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Abstract

As more wireless networks are being deployved in a given
geographic area, the problem of interference and coexis-
tence of these independently operated networks is becoming
an increasing problem. This paper looks at the coexistence
of independent multihop Wireless Mesh Networks (WMNs).
We argue that cooperation is difficult in such scenarios. We
define a coexistence game model and apply it to study chan-
nel assignment in co-located WMNs. In addition, we pro-
pose using no-regret learning algorithms that allow WMNs
to iteratively arrive at Nash Equilibrium outcomes. Simula-
tion results show that the informed no-regret learning algo-
rithms we have tested converge to a set of Nash Equilibrium
strategy profiles. We also show that network information is
not critical for games with large numbers of players.

1. Introduction

Wireless Mesh Networks (WMNs) consist of multiple
wireless routers forwarding data packets to and from a
small set of gateways. The gateway is usually connected via
a physical wired interface to the Internet. Wireless clients,
¢.g. laptops and PDAs, could potentially communicate
with each other and the Internet over multiple hops via this
infrastructure.

The merits of WMNs as a means of extending coverage
and improving performance over existing single-hop Wire-
less LAN (WLAN) access points (APs) have prompted
much activity in the research as well as the standardization
communities. Community wireless mesh networks are be-
ing set up in neighborhoods where residents pool together
wireless networking resources to enable connectivity to one
another and the Internet. Municipal and city councils have
also shown interest in setting up city-wide wireless mesh
deployments that can serve both the government agencies
and residents. In the home, individual users will soon be
able to connect up their wireless devices to form a mesh
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network by using the IEEE 802.11s standard.

Despite the advances made in WMNSs, several key tech-
nical challenges still remain. One such challenge relates to
the broadcast nature of the wireless medium. This creates
the potential of interference among communicating nodes
that reside within the same locality, known as a collision
domain [8]. Briefly, if more than a pair of communicating
nodes are present in a collision domain, coordination is
required to prevent both links from being active at the same
time. Otherwise, packet collisions occur.

In this paper, we postulate that with the increasingly
widespread deployment of WMNSs, the interference among
WMNs under different management control is bound to
become a critical problem. This inter-network interference
is different from the interference found among nodes from
the same nectwork, an area that researchers have been
addressing. Since interfering nodes may belong to different
WMN:s, there is often no mechanism nor any incentive for
them to cooperate. It essentially becomes a competitive
environment where networks try to utilize the available
resources in a selfish manner, leading to a sub-optimal
performance. We term these non-cooperative networks
Independent WMNs.

In the next section, we will take a closer look at the co-
existence problem present among independent WMNs. We
also highlight the usefulness of game theoretic tools in an-
alyzing and solving this coexistence problem. In Section 3,
we present a generic coexistence game model that we use
to analyze the problem. Using this model, we will apply
it to study single collision domain problems. Section 4
contains results of simulations conducted to investigate the
interaction of WMNs that use game theoretic learning to
solve the coexistence problem. Some related works are
discussed in Section 5. Finally, we conclude in Section 6.

2. Motivation and Background

In this section, we motivate the need to look at coexis-
tence issues among co-located WMNs. We also discuss
why game theory is a suitable tool for analyzing such a
problem.
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2.1. Interference among Independent WMINs

We define a link as the presence of a communication
medinm between the wireless interfaces of a pair of nodes,
allowing data to be transferred. Due to the broadcast nature
of the wireless medium, multiple communication links
located within interference range of one another will expe-
rience degradation of performance if there is no mechanism
to coordinate and manage the communication [7]. In [1].
the authors highlight the increasing problem of multiple
WL AN deployments located in the same area. Using actual
data of hotspot deployments in major citics, they argue
that the presence of multiple independently-managed APs
may lead to a “chaotic” environment, where networks
experience sub-optimal performance. They propose using
power-control to manage the APs,

We believe that as communities of residential users co-
operate by linking up their APs, and as Wireless Broadband
Providers, city councils and even individuals set up their
own WMNs, there may exist more than one WMN in a
particular geographic arca. Like the WL AN hotspots. these
WMNs are independently operated and so have limited
mechanisms and incentives to cooperate.  However, the
multihop nature of WMNs makes it a different problem to
that found in single-hop WL ANs.

The first difference is the fact that a WMN potentially
covers a more extensive arca compared to a hotspot. A
situation may arise when only a subset of the links of one
WMN iaterferes with another part of a sccond WMN.
Secondly, a flow in a WMN typically traverses multiple
links (hops). While reducing the interference of the link
between an AP and station may increase flow throughput,
doing so will have no effect on the end-to-end throughput
of a WMN flow if there is interference on a link further
upstream or downstream as well.

In wireless multihop networks, the bandwidth available
to a flow is a function of not just the interference between
independent flows on different links (inter-flow mterfer-
ence), but also the interference of the same flow with itself
on subsequent paths along its route (intra-flow interfer-
ence). This phenomenon has been studied in [8] and [15].
In co-located WMNs, we assert that the inter-flow inter-
ference can be subdivided into two categories — infernal
inter-flow interference and external inter-flow interference.

While internal inter-flow interference occurs among
independent flows on different links within a single WMN,
external inter-flow interference relates to the interference
experienced by flows from links belonging to different
WMNs. A distinction between them is needed because the
former is usunally managed cooperatively using schemes
implemented within a network, e.g.  rate control [15],
channel assignment [13] and routing [14]. In the case of
the external inter-flow interference, high level cooperation
is not available, as the links belong to different independent

WMNs. In reality, networks may adopt a selfish approach
of trying to get as much resource (e.g. bandwidth) as
possible, thereby creating a competitive environment.

In addition. the cooperative schemes used to optimize
network resources in the presence of internal interferences
assume a certain degree of network information available,
e.g. size, topology and traffic patterns. A WMN would
have less information about other co-located WMNs. For
example, a WMN is unable to know the size, topology or
even number of co-located WMNs.

We have thus far motivated the need to study the problem
of interference among co-located independent WMNs,
which we term as the Coexistence Problemn. We have
also illustrated why it is a different and more challenging
problem than interference among single-hop networks
or within a single multihop network. We proposc game
theory as a suitable tool for studying and managing the
Coexistence Problem.

2.2. Game Theory Basics

Game theory [5] is a branch of applied mathematics that
describes and studies the interactions of decision processes.
The following description will be limited to the scope that is
needed to understand and analyze the Coexistence Problem.

Normal Form Game Model

A normal form non-cooperative game is defined by
D= W, 8, {U hicw), where A is a finite set of play-
ers, and S is the Cartesian product of the set of strate-
gies available to each plaver in A Le, &= X;enS;
where &; is the set of strategics available to plaver i
.s1A7) € S is a strategy profile consisting of
a strategy cach from every playerin A, U;: & — Ris de-
fined as a utility function of plaver ¢ representing the value
of the outcome resulting from a strategy profile S. For a
particular strategy profile S, if the strategy used by plaver ¢
15 8; € 8, we collectively term the strategies of the other
players as s..;.

S p— 1:.",‘ 1, S;)./ ‘e

Nash Equilibrium

A Nash Equilibrium (NE) is a stratcgy profile where
no player has any incentive to unilaterally use a dif-
ferent strategy /. Mathematically, a strategy profile
S = |s;,s_;] is a pure strategy NE if and only if
U (S,i,, 57) > (B(é;ﬂ ée)q Vi € ./\/f7 57/ € &;. It should be

noted that a NE may involve mixed strategies.

Pareto Efficiency

Pareto Efficiency (PE) or Optimality is sometimes used as
a measure of the efficiency of an outcome. We say that a
strategy profile is PE when a player cannot further increase
his utility without decreasing the utility of ancther plaver.
Therefore, S is PE if and only if there exists no other strat-
egy profile S* where U;(S7) > U;(S),for some i € A
when U;(S") > U;(S),Vj e N, j #1.
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Extending from this definition, we further define that a
strategy profile is more efficient than another if the utility
of at least one of the player is higher while the utilities of
the rest of the players are not worse off, i.c., S is more
efficient than S” if U;(S) > U,;(S”), for some i € N when
U;(S) > U;(8"),Vj € N,j #i.

2.3. No-Regret Learning

Even though classical non-cooperative game theory can
provide insights into the interactions among co-located
WMN, it assumes common knowledge of, among other
things, the sets A7 and S. This is highly unlikely in reality
as a WMN’s knowledge of other interfering networks is
restricted to what it experiences on its affected links. In
this section, we introduce the concept of learning in game
theory that we believe can provide practical solutions to the
Coexistence Problem.

Learning in game allows initially uninformed players
to acquire knowledge about the state of the world they are
in as the game is played repeatedly. Learning has been
applied to networking research [6], where they study what
strategies players will play in the long run. In this paper, we
apply a class of learning, known as No-Regret Learning, to
solve the Coexistence Problem. The attributes of no-regret
learning is that information like the number of players in
the game and their utility functions is not required by a
player to play efficient strategies in the long run.

In no-regret learning, time dependency is introduced
in the form of ¢, where S*=(s!,sh,..., S\t/\/\) de-
notes the strategy profile of the players at time ¢ and
g =g, d,. .., q\t/\/\) represents the weights players
placed on their strategies at time ¢. The weight ¢¢ can be
seen as a vector containing the probabilities of playing each
of player i’s strategies or as a function ¢/ (s;) returning the
probability of playing strategy s; € S;, at time ¢.

No-regret learning allows a player to play his strategies
with certain probabilities. The concept of regret involves
the benefits a player feels after playing a particular strat-
egy, compared to his other strategies. Those strategies
that produce lower regrets will be updated with higher
probabilities in the long run. Ultimately, strategies that
are more successful will be played more often. There are
different algorithms relating to different regret measures
and updating methods. In Section 4, we will simulate
how WMNs use two such algorithms, described in [6]
and attributed to Freund and Schapire [4] and Foster and
Vohra [3], to solve the Coexistence Problem. Due to
space constraints, the algorithms will be described briefly.
Readers are directed to [6], [4] and [3] for more details.

Freund and Schapire

This algorithm makes use of the cumulative utility obtained
by player ¢ over time ¢ if he plays s; given that the other
players had played s* ;, for every s; € S;. We denote this

—1

asUl(s;) = 3.' _, Ui(si, 8*,). The weights updating algo-
rithm is such that at time ¢ + 1, the probability of playing
strategy s; is updated using:

e, (L+ a)0ED

4 (ss) =

for some o > 0.

Foster and Vohra

At time ¢, we denote the regret r! that player ¢ feels for
playing strategy s! rather than s; as the difference in the
utilities obtained from playing the strategies, given that the

other players play the strategy profile, s” , :i.e..

7”5(81‘7 Szt' | Siz) = Ui(si7 Siz) - Ui(szt'7 Siz)

This algorithm makes use of the cumulative re-
gret felt by a player ¢ over time ¢, given by
Ri(s;) = >0 7%(si,s7 | s%;) for playing s rather

than s;. In this case, the probability of playing strategy s;
is updated using:

(R (si)I™
e, [RLGDIT
where [R]" = max({R,0}).

2.3.1 Informed vs. Naive No-Regret

4 (ss) =

The above learning algorithms are known as informed
algorithms. This is because they assume that a player ¢
is able to evaluate how s’ ;, the strategies played by the
other players at time ¢, could affect the utilities of all his
strategies, s; € §;, even those that are not being played at
that time. When the player is only able to know the utility
of the strategy that he has played, a modification to the
learning algorithms is needed.

In [6], the authors provide a way to convert an informed
algorithm to a naive one. It involves converting the utility
function, U; to Ui, where

Uz'(Sz',Siz.) . t "
Oi(ss, st ) =4 @ > L= 8
T\t 2 —¢/) & "

0, otherwise.

The same algorithms could then be used with U; replacing
U;, and modifying the resulting probabilities ¢! with
g = (1 —€)g; + 1z, for some e > 0.

3. The Coexistence Game

In this section, we will define a general model of the Co-
existence Game. The model is made as general as possible
in order to encompass the different interactions of co-
located independent WMNSs. It could easily be adapted to
more specific interaction scenarios. Subsequently, we will
describe a channel assignment coexistence game using this
model to study and solve a specific coexistence problem.
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3.1. The General Coexistence Game

We believe many of the schemes proposed to minimize
internal and external interferences can be studied as a
game. We define the general Coexistence Game as I',,.

In 'y, the set of players A represents the decision
makers in the independent WMNs. Each WMN consists
of a set of nodes or links whose collective actions affect
network performance. There are two possibilities of
defining N, depending on the entities taking part in the
decision making process. In the first case, cach WMN
has a centralized decision making process, where a single
entity within each WMN collects information (¢.g. network
conditions) from the nodes/links, makes the decisions and
directs the nodes/links to act on them. In this case, we rep-
resent cach WMN as a player. Alternatively, the decision
making can be distributed, where the nodes/links within
each WMN make decentralized decisions that collectively
(as a coalition) seck to optimize the performance of their
respective network. In this case, we represent each WMN
as a coalition of players where each player is a node/link
from the WMN. In this paper, we will use the centralized
process to explain the concepts. Henceforth, the terms
network and player will be used interchangably.

Each player has at his disposal a set of strategies S;,
which may be different for different schemes. For example,
when routing is used to direct traffic flows to paths with low
interference [14], S; represents the set of routes available.
If transmit power control is used to limit the interference
of the links, &; consists of the power levels a player can
assign to each of his links.

The utility function U; denotes the value player ¢ places
on the outcome of a strategy profile S. Player ¢ can be
seen as trying to optimize U; through its choice of s; in
the light of s_; that are played by the other players. A
possible way to express the utility of a WMN is the sum
of the utilities of all its individual flows. Let us assume a
WMN has flows with rates 71, ..., ;. The utility of this
WMN can be expressed as Zle u(r;), where v is some
concave function. Note that this type of utility definition is
commonly used in network utility maximization [11, 15].

3.2. Channel Assignment Coexistence Game

In this section, we apply the general coexistence game,
I'y to a more specific scenario — channel assignment. We
define this as a channel assignment coexistence game, ['.,.
In T, the player set A contains the independent WMNS,
We define C as the set of channels available, with ¢ = |C].

In I'.,, we will consider multi-radio WMNs [13, 12]
where each node contains multiple wireless interfaces. We
focus on channel assignment in this game. In order to sim-
plify the explanation and analysis, we assume that each link
within a WMN is bound to a pair of dedicated interfaces,
giving us a fixed topology of nodes and links per WMN.

This can be accomplished by schemes found in multiradio
WMN architectures like [13]. These links are represented
by £;=1{1,2,...,1;} for a player i. A strategy, s; of
player 7 assigns a channel j € C to each of the link k£ € £;.
For now, we assume that the links are unidirectional, i.c.,
each link has a predetermined transmitter and receiver.

Let F; represent the set of flows in player 7, where
fi.r € F; is the flow originating on link %. In other words,
the source of flow f; 5 is the transmitter of link k. We
restrict each source to one unicast flow. For convenience,
we will identify each flow f; ; with its flow rate. Let z;
be the aggregate flow rate of all the flows that pass through
link &, ie., 2; = Y fir, where f; , is every flow that has
to go through link £ to reach its destination.

In graph theory, a complete subgraph of a graph is
known as a clique. If we represent the set of links £; as
the vertices of a graph, with an edge drawn between a pair
of vertices if the links they represent interferes with each
other when they are on the same channel, we can represent
a collision domain as a clique [7]. Let D denote the set of
cliques where d € D represents the set of links in a game
that are in the same collision domain. For a strategy profile
S that allocates every link in a game to a channel 5 € C, we
define d; C d where | J;.. d; = d. In other words, S can
be seen as breaking up each clique d, into smaller cliques
d;,Vj € C. We will use the term collision domain and
clique interchangably in this paper.

Finally, we assume all the nodes use a common MAC
protocol that allocates the rates to the links in each channel
collision domain, d;,7 € € in a max-min fair manner.
We also assume there is a transport layer or flow control
protocol [15] in each WMN that ensures each link does not
transmit more than the aggregate end-to-end flow rates.

Example 1. 7o illustrate the notations and concepts
described so far, consider 3 WMNs within a single collision
domain as shown in Figure I(a). N ={1,2,3} and the
collision domain d contains the links of all the players.
There are 3 channels available, C = {4,B,C}. Except
Jor the first and last node, each node has two interfaces,
one for each link. Suppose flows fi1, fi12 and fi3 flow
through all of player 1's, 2’s and 3’s links respectively. We
have x| =219 =213 = f1,1, 221 =222 = fo1 and
r31 = x32 = fa1.

If a strategy profile involves player 1 assigning his links
1 and 3 to channel A, and link 2 to channel C, player 2
assigning his link 1 to channel A and link 2 to channel B,
and player 3 assigning link 1 to channel B and link 2 to
channel C, d would be broken up into dy, dg and dc, as
shown in Figure 1(b). The rates of flows f1 1 and fs 1 are %
each, since 11 +x1 3+ 21 = 1in dy. Even though links
x1,2 and x2 2 can use % of the bandwidth in channels C
and B respectively, a flow control protocol limits them to %
as the flows f1 1 and f5 1 are limited by the links in channel
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Figure 1. Example 1 showing three WMNs
in a collision domain. (a) Network topology.
(b) The 3 channel collision domains after
channel assignment.

A fo that rate. A max-min fair MAC allows x3 1 and x3 2 o
get the remaining % of the bandwidth. Hence, f3 1 = %

From Example 1, we can see that the channel assignment
choices of the players affect each other’s flow rates. If
a player’s objective is to maximize the rate of his flows,
the utility can be defined as U; = >, fix. Hence,
Uy = U, = £ and Us = £ in the example.

In the next section, we will use the model to analyze a re-
stricted case of this channel assignment coexistence game.

3.3. Single Collision Domain

In this game, we assume that the WMNs have links that
are all within a single collision domain, i.e., || = 1. Each
player ¢ has /; + 1 mesh nodes with each node containing
2 interfaces. There is a single unicast flow (|F;| = 1) from
a source node to a destination, going through /; links. The
flow is always saturated, i.c., the source tries to send as
much traffic as possible. Note that Example 1 described
above can be classified as such a game. We call this 2
interface per node, single collision domain, 1 flow per
WMN game, Iy 011415

Since all the links belong to the same collision domain,
each link of player % is indistinguishable from another. A
strategy s; can be simplified to [l;1, li2, . . ., ;] where [;;
is the number of links player ¢ has on channel 7,V; € C.
Hence, >, lij =1 Let Ly =}, 1; denote the total
number of links on channel j. The total number of links
in the game is L =3 ; L; = >, 1;. We will look at the
non-trivial case when L. > cand ¢ > 1.

We define Cruae = {j € C: L =max; L;}. In other
words, C,.q. contains the set of channels with the maxi-
mum number of links among all the channels. Moreover,
we define Nypae C N, where i € Npyqy iff I;; # 0 for
some j € Cpnuae. That is, NV, contains the set of players
with at least one link in any channel belonging to C,,, 4.

We define the utility of a player i to be U; = f;, the rate
of his flow. As f; flows through all of player ¢’s links, this
also happens to be the minimum share of the bandwidth a

Figure 2. Example 2: Three WMNSs in a single
collision domain.

player can get from any of his links across all the channels.
Obviously, if i € Naz, Us = 7, whete j € Cpnas.

Nash Equilibrium
We will now look at what constitutes a pure strategy Nash
Equilibrium (NE) in the game I'.;.2i.14.1¢.

Proposition 1. In the single collision domain channel
assignment game, 1 cq 011415 a Strategy profile that results
in every channel having either v or (r — 1) links, where
r= [%—| is a pure strategy Nash Equilibrium.

Example 2. Consider the networks shown in Fig-
ure 2, where L=4+4+2=10 and C={4,B,C}
(e, ¢ = 3). In addition to Cpa, we define
Coin =17 €C: Ly =min; L;}, and Npiw < N
where i € Npin, iff lij = 0,Y5 € Cpnag. That is, Comin,
is the set of channels with the minimum number of links
among all the channels, and Ny, is the set of all players
with no link in the channels in C,y, 4.

With the strategy profiles shown in Figures 3(a) and
3(b), the number of links in Cpoe = {C}isr = [%1 =4
and the number of links in Cppiyy, = {4, B} isrT — 1 = 3.
Therefore, these two strategy profiles meet the condition
in Proposition 1. Clearly, if the condition in Proposition 1
holds, i € Nypaw 0r i € Npnin, Vi € N. Aswe can see from
the way the links are distributed in Figures 3(a) and 3(b),
this also results in all the links in the game being spread
evenly across the channels. We will call this type of strategy
profile a global spreading of links.

We note here that if i € NVpq. player i’s utility U; = £,
since he is restricted by his links in some channel in C,,, .
However, if i € Ny, player i’s utility U; > —=. This
is because if all the links in the channels with player ¢’s
links belong to players in N,;,, he can get a utility of
—L. If in all the channels with player i’s links, there
exist links belonging to players in N, ... player ¢ can get
additional bandwidth not used by those players and his
utility becomes larger than —-.

To prove proposition 1, we will show that for all + € A/,
moving player ¢’s links to another channel will not improve

his utility.

Proof. The proof is divided into 2 cases — Case 1: player ¢
belongs to NV,,4.: and Case 2: player ¢ belongs to NVpin.
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ABC ABC ABC
U1=0.25 U1=025 U1=025
U2=025 U.=025 U.=025
U=0.25 Us=0.375 Us=05
(a) NE1 (b) NE2 (c¢) NE3

Figure 3. Different possible NE channel
assignments for networks in Example 2. The
letters represent the channels, each box
represents a link and the number in the box
represents the player the link belongs to.

In Case 1, player i’s current utility is U; = L. If he

moves any of his link from a channel 5 € C to a different
channel, he can choose to move this link to a channel
7" € Chaw OF 3 € Couin, where 5 # 5. If he moves the
link to channel j/ € Cy,4.. his new utility will be U/ = —L

r—+1
which is less than the original U;. If he moves the link to
4" € Conin. his utility becomes U/ = ﬁ = L, which

is the same as the original. Either way, player ¢ has no
incentive to move his links.

For Case 2, player ¢’s current utility is U; > TTll He
can choose to move his link in channel ;7 € C,;, to a
channel j/ € Cppn O 5 € Coin \ {4}, If he chooses
channel j” € Cpnae. his new utility will be U/ = —. If he
chooses 5" € Crnin \ {7}, his new utility becomes U/ = 1.
Both are less than his current utility. Therefore, player ¢
has no incentive to move his links.

Since player ¢ does not benefit from changing his
strategy, this is a pure strategy NE. O

Proposition 1 is a sufficient condition for the existence
of NE. There may exist other NE outcomes that are not
global spreading. To describe a necessary condition for the
existence of NE, we state the following lemma:

Lemma 1. for the game 1oy o 1a.0r with L links and c
channels, if there exists a channel j with more than r links,
where r = [%—| then there always exists a channel j' # 7
such that Ly — Ly > 1.

Proof. We will proof by contradiction that Lemma 1 holds.

The condition in Lemma 1 means that the total number
of links, L = (r — 1)e + k where 0 < & < ¢. Hence,
(r —1)e < L < rec. Assuming the lemma does not hold.
Then, there exists a channel j € Cy,q, Where Ly > 7+ 1;
and for all other channel 5/ # j, L; — Ly < 1; ie,
Ly > 7. Summing up the links in all the channels,
Li+3 Ly 2(r+1)+(c—1)r=rc+1.  Since
this is greater than the maximum possible L, it is a
contradiction. Therefore, Lemma 1 is true. O

We now state the following necessary condition for the
existence of pure strategy NE:

Proposition 2. [n the channel assignment game 1 cq.2i-14.1
a strategy profile that results in at least one channel with
more than r links, where v = [%1 is not a pure strategy NE.

In other words, a necessary condition for a NE outcome
is that all the channels can have af most r links. We can
see that the NE outcome of Proposition 1 satisfies this
condition. To prove this proposition, we will show that
when a strategy profile results in a channel having more
than r links, at least one¢ player can increase his utility by
changing his strategy.

Proof. Suppose a strategy profile results in C,,,, channels
such that L; > r,Vj € Cpan. We consider an arbitrary
player 7+ with at least a link in any channel in C,,,,,. We
will refer to those channels in C,,,,,, that player 7 has a link
in as ji,j2,...,J.. Let us consider the channel 7;. We
know from Lemma 1 that there always exists a channel
j' # jisuchthat L;, — L > 1, we move a link of player
1 from channel 7; to channel 7/. If z = 1, then the utility of
player ¢ has increased by this operation. If > 1, we can
repeat the above operation by another (z — 1) times. This
is possible because Lemma 1 guarantees the existence of a
channel which has at least 2 links fewer than those in C,,, 4.

Therefore, player 4 is able to increase his utility, which
means that this cannot be a NE strategy profile. O

Pareto Efficiency
We note that depending on where a player’s links are found,
a more efficient NE may be possible.

Consider Example 2 shown in Figure 2 with possible
channel assignments shown in Figure 3. Figure 3(a) shows
a possible strategy profile (NE1) that results in global
spreading, and hence a NE. Each player has a utility of
0.25 since they all have links in the C,,q, = {C} channel.
A different NE strategy profile (NE2) allows player 3 to
get a utility of 0.375, as shown in Figure 3(b). We say
that NE2 is more efficient than NEI as it allows player 3
to get a higher utility without lowering the other players’
utilities. Incidentally, Figure 3(c) shows an even more
efficient NE outcome that is not global spreading. It can
be easily verified that NE3 is also a NE since no player can
improve his utility by deviating. Notice that NE3 satisfies
the necessary condition in Proposition 2.

From studying this single collision domain example as
a game, we know that a way to achieve an equilibrium
point is for a network to monitor all the channels to ensure
that its channel assignment does not cause any channel
to contain more than [£] links. Ensuring that there is a
global spreading of the links across all channels will also
guarantee a NE. Short of using explicit communication,
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trying to do so is extremely difficult. In Section 4, we
describe simulations done to explore the possibility of co-
located WMNs arriving at NE outcomes without explicit
communication, by using no-regret learning algorithms.

In addition, we learn that there may exist more efficient
NE outcomes and it is desirable for networks to reach such
outcomes. Again, this is not easy to achieve without explicit
communication. We also find that at times, a game can have
a social optimal outcome that is not a NE. Briefly, a social
optimal outcome is one that maximizes the total utility of a//
the players in the game. Consider the game I'.; 2;.14.1¢ With
2 players and 3 channels {A, B, C}. Player 1 has 3 links
and player 2 has 2 links. If the utility of a player is given by
his flow rate, it can be shown that a social optimal outcome
is realized by player 1 putting all his links in channel A and
player 2 putting one link in each of channels B and C. How-
ever, this channel allocation is not a NE, because it does not
satisfy the condition in Proposition 2. As part of our future
work, we plan to characterize pareto efficient NE outcomes,
social optimal outcomes and explore ways to achieve them.

4. Simulation

From Section 3.3, we know that there exist NE outcomes
in a single collision domain channel assignment game. In
this section, we look at whether players can arrive at these
equilibrium outcomes by using learning.

We implement the Freund and Schapire algorithm [4],
for both the informed (FSI) and naive (FSN) cases, and the
Foster and Vohra informed algorithm (FVI) [3], described
in Section 2.3. At every iteration, each player evaluates
his utility gained during the previous iteration and uses
the algorithms to update the weights associated to his
strategies. We compare the two different no-regret learning
algorithms (FSI and FVI) to evaluate their respective merits
and drawbacks. We also compare an informed version of
the algorithm (FSI) with its naive counterpart (FSN). In ad-
dition, we compare how these no-regret learning algorithms
compare against a purely random strategy, where cach
player simply chooses a strategy randomly at each iteration.

In all our simulations, we have chosen appropriate values
of @ = 0.2 in FSI and FSN, and ¢ = 0.1 in FSN. This
paper does not aim to evaluate the performance of different
values of « and e. Essentially, o and e determine how
much and how fast an algorithm reduces the probability
of playing a strategy when it gives a bad utility. A high
o and low e causes larger and faster reduction. This may
mean faster convergence but also increases the chance of
players dropping those strategies that could have formed an
efficient strategy profile.

4.1. Simulation Results

In this simulation, we have » = |A/| number of players
in a single collision domain. Each player has I; = 3 links
and there are ¢ = 4 available channels. At each iteration,

Mean Total Uity
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Figure 4. Total mean utilities acquired by two
players during a typical simulation run.

as a player updates his weights, we also record the mean
utility that the player has acquired so far. This is done by
normalizing the total utility the player has acquired since
the start of the simulation with the number of iterations that
has gone by.

Figure 4 shows a typical simulation run with n = 2
players. We present the total mean utility acquired by both
players over 6000 iterations. We see that all the algorithms
arec able to converge to a fix mean utility. Though not
shown, we have also collected the mean utilitics for
individual players and note that each player is able to get a
fair share of the total utility over time.

Comparing FSI and FVI, the two informed no-regret
learning algorithms, we see that the players are able to
get similar utilities in the long run. FVI tends to converge
faster, i.c., scemingly unsuccessful strategies are dropped
faster in FVI, resulting in stable, long-term utilities. This is
confirmed by Figure 5, which shows how the weights asso-
ciated with each of the player’s strategies evolve over time.
We see that in FSI (Figures 5(a) and 5(b)), both players
converge to playing a fix set of strategies after about 500 it-
erations. When using FVI, the players’ choice of strategies
converges within 50 iterations (Figures 5(c) and 5(d)).

Figure 6 shows the proportion of time the NE outcomes
occur during the duration of the simulation, computed
by normalizing the number of times NE outcomes have
occurred with the number of iterations so far. We notice
that both the informed algorithms are able to learn to play
NE outcomes over time. In all the simulations for multiple
players, we find that the set of strategies that each player
plays in the long run results in a global spreading of the
links across the channels, a NE outcome as described by
Proposition 1. With FSN, the players generally are not able
to converge to a fix set of strategies to play, resulting in
NE strategies only played a certain proportion of the time.
Nonetheless, FSN learns to climinate the strategies that
gives low utility for one player whatever strategies the other
player play (known as dominated strategies in game the-
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Figure 5. Weights associated to strategies
over time for two players in a collision
domain.
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Figure 6. Proportion of time a NE strategy
profile is played during a typical simulation
with two players.

ory). In all cases, learning outperforms random choosing of
channel assignments in terms of utilities and NE outcomes.

Figure 7 shows the total mean utilities of all the players
in the game, at the end of 6000 iterations, averaged over
100 independent simulation runs. We investigate the results
for n = 2 to 5 players. We see that the total mean utilities
acquired through FSI and FVI are almost similar, especially
when the size of the players is small. When there are 5 play-
ers in the game, FVI performs better, but with a larger stan-
dard deviation. This is because FVI eliminates seemingly
inefficient strategies faster. While it decreases convergence
time, efficient strategy profiles may also be missed, leading
to lower total utility. A player’s utility does not just depend
on his strategy, but also the corresponding strategies used by

Total Player Uiliies

x-- Randam

2
No. of Players

Figure 7. Total mean utilities acquired by
the players at the end of 6000 iterations, for
different number of players.

other players. The role of learning is to find efficient strat-
egy profiles. If a strategy is dropped before it has a chance
to be played against many other strategies, the chance of
finding efficient strategy profiles is reduced. Of course,
when FVI happens to get a highly efficient strategy profile,
it will be played consistently, leading to much higher utility.
This accounts for the higher standard deviation.

In comparing FSI with FSN, we notice that as we
increase the number of players in the game, the naive
scheme actually performs better. This counter-intuitive
observation can be attributed to the fact that in the informed
algorithms, the players’ strategies converge to a small set
of strategics, as demonstrated by the results in Figure 5. In
FSN, the set of strategies played do not generally converge,
though the most inefficient ones (dominated strategies) are
eliminated. Therefore, certain players are able to get much
higher utilities that are not NE outcomes in some iterations.
This accounts for the slightly higher utility in cases where
there are larger number of players.

4.2. Discussion

We make the following observations based on our
simulation results:

1. No-regret learning algorithms allow players in our
channel assignment coexistence game to learn to play
NE outcomes. Hence, there is a potential for using them
to solve the Coexistence Problem.

2. A learning algorithm that converges faster to playing
NE strategies is useful in dynamic scenarios, ¢.g. when
the traffic patterns of the networks changes constantly.
However, the fast convergence may cause the networks
to miss out on some optimal (pareto efficient) outcomes.

3. A naive learning algorithm performs worse than in-
formed learning when the set of players is small, as the
players do not have enough information to converge to ef-
ficient strategies. However, this lack of information may
be advantageous when the size of the player set is large.

4. Our simulation assumes that all the players update their
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weights at the same time. This is unlikely in practical
scenario. We will look into the effects of asynchronicity
in updates as part of our future work.

5. The game we have studied in this paper relates to channel
assignment with onc decision maker within each WMN.
Practically, this can introduce delays into the learning
and decision process. We plan to investigate the effects of
such delays and look into the possibility of a distributed
approach, where each link learns and makes the decision.

5, Related Work

In [1] and [9], the authors motivated the problem of
coexistence in wireless networks of the same technol-
ogy (WiF1) but under different management control. Unlike
these works, which focus on single hop networks, we study
the Coexistence Problem among independent multihop
WMNs. Our general model could also be applied to
different technologies and to inter-technology coexistence.

There exists work that looks at using channel assignment
in WMNs with multiple interfaces to reduce network
interference. See for example, [13] and the references cited
within. They focus on channel assignment schemes imple-
mented within a single multi-radio WMN. In contrast, the
channel assignment approach described in this paper ap-
plies to multiple independent WMNSs. In [12], Ramachan-
dran ef. al. propose a centralized channel assignment
solution that reduces both the intra- and inter-network inter-
ferences. They consider only interference from single-hop
links, while we have looked at co-located multihop WMNs,
In addition, we have proposed a general co-existence frame-
work that encompasses more than just channel assignment,

Game theory has been used to study manv aspects of
networks. Félegyvhazi et al [2] use game theory to study
the coexistence strategies of competitive single-hop net-
works using channel allocation. The distinction in our work
is that we are looking at competitive multibop networks,
which is a different problem altogether. Also, Nie and
Comaniciu [10] apply game theory to dvnamically allocate
channels in networks with cognitive radios and propose
using no-regret learning algorithms to solve the prob-
lem. Again, the problem they look at is confined to only
single-hop links while we are looking at multihop networks.

6. Conclusion

In this paper, we motivate the need to study and man-
age the coexistence of co-located independent WMNs,
Reducing the interference caused by links from other
WMNSs requires non-cooperative approaches. We propose
a non-cooperative game theoretic approach to solve this
Coexistence Problem, consisting of a general framework.
As an example, we have used the framework to describe
a channel assignment game and study a special case of
multiple WMNs in a single collision domain. We apply
no-regret learning algorithms as a practical means fo

solve the problem. Simulation results show that no-regret
learning allows multiple networks to learn to play strategics
that arrive to Nash Equilibrium outcomes.

This work represents just the first step in our look at
the Coexistence Problem in WMNs. As part of our future
work, we plan to look at more complex network topologics,
traffic patterns and investigate the effects of asynchronicity
and delay on the performance of the no-regret algorithms.
By using the general framework, we also hope to look at
other approaches to solve the Coexistence Problem.
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