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Abstract network by using the IEEE 802. 1i s standard.
Despite the advances made in WMNs, several key tech-

As more wireless networks are being deployed in a given nical challenges still remain. One such challenge relates to
geographic area, the problem of interference and coexis- the broadcast nature of the wireless medium. This creates
tence ofthese independently operated networks is becoming the potential of interference among communicating nodes
an increasing problem. This paper looks at the coexistence that reside within the same locality, known as a collision
ofindependent multihop Wireless Mesh Networks (WM7s). domain [8]. Briefly, if more than a pair of communicating
We argue that cooperation is dfficult in such scenarios. We nodes are present in a collision domain, coordination is
define a coexistence game model and apply it to study chan- required to prevent both links from being active at the same
nel assignment in co-located WMNs. Jn addition, we pro- time. Otherwise, packet collisions occur.
pose using no-regret learning algorithms that allow WMNs In this paper, we postulate that with the increasingly
to iteratively arrive at Nash Equilibrium outcomes. Simula- widespread deployment of WMNs, the interference among
tion results show that the informed no-regret learning algo- WMNs under different management control is bound to
rithms we have tested converge to a set ofNash Equilibrium become a critical problem. This inter-network interference
strategy profiles. We also show that network information is is different from the interference found among nodes from
not criticalfor games with large numbers ofplayers. the same network, an area that researchers have been

addressing. Since interfering nodes may belong to different
1, Introduction WMNs, there is often no mechanism nor any incentive for

them to cooperate. It essentially becomes a competitive
WirelessrMesh Norks (W Ns consst ofrmui environment where networks try to utilize the available

wireless outewardingata ps toandfo a resources in a selfish manner, leading to a sub-optimal

aphysmcallsetrofgatewfay e gathe Is usualy esctdnvia performance. We term these non-cooperative networks
a physical wired interface to the Internet. Wireless clients, Ineedn WMs
eg. laptops and PDAs, could potentially communicate Indthenext se
with each other and the Internet over multiple hops via this eIsthenepoe rs tamong independen W N We

infrastructure. ~~~~~~~existence problem present among iLndepenldent WMNs. We
infrastructures of WMNs as ameansofextendingcoverage

also highlight the usefulness of game theoretic tools in an-
Themerits of mas a eanstending cvre alyzing and solving this coexistence problem. In Section 3,

and iLmroving NerforNance o is single-hopWe- we present a generic coexistence game model that we use

luces ac essapoints (aPs)he prompted to analyze the problem. Using this model, we will apply

muchuactivi. inotemrsearht awiells aeshthestandksardizatio it to study single collision domain problems. Section 4

commetupnnites ghCommuniswierels meshdenetwrs areboe-he contains results of simulations conducted to investigate the
ingset up in neighborhoodswhereresidents po g interaction of WMNs that use game theoretic learning to
wireless networking resources to enable connectivity to one solve the coexistence problem. Some related works are
another and the Internet. Municipal and city councils have discussed in Section 5. Finally, we conclude in Section 6.
also shown interest in setting up city-wide wireless mesh
deployments that can serve both the government agencies 2. Motivation and Background

anod residents,l In the home iniiul userso will soon be In thi sectWion,we motiLvate th nee to look at coexis- *1
able t connct uptheir ireles devces t form aRVZmes tencePisue among colc ted W Ns We also dNiscs

*Tis wor is sup ed by the CoopraTtive Resarc Centreefor Smr why gam the is| a suitable too fo anlzng suc a-rr
tnternettTeholg (htp:/wwsm intrneeomn) problem.mln rolms Scl
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2.1. Interference among Independent WMNs WMNs. In reality, networks may adopt a selfish approach

We define a link as the presence of a communication of trying to get as much resource (e.g. bandwidth) as

medium between the wireless interfaces of a pair of nodes, possible, thereby creating a competitive environment.
allowing data to be transferred. Due to the broadcast nature In addition, the cooperative schemes used to optimize
of the wireless medium, multiple communication links network resources in the presence of internal interferences
located within interference range of one another will expe- assume a certaim degree of network information available,
rience degradation ofperformance if there is no mechanism e.g. size, topology and. traffic patter s. A WMN would
to coordinate and manage the communication [7]. In [1], have less information about other co-located, WMNs. For
the authors highlight the increasing problem of multiple example, a WMNis unable to know the size, topology or
WLAN deployments located in the same area. Using actual even number of co-located s.

data of hotspot deployments in major cities, they argue We have thus far motivated the need to study the problem
that the presence of multiple independently-managed APs of interference among co-located, independent WMNs,
may lead to a "chaotic" environment, where networks which we term as the Coexistence Problem. We have
experience sub-optimal performance. They propose using also illustrated why it is a different and, more challenging
power-control to manage the APs. problem than interference among single-hop networks
We believe that as communities of residential users co- or within a single multihop network. We propose game

operate by linking up their APs, and as Wireless Broadband theory as a suitable tool for studying and managing the
Providers, city councils and even individuals set up their Coexistence Problem.
own WMNs, there may exist more than one WMN in a 2.2. Game Theory Basics
particular geographic area. Like the WLAN hotspots, these
WMNs are independently operated and so have limited Game theory [5] is a branch of applied mathematics that
mechanisms and incentives to cooperate. However, the describes and studies the interactions of decision processes.
multihop nature of WMNs makes it a different problem to The following description will be limited to the scope that is
that found in single-hop WLANs. needed, to understand and, analyze the Coexistence Problem.

The first difference is the fact that a WM potentially Normal Form Game Model
covers a more extensive area compared, to a hotspot. A A normal form non-cooperative game is defined by
situation may arise when only a subset of the links of one F = (, ,s {Ui}i), where J\ is a finite set of play-
WMN interferes with another part of a second WMN. ers, and, S is the Cartesian product of the set of strate-
Secondly, a flow in a VV typically traverses multiple gies available to each player in ;Aw i.e., S xx eA-S,
links (hops). While reducing the interference of the link where Si is the set of strategies available to player i.
between an AP and station may increase flow throughput, S = [81 S2,~... ,Al ] c S is a strategy profile consisting of
doing so will have no effect on the end-to-end throughput a strategy each from ever player in AJ. U: S -I Rg is de-
of a WMN flow if there is interference on a link further fined, as a utility function of player i representing the value
upstream or downstream as well. of the outcome resulting from a strategy profile S. For a

in wireless multihop networks, the bandwidth available particular strategy profile S, if the strategy used by player i
to a flow is a function of not just the interference between is si c Si, we collectively term the strategies of the other
independent flows on different links (inter-flow interfer- players as s-i.
ence), but also the interference of the same flow with itself
on subsequent paths along its route (intra-flow interfer- Nash Equilibrium
ence). This phenomenon has been studied. in [8] and, [15] Ao NlaserhaEquilibiu(nce)tise ao strlategalyprfie where-
In co-located WMNs, we assert that the inter-flow inter- no player has any incentive touinilaterally use a dif-
ference can be subdivided into two categories - internal ferent strategy s'. Mathematically, a strategy profile
inter-flow interference and external inter-flow interference. S = [si, si] is a pure strategy NE if and only if

Whl t 1Lt fL t -f ~~~~~~~Ui(si, s ) > Ui(',s -s_i),Vi c J4, s' c Si. It should beile inernal inter-flow interference occurs among U i.. . . ....... ~~~noted that a NE may involve mixed stlrategies.independent flows on different links within a single WMN,
external inter-flow interference relates to the interference Pareto Efficiency
experienced by flows from links belonging to different Pareto Efficiency (PE) or Optimality is sometimes used as
VWMNs. A distinction between them is needed because the a measure of the efficiency of an outcome. We say that a
fornner is usually managed cooperatively using schemes strategy profile is PE when a player cannot further increase
imple:mented within a network, e.g. rate control [1L5], his utility without decreasing the utility of another player.
channel assignment [13] and. rou.ting [14]. fIn the case of Therefore, S is P:E if and only if there exists no other strat-
the external inater-flow interference, hig:h level cooperation egy profile S' where Ui(S') > Ui(S), for some i C \
is not availLable, as the lLinks belLong to diffelrent independent when Uj (5') > Uj (5), VJ C K, j #4 i.
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Extending from this definition, we further define that a as W'(. ) =
= Ui (s , )lJ The weights updating algo-

strategy profile is more efficient than another if the utilit rithm is such that at time t + 1, the probabilit of playing
of at least one of the player is higher while the utilities of strategy si is updated using:
the rest of the players are not worse off, i.e., S is more )ut(i
efficient than 5' if U (S) > U (S'), for some i~ when qt+(s _ ( +
Uj (S) . Uj (S'),Vj A~,j 7' s+S/ (1i + )(

2.3. No-Regret Learning for some a> 0.
Even though classical non-cooperative game theor can Foster and Vobra

provide insights into the interactions among co-located, At time t, we denote the regret rtthat player ifeels for
VMs, it assumes common knowledge of, among other playing strategy Strather than si as the difference in the

things, the sets A~and S. This is highly unlikely in reality utilities obtained from playing the strategies, given that the
as a WMNs knowledge of other interfering networks is other players play the strategy profile, st~;i..
restricted to what it experiences on its affected links. In
this section, we introduce the concept of learning in game it (si sti )t U{(S, St j) - Uk(S, St j)
theor that we believe can provide practical solutions to the This algorithm mak-es use of the cumulative re-

CoexistenceProblem. ~~gret felt by a playeri over time t, given by
Learning in game allows initially uninformned players R(s)(si, sx sx j) for playing sx rather

to acquire knowledge about the state of the world. they are tha s nti ae h rbbl fpaigsrtg
in as the game is played repeatedly. Learning has been tasisupdated s

using: poablt o lyigsraeys

applied to networking research [6], where they study what isudtdsng

strategies players will play in the long run. In this paper, we qRt(s (s)
apply a class of learning, known as No-Regret Learning, to (S) Els[Rs)]
solve the Coexistence Problem. The attributes of no-regret
learning is that information like the number of players in where [R 1±= max({R, 0}1).
the game and their utility functions is not required by a 2.3.1 Informed vs. Naive No-Regret
player to play efficient strategies in thelong run.Thabvlemnagoimsrekwnsifomd

In no-regret learning, time dependency is introduced TeaoelannalgorithmsThsibea se arey kowassifomedtapae

inthformof t,where S' (sj, ..... ,s$ ) de- aloihsTissbeueteysum tatapyrinoe the straofteg rfleoh playr at tietAnd is able to evaluate how st_ the strategies played by thenoeq h taeypoieo h lyr t time t an
other players at time t, could affect the utilities of all his

q,2 ereetste eghsplyr strategies, si Si, even those that are not being played at
placed, on their strategies at time t. The weight qt can be thtim.Weteplyrsonyaetokwteuii
seen as a vector containing the probabilities of playing each of the strategy that he has played, a modification to the
of player '"s strategies or as a function qt (s ) returning the lann loihsi edd
probabilit of playing strategy si Si, at time t. In [6], the authors provide a way to conver an informed

No-regret learning allows a player to play his strategies algorithm to a naive one. It involves converting the utilit
with ccrtamn probabilities. The concept of regret involves function, Ui to Ui, where
the benefits a player feels after playing a particular strat-
egy, compared to his other strategies. Those strategies fU(tL) iis
that produce lower regrets will be updated, with higher Ui otherwise.Si
probabilities in the long ru.n. Ultimately, strategies that 0ohrie

are more successful will be played more often. There are ThsaelgrtmcodtenbuedwhUrpaig
diferet agorthm reatig t difernt egrt masues Ui, and modifying the resulting probabilities qt with

and. updating method.s. In Section 4, we will simulate ~ ( )~+~ o oec>0
how WMNs use two such algorithms, described, in [6] ii Ii
and. attributed to Freund and. Schapire [4] and. Foster and. 3. The Coexistence Game
Vohra [3], to solve the Coexistence Problem. Due to In this section, we will define a general model of the Go-
space constraints, the algorithms will be described briefly, existence Game. The model is made as general as possible
Readers are directed to [6], [4] and [3] for more details. in order to encompass the different interactions of co-
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3.1. The General Coexistence Game This can be accomplished by schemes found in multiradio

We believe many of the schemes proposed, to minimize WMN architectures like r13]. These links are represented,
internal and external interferences can be studied. as a by {i=f1, 2,.. 1i} for a player i. A strategy, si of

We deinetegenral oexisence ame a Pg.player iassigns a channel j C to each of the linkk Ligame. ~ ~ ~ ~ ~ ~~~~~~1For now, we assume that the links are unidirectional, i.e.,
InEFg, the set of players A~represents the decision each link has a predetermined transmitter and, receiver.

makers in the independent WMNs. Each WMN consists Let Fj represent the set of flows in player i where
of a set of nodes or links whose collective actions affect pikcF steflwoiiaigo piny.Iterwrs
network- performance. There are two possibilities of th sucoflwfikis theflownorignatingoolink k.InohrWors

defiingA~,epedingon he etites tkin par inthe restrict each source to one unicast flow. For convenience,decision making process. In the first case, each WMN
w ilietf ahfo ikwt t lwrt.LtX,has a centralized, decision making process, where a single w iliet ahfo , ihisfo ae e ,

entiy wihineachVVMNcolectsinfnnaton (.g.netwrk, be the aggregate flow rate of all the flows that pass through
conditions) from the nodes/links, makes the decisions and link k, i.e., Xi, fi, hr i,i vr lwta a

directs the nodes/links to act on them. In this case, we rep- togo thoghlnktorahisdtnto.
reset ech MNa a layr. Atemtivly, he eciion In graph theory, a complete subgraph of a graph is

resent each WMNaistarplayer. Alternativelythdesikdeishion known as a clique. If we represent the set of links LiasmakiWNgcanke disetributed,whreteiinodes/linkslwithinel the yertices of a graph, with an edge drawn between a pair

(as a coalition) seek to optimize the performance of their othvertwheni they arenon theysaeprchantntel,fercan hrepreen
respective network. In this case, we represent each VM te hnte r ntesm hne,w a ersn

as a coalition of players where each player is a node/link a olso oana lque[ e eoetesto

fromtheWMNInthi paer,we wll se he entalied. cliques where d D represents the set of links in a gamefromesthexWMlain this cocpaper w enwlluefothe chenteralze that are in the same collision domain. For a strategy profile
proces toexplanth conepts.Hencfo h,the erms S that allocates ever link in a game to a channel j C, we

network, and player will be used interchangably.
Each player has at his disposal a set of strategies Si define dj C d where Uj c dj d. In other words, S can

which may be different for different schemes. For example, be seen as break-ing up each clique d, into smaller cliques
when routing is used to direct traffic flows to paths with low di, Vj C. We will use the term collision domain and
interference 114], Si represents the set of routes available, clique interchangably in this paper.

If ranmitpowrcntrl i usd t liit he ntefernce Finally, we assume all the nodes use a common MAC
If tra lnksmitoe controlsisfused towlimitvthe interferecnc protocol that allocates the rates to the links in each channel

of te lnks,Scnsiss o thepowr leelsa plyercan collision domain, dj, j C in a max-mmn fair manner.
assign to each of his links.

The utilit function Ui denotes the value player iplaces We also assume there is a transpor layer or flow control
on the outcome of a strategy profile S. Player t can be protocol [115] in each WMN that ensures each link does not

seen as trying to optimize Ui through its choice of si in transmit more than the aggregate end-to-end. flow rates.

the light of s- that are played by the other players. A Example 1. To illustrate the notations and concepts
possible way to express the utility of a VANis the sum described so far, consider 3 WMNs within a single collision
of the utilities of all its individual flows. Let us assume a domain as shown in Figure 1(a). {~=f1, 2, 3} and the
WMN has flows with rates 1,., -, rk. The utilit of this collision domain d contains the links of all the players.
WMN can be expressed as {1k u(ri), where ut is some There are 3 channels available, C {A,B, C}. Except
concave function. Note that this tpe of utilit definition is for the first and last node, each node has two interfaces,
commonly used in network- utility maximization [11, 15]. one for each link. Suppose flows fli1 fl, 2 and fi. 3 flow

3.2. ChannlAssignmnt CoexisenceGamethrough all ofplayer 1 's 2 s and 3 s links respectively. We
3.2. Cannelssignmnt Coeistenc Gamehave Xc1,1 = X1,2 = X1,3 =fij, Xc2,1 = X2,2 =f2,1 and

in this section, we apply the general coexistence game, Xc3,1 =cX3,2 =f3,1i
Fg to a more specific scenario -channel assignment. We If a strategy profile involves player 1 assigning his links
define this as a channel assignment coexistence game, F,O. 1 and 3 to channel A, and link 2 to channel C, player 2
In F,. the player set A~contains the independent VV4s. assigning his link 1 to channel A and link 2 to channel B,
We define C as the set of channels available, with c C and player 3 assigning link I to channel B and link 2 to

In F,O we will consider multi-radio VMs [13, 12] channel C, d would be broken up into dIA dIB and d(,, as
where each node contains multiple wireless interfaces. We shown in Figure 1(b). The rates offlows fli and f2,1 are

focus n chanel assgnmentinthi game.In ordr to sm- eac, sinc cc1,1 1,3 2, 1 in IA. Evn thouh link
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Network No. of
A (Player) Links

X6 X6 ~~~~~2 4
B C ~~~~~~~~~~~~~~~~A 3 2

Figure 2. Example 2: Three WMNs in a single
(a) (b) collision domain.

Figure 1. Example 1 showing three WMNs player can get from any of his links across all the channels.
in a collision domain. (a) Network topology. Obviuljy, i max U = where j Cmx
(b) The 3 channel collision domains after Nash Equilibrium
channel assignment. We will now look at what constitutes a pure strategy Nash

A to that rate. A max-minfair MAC allows X3,1 and X3,2 to Equilibrium (NE) in the game Fca-21-1d-If
get the remaining - ofthe bandwidth. Hence, f3y =23 Proposition 1. In the single collision domain channel

assignment game, Fca-2i-ld-l a strategy profile that results
From Example 1, we can see that the channel assignment in er cn hi either or( -1)llVllJ AllMvt VV9"IJ96llttl9wlAlllVJObllllVlL in every channel having either r or (r - 1 links, where

choices of the players affect each other's flow rates. If r L ] is a pure strategy Nash Equilibrium.
a player's objective is to maximize the rate of his flows, C

the utility can be defined as U = k f,k. Hence, Example 2. Consider the networks shown in Fig-
U1 U2 -1 and U3 4 in the example. ure 2, where L = 4 + 4 + 2 = 10 and C = {A,B, C}

In the next section, we will use the model to analyze a re- (i.e. c 3). In addition to Cmax we define
stricted case of this channel assignment coexistence game. mix { cC: L mLr } and mm L .A

where i mC Amin ifflij = V,ij C Cma , That is, Cmri
3,3.Single Collision Domain is the set of channels with the minimum number of links
In this game, we assume that the WMNs have links that among all the channels and m,in is the set of all players

are all within a single collision domain, i.e., 1D = 1. Each with no link in the channels in Cmax.
player i has 1 + 1 mesh nodes with each node containing With the strategy profiles shown in Figures 3(a) and
2 interfaces. There is a single unicast flow (.Fi 1) from 3(b), the number of links in Cmax = {C} is r Lo- 4
a source node to a destination, going through 1 links. The and the number of links in Cmin {A, B} is r-1 3.
flow is always saturated, i.e., the source tries to send as Therefore these two strategy profiles meet the condition
much traffic as possible. Note that Example 1 described in Proposition 1. Clearly if the condition in Proposition 1
above can be classified as such a game. We call this 2 holds i C A\max or i C xWmin Vi C Af. As we can seefrom
interface per node, single collision domain, I flow per the way the links are distributed in Figures 3(a) and 3(b)
WMN game, Fca-2i-id-lf- this also results in all the links in the game being spread

Since all the links belong to the same collision domain, evenly across the channels. We will call this type ofstrategy
each link of player ' is indistinguishable from another. A profile a global spreading oflinks.
strategy s can be simplified to [li, '2,.. ,lic where lj We note here that if max, player 's utili U 1
-is the number oef liXnks player t' has on chan ne Vj ,- C.ilav,J C. since he is restricted by his links in some channel in Cmax.
Hence, Ej lij =. Let Lj = lj denote the total However, i i c min player 's utility Ui > 1 Thisnumber of links on channel The total number of links r-

is because if all the links in the channels with player i'sin the game is L = 1j iI. We will look at the links belong to players in Amx, he can get a utilit of
non-trivial case when L > c and c> 1. I If in all the channels with player 's links, there
We define Cx - /j C C: Lj = maxj L In other r-l'

max Jnexist links belonging to players in nemax, player can getwords, Cmax contains the set of channels with the maxi- additional bandwidth not used by those players and his
mum number of links among all the channels, Moreover, utili becomes larger than
wedefineA/ ?axC A,, wher i =Amax ifJ.lj fomr

we define ma . where'max iff 0 for To prove proposition p, we will show that for all i etAf,
somej Cmax. That is, ./max contains the set of players m psome jC CatThat s,NSm.z ontin the st o p ayrs moving p layer i 's links to another channel wi ll not improve
with at least one lI;nk in any channe'l beflonging to Cma his utility
We define the utilit of a p'layer 'to be Ui fi, the rate

of his flow, As fi flows through all of p:layer "'s links, this Proof The proof is divided into 2 cases -Case 1: player'i
also happens to be the lminimnum share of the bandwidth a belongs to ./Vma ; and Case 2: player ibelongs to JVmix,.
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We now state the following necessary condition for the
3 existence of pure strategy NE:

2 tt 1 tt t t Proposition 2. In the channel assignment game Fca-2i-ld-lf,
A B C A B C A B C a strategy profile that results in at least one channel with
Ul = 0.25 Ui = 0.25 Ui = 0.25 more thanr links, where r = [LC, is not apure strategy NE.
U2 = 0.25 U2 = 0.25 U2 = 0.25
U3 =0.25 U3= 0.375 U3= 0.5 In other words, a necessary condition for a NE outcome
(a) NEI (b) NE2 (c) NE3 is that all the channels can have at most r links. We can

see that the NE outcome of Proposition 1 satisfies this
Figure 3. Different possible NE channel condition. To prove this proposition, we will show that
assignments for networks in Example 2. The when a strategy profile results in a channel having more
letters represent the channels, each box than r links, at least one player can increase his utility by
represents a link and the number in the box changing his strategy.
represents the player the link belongs to.

Proof Supposea strategyprofile results in Cmar channels
In Case 1, player i's current utility is U -1. If he such that L > , Vj CG,,. We consider an arbitrary

moves any of his link from a channel j C to a different player with at least a link in any channel in Cmax. We
channel, he can choose to move this link to a channel will refer to those channels in Ci,,a that playeri has a link
j Cmax or jJ C,i, where jJ j. If he moves the in as j1,j2, jx. Let us consider the channel ji. We

link to channel j Cmax, his new utility will be Ui 1 know from Lemma 1 that there always exists a channel
which is less than the original Ui. If he moves the link to J' # Jl such that LX1-L > 1, we movea link of player
j' CCmi, his utility becomes U = , which i from channel j to channel j'. fx =1, then the utility of, t t~~~~~~r-l)+l r:
is the same as the original. Either way, player i has no player i has increased by this operation. If x > 1, we can
incentive to move his links, repeat the above operation by another ( - 1) times. This

For Case 2, player i's current utility is Ui > 1 He is possible because Lemma 1 guarantees the existence of a
can choose to move his link in channel ~ Cm ~ to a channel which has at least 2 links fewer than those in Cmai

channeL j' Cmax or j' GinC \ {j}. If he chooses Therefore, player i is able to increase his utility, whichchannely C max or Cgmin \ fSJ.I e chooses
channel j' iCna his new utility will be U'- . If he means that this cannot be a NE strategy profile. 1
chooses j' Cmi \ {j}, his new utility becomes U! 1,
Both are less than his current utility. Therefore, player i Wareto Eficiency
has no incentive to move his links. We note that depending on where a players links are found,

Since player 7" does not benefit from changing his a more efficient NE may be possible.
strategy, this is a pure strategy NE. El Consider Example 2 shown in Figure 2 with possible

channel assignments shown in Figure 3. Figure 3(a) shows
Proposition 1 is a sufficient condition for the existence a possible strategy profile (NEL) that results in global

of NE. There may exist other NE outcomes that are not spreading, and hence a NE. Each player has a utility of
global spreading. To describe a necessa condition for the 0.25 since they all have links in the Cmax { channel.
existence ofNE, we state the following lemma: A different NE strategy profile (NE2) allows player 3 to

get a utility of 0.375, as shown in Figure 3(b). We say
Lemma 1. For the game Fc,a-2i-ld-]f with L links and c that NE2 is more efficient than NEI as it allows player 3
channels, ifthere exists a channel i with more than r links, to get a higher utility without lowering the other players'
where r [.] then there always exists a channel j' i utilities. Incidentally, Figure 3(c) shows an even more
such that L -L, > 1. efficient NE outcome that is not global spreading. It can

be easily verified that NE3 is also a NE since no player can

oew con trad n that Lemal 1uhlds improve his utility by deviating. Notice that NE3 satisfies
The conldition inl Lemma 1 means that the total nlumber tencsa odtornrpsto2...

of links, L = (r - l)c + k where 0 < k < c. Hence,
(r- )c < L < rc. Assuming the lemma does not hold. From studying this single collision domain example as
Then, there exists a channel C Cmax where Lj > r + a game, we know that a way to achieve an equilibrium
and for all other channel ' j, Lj -L < 1; i.e., point is for a network to monitor all the channels to ensure
L,> r. Sum:ming up the links in all the channels, that its channel assignment does not cause any channel

Lj + ,j,1 Lj > (r + 1) + (c-l1)r re + 1. Since to contain more than r+1 flinlks. fEnsuring that there is a
this is greater than the maximum possible L, it is a global spreading of the linaks across all channels wil:l also
contradiction. Thelrefore, Lemlma 1L is true. E: gualrantee a NE. Shor of using explicit communication,
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tring to do so is extremely difficult. In Section 4, we
describe simulations done to explore the possibility of co- 1 ----

located WMNs arriving at NE outcomes without explicit 0.,
communication, by using no-regret learning algorithms. 0.8

In addition, we lean that there may exist more efficient .7
NE outcomes and, it is desirable for networks to reach such
outcomes. Again, this is not easy to achieve without explicit 'FS
communication. We also find that at times, a game can have 0

- --FV

a social optimal outcome that is not a NE. Briefly, a social04
optima outcome is one that maximizes the total utiliy of all 0 1000 0 3000 4000 5000 6000
the players in the game. Consider the game Fco-2i-ld-f with Iterations

2 players and 3 channels fA, B, C}. Player I has 3 links
and player 2 has 2 links. If the utility of a player is given by Figure 4. Total mean utilities acquired by two
his flow rate, it can be shown that a social optimal outcome players during a typical simulation run.
is realized by player 1 putting all his links in channel A and
player 2 putting one link in each of channels B and C. How- as a player updates his weights we also record the mean
ever, this channel allocation is not a NE, because it does not utili that the playerhas acquired so far. This is done by
satisfy the condition in Proposition 2. As pa of our future normalizing the total utility the player has acquired since
work, we plan to characterize pareto efficientNE outcomes, the start of the simulation with the number of iterations that
social optimal outcomes and explore ways to achieve them. has gone by.
4. Simulation Figure 4 shows a typical simulation run with n = 2

players. We present the total mean utility acquired by both
From Section 3.3, we know that there exist NE outcomes players over 6000 iterations. We see that all the algorithms

in a single collision domain channel assignment game. In are able to converge to a fix mean utility Though not
this section, we look at whether players can arrive at these shown, we have also collected the mean utilities for
equilibrium outcomes by using learning, individual players and note that each player is able to get a
We implement the Freund and, Schapire algorithm [4], fair share of the total utility over time.

for both the inforned (FSI) and naive (FSN) cases, and the Comparing FSI and FVI, the two informed no-regretFoster and Vohra informed algorithm (FVI) [3], described learning algorithms, we see that the players are able to
i Seto 2.3.. At, evearym ilgrthswersetatin eaheplLayersaevabluaestinSection 2.3. At every iteration, each player evaluates get similar utilities in the long run. FVI tends to convergehis utility gained during the previous iteration and uses faster, i.e., seemingly unsuccessful strategies are droppedthe algorithms to update the weights associated, to his faster in FVI, resulting in stable, long-term utilities. This is

strategies. We compare the two different no-regret learning confirmed by Figure 5, which shows how the weights asso-algorithms (FSI and FVI) to evaluate their respective merits .. '.
.

and drawbacks. We also compare an informed version of Wcated with each of the player's strategies evolve over tmle.
the ~..aloih.FI ihisniv onep FN,I d We see that in FSI (Figures 5(a) and 5(b)), both playersthe algorithm .FSI) with its naive counterpart (FSN). Inad. converge to playing a fix set of strategies after about 500 it-dition, we compare how these no-regret learning algorithms erations. en using FVI, the players' choice of strategies

compare against a purely random strategy, where each
c

player simply chooses a strategy randomly at each iteration.
In all our simulations, we have chosen appropriate values Figure 6 shows the proportion of time the NE outcomes

of a =0.2 in FSI and FSN, and = 0.1 in FSN. This occur during the duration of the simulation, computed
paper does not aim to evaluate the performance of different by normalizing the number of times NE outcomes have
values of a and c. Essentially, a and c determine how occurred. with the number of iterations so far. We notice
much and how fast an algorithm reduces the probability that both the informed algorithms are able to learn to play
of playing a strategy when it gives a bad utility. A high NE outcomes over time. In all the simulations for multiple
a and, low E causes larger and faster reduction. This may players, we find that the set of strategies that each player
mean faster convergence but also increases the chance of plays in the long ru.n results in a global spreading of the
players dropping those strategies that could have formed an links across the channels, a NE outcome as described by
efficient strategy profile. Proposition 1. With FSN, the players generally are not able

to converge to a fix set of strategies to play, resulting in
4.1. SimulationResults ~~~~NE strategies only played a certam proportion of the time,

fIn this simulation, we have m =.A\r numlber ofp'layers Nonetheless, fFSN 'learns to eliminate the strategies that
in a single collision domain. fEach player has li1 3 linaks gives low uti:lit for one p:layer w:hatever strategies the other
and the:re are c =4 availLalble channels. At each iteration, plLayelr plLay (known as dominated strategies in gamre the-
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0.4 FSN

(a) Player 1 --FSI (b) Player 2- FSI 0.2 Ra

@'04 1l '03 Srf ~~~~~Figure 7. Total mean utilities acquired by
0.2_ s2 -- -l: --------the players at the end of 6000 iterations, for

MYtb' 0, 1l;tj11l < ~~~~different number of players.
Iterations Iterations ~~~other players. The role of learning is to find efficient strat-

0.-

(c) Player 1 - FVI (d) Player 2 - FVI egy profiles. If a strategy is dropped before it has a chance
to be played against many other strategies, the chance of

Figure 5. Weights associated to strategies finding efficient strategy profiles ils reduced. Of course,
Over time for two players in a collision when FVI happens to get a highlLy efficient strategy profilLe,

.~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~06

domain, it wilUl be plLayed consistentlLy, lLeading to mnuch higher utilLity.
This accounts for the higher standard deviation.

In comparing FSI with FSN we notice that as we
__________________________inacrease the number of players iln the game, the naive

1~~~~----- ~~~~scheme actuaflly performs better. This counter-intuitive
0.9 , ,observation can be attributed to the fact that in the informed

E 0.8 1 / ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~04

D 07 algorithlms, the players' strategies convelrge to a small set
-FSI ~~~~~~~~~ofstrategies, as delmonstrated by the results in Figure 5. In

Za0.5 ; FIFSN, the set of strategies played do not generalLly converge,

E l Random~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~R.o

qO0.4 I/though the most inefficient ones (dominated strategies) are
() P r I -0eliminated. Therefore, ce2am players are able to get much

0- -N .o .y

1000 2000300040005000 6000higher utilities that alre not NE outcomes in solme iterations.

0.1~~~~~~~~~~~~~~~~~~~~~~~3

0 ..4
. 3This accounts for the slightly higher utility in cases where

0~~~ ~ ~ ~ ~ ~ ~~ ~h player at0 3000 4000of0600000tin,o

Iteratin -ithere are larger number of players.

4.2. Discussion- 2

Figure 6. Proportion of time a 2NEstrategy
profile is played during a typical simulation We make the following observations based on our
witrh te fotwo playersi simulation resultst
domn. it wl bepy1.No-regret learning algorithms allow players in our

ory). In all cases, learning outperforms random choosing of chan ssi nment coexistence game to learn to pla

r ~ ~~ ~ ~ ~ ~ ~ ~~I compnearing FS ihFN enoieta sw

chlannel assiglnmelnts iLn terms of utililties alnd NE+ outcomes. NE outcomes. lHenace, there is a potenatial for using them
Figure 7 shows the total mean utilities of allthe1players toesethe oex oene

1 tPobl m

in the game, at the end of 6000 iterations, averaged over 2. A learning allgorithmmthat converges faster to playing
100 independent simulation runs. We investigate the resulLts NE strategies is useful in dynamic scenarios, e.g. when
for rn - 2 to 5 players. We see that the total meanl utilities the trafic patterns of the networks changes constanltly.
acquired through ESI anad EVI are almost similar, especialLly lH[owever, the fast convergence may cause the networks
when the size ofthe players is small. When there are 5 play- to miss out on some optimal (pareto efficientt) outcomes.
ers in the game, EVI performs better, but with alarger stan- 3. A naive learning algorithm performs worse than in-
dard deviation, This is because FVI eliminates seeminglLy folrmed lLearning when the set of plLayelrs is smalUl, as the
inefficient strategies faster. ile it decreases convergence players do not have enough information to converge to ef-
time, efficient strategy profiles may also be missed, leading ficient strategies. However, this flack of information may
to lower total utility. A player's utility does naot just depend he advantageouswhetn the size of the player set is large.
On his strategy, but also the corresponding strategies used by 4. Our simulation assumes that all the players update their
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weights at the same time. This is unlikely in practical solve the problem. Simulation results show that no-regret
scenario. We will look into the effects of asynchronicity learning allows multiple networks to learn to play strategies
in updates as part of our future work. that arrive to Nash Equilibrium outcomes.

5. The game we have studied in this paper relates to channel This work represents just the first step in our look at
assignment with one decision maker within each WMN. the Coexistence Problem in WMNs. As part of our future
Practically, this can introduce delays into the learning work, we plan to look at more complex network topologies,
and decision process. We plan to investigate the effects of traffic patterms and investigate the effects of asynchronicity
such delays and look into the possibility of a distributed and delay on the performance of the no-regret algorithms.
approach, where each link learns and makes the decision. By using the general framework, we also hope to look at
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