signalling
molecule emission pattern with RDME, has not been proposed
before. The proposed RDMEX model is one of the novel
contributions of this paper.

VIII. CONCLUSIONS AND FUTURE WORK

We propose a new stochastic model called reaction-diffusion
master equation with exogenous input (RDMEX) for mod-
elling molecular communication networks with multiple trans-
mitters and multiple receivers. We show that we can readily
derive the mean and covariance of receiver output of RDMEX
model for the case where reaction kinetics at the receiver is
linear. We then solve the mean receiver output of RDMEX
model using two different methods. We present numerical
examples comparing the accuracy of our analytical solutions
against simulation. We find our analytical solutions give ac-
curate prediction of mean receiver output of molecular com-
munication networks. This paper has focused on studying the
mean receiver output of molecular communication networks.
However, one needs to understand the properties of noise in
these networks in order to evaluate their performance, such
as bit error rate or capacity. Future work includes the study
of the properties of noise in the RDMEX model and using
the RDMEX model to evaluate the performance of molecular
communication networks. Due to page limit, some results
cannot be included; additional results can be found in [34].

APPENDIX A
DERIVATION OF (18)

Equation (18) can be derived by using a couple of different
methods, e.g. Fourier transform or Green’s function. We will
use Green’s function here.

Note that the RDPDE (16) is an inhomogeneous partial
differential equation where the last two terms act as the forcing
function. Let G(v, t) denote the three dimensional kernel of
the linear diffusion equation ∂`

∂t = D∇2`. Let also ∗S,T denote
convolution in space and time, and ∗T denote convolution in
time only. By using the theory of Green’s function, we can
show that (39) holds. Now we can obtain (18) from applying
temporal Fourier transform to (39), noting that φ(v, ω) is the
temporal Fourier transform of G(v, t).

APPENDIX B
DERIVATION OF (32)

Note that (30) is a linear difference equation in space and a
continuous differential equation in time. We can draw a paral-
lel with the theory of Green’s function and note that (32) holds
if ψ(ξ, ω) is the temporal Fourier transform of the solution of
equation (40). This equation can be solved by using Fourier
transform on the continuous variable t and z-transform on the
discrete variables i, j and k. Let Hi,j,k(ω) denote the Fourier
transform of hi,j,k(t). The multi-dimensional z-transform of
Hi,j,k(ω), denoted by Ψ(Wx,Wy,Wz, ω), is defined in (41).
By using (40), we can show that Ψ(Wx,Wy,Wz, ω) is given
by (42). We first compute inverse z-transform with respect to
Wz . We re-write (42) as

Ψ(Wx,Wy,Wz, ω) =
−1

D∆

Wz

(Wz −Wz∗)(Wz −W−1
z∗ )

where Wz∗, as defined in section V, is the root of (34) with
modulus less than unity. Note we have also used the fact that
the roots of (34) are reciprocal of each other. It can now be
shown that the inverse z-transform of Ψ(Wx,Wy,Wz, ω) with
respect to Wz is

−1

D∆

W
|k|+1
z∗

W 2
z∗ − 1

(43)

If we apply the standard inverse z-transform contour integrals,
with respect to Wx and Wy , to this expression, then we obtain
the formula for ψ(v, ω) given in (33).
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