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ABSTRACT

The increasing number of independent IEEE 802.11 WLANs owned
and managed by autonomous users has led to increased interfer-
ence, resulting in performance degradation and unfairness. Perfor-
mance can be improved by allowing these networks to operate on
different channels. Due to the autonomous nature of the networks,
a suitable channel selection scheme should be distributed, adaptive
and require no explicit coordination. In this paper, we model the
channel selection of WLANS as a non-cooperative game in a learn-
ing setting. Using a novel method of acquiring a disruption factor
value, we propose a class of socially conscious channel selection
schemes based on game-theoretic learning. These schemes are dis-
tributed, adaptive and are able to improve fairness without explicit
inter-network communication. These features allow the WLANS to
coexist in an interference-limited but non-cooperative environment.
They also have the advantage of not requiring any modification to
the existing 802.11 standards. Simulations show improved fairness
and aggregate throughput compared with two existing schemes.

Categories and Subject Descriptors: C.2.1 [Computer- Commu-
nication Networks]: Network Architecture and Design - Wireless
Communication

General Terms: Algorithms, Design, Performance

Keywords: IEEE 802.11, channel selection, game theory, learning,
coexistence

1. INTRODUCTION

IEEE 802.11 has become the predominant technology to enable
Internet access of many wireless devices. As a result, it is com-
mon to have multiple Wireless Local Area Networks (WLANs)
deployed in a single locality. Apart from locations like university
campuses or corporate offices, most WLANS can be characterized
as a single Access Point (AP) providing Internet connectivity to
one or more clients. They are often set up by individuals (e.g. res-
idential occupants, small businesses) and are therefore owned and
managed by separate entities. We term these networks Independent
WLANs. Henceforth, the terms independent WLAN and network
will be used interchangeably in this paper.
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These networks generally have the following characteristics:

e Uncoordinated: They have variable and uncoordinated operating
times. Over time, APs are also set up and removed with similar
irregularities. In addition, this non-coordination leads to uneven
density of deployment, with more APs located in highly concen-
trated residential and business areas.

e Non-cooperative: Unlike enterprise or campus WLANS, these
networks do not have any network management software that can
ensure efficient use of the radio resources (e.g. channel usage or
power control) in a centralized or cooperative manner.

One way to improve the performance of multiple WLANSs in
an interference-limited environment is to make use of the different
channels available in the standards. As a result, a lot of research has
been devoted to developing effective and efficient channel selection
schemes [1,3,4,11,13-15,18,21,22]. With the exponential growth
of independent WLANS in recent years [2], there is a need for chan-
nel selection schemes that are distributed and adaptive in operation,
without explicit control messages exchanged among them.

Fairness is another issue that arises when 802.11-based WLANs
are deployed over an area spanning multiple cells or collision do-
mains. In wireless networks, a collision domain is the region where
links located within it interfere with one another. In [7], the authors
show that, due to the inherent MAC protocol, 802.11 can exhibit
unfairness in such situations. Depending on their locations, some
links experience much lower throughput performances compared to
others. In this paper, we define them as starved links or networks.

While using a channel selection scheme, a starved network may
not always be able to improve its throughput by unilaterally switch-
ing to a different channel. We will show that fairness among inde-
pendent WLANSs can be improved if WLANS that are causing the
starvation can detect this unfairness and take steps to alleviate it.
We term these networks socially conscious networks, since they
proactively improve the “welfare” of disadvantaged networks.

In this paper, we propose a class of channel selection schemes
that is distributed, adaptive as well as socially conscious with the
aim of increasing overall throughput performance and inter-network
fairness among independent WLANS.

Following are the primary contributions of this paper:

e We propose a class of channel selection schemes based on game
theoretic learning that is practical to be implemented in existing
802.11 networks. Our schemes require no modification to the
standards and hence can interoperate with existing networks.

e We present a disruption factor value for each independent WLAN
that seeks to inform it of the unfairness it is causing to the sur-
rounding networks. We describe a novel approach to acquire this
value without explicit exchange of messages. This is incorpo-
rated into our channel selection schemes to create socially con-
scious WLANS.



e Through extensive simulations, we show that our schemes achieve
higher overall throughput (as high as 30%) as well as better fair-
ness (as high as 17%) when compared to two existing channel
selection schemes.

The paper is organized as follows: In the next section, we briefly
discuss the issue of unfairness in 802.11-based WLANS. In Sec-
tion 3, we review the existing channel selection schemes proposed
for WLAN deployments. This is followed by introduction to a class
of learning algorithms based on non-cooperative game theory, which
we use to develop socially conscious channel selection schemes. In
Section 5, our channel selection schemes are described in detail.
We present some simulations to evaluate and compare our schemes
in Section 6 and conclude with Section 7.

2. UNFAIRNESS IN IEEE 802.11

The most common MAC in 802.11 is the Distributed Coordina-
tion Function (DCF), which primarily consists of the CSMA/CA
mechanism. A station first senses the channel if it intends to trans-
mit. If the channel is free, the station may still defer for a backoff
duration that depends on the previous transmission success or fail-
ure. In addition, during this period, the backoff process stops any-
time the channel becomes busy and only resumes when the channel
becomes free again.!

While DCF seeks to ensure some level of fairness within a sin-
gle collision domain, it has been shown to result in significant un-
fairness when the stations span over multiple collision domains.
Through detailed modelling and analysis, Garetto et al. [7] show
that one of the major causes of unfairness is the difference in chan-
nel state perceived by the transmitters. This is shown in Figure 1.
In this example, transmitter T2 is in the sensing range of transmit-
ters T1 and T3 that cannot sense each other. T2 freezes its back-
off counter whenever T1 or T3 is transmitting. T1 (T3), on the
other hand, can keep decreasing its backoff counter when T3 (T1)
is transmitting. In fact, both T1 and T3 can even be transmitting
simultaneously. This results in a much limited transmission oppor-
tunity for T2, compared to T1 and T3. Subsequently, traffic on Link
2 becomes starved while those on Links 1 and 3 remain high. In [7],
this is known as the Flow-In-the-Middle (FIM) effect.

:1E g

Figure 1: FIM example: T2 is within the sensing range of T1 and
T3 but T1 and T3 are out of each other’s sensing range.

Link 2
Link 3

It is clear that the unfairness in 802.11-based networks that re-
sults from FIM is related to the relative locations of the links. In
independent WLANS, the location of each network is often con-
strained by the location of the user. For example, a resident could
only set up an AP within the confines of her home, or a cafe owner
could only install an AP within his business premises. If a network
happens to be located between two other WLANS that cannot sense
each other, it is unduly penalized for no fault of its own.

In this paper, to ensure interoperability with existing WLANS,
we assume that the fundamental 802.11 MAC protocol is unlikely
to be changed in the short term. Instead, we propose a channel
selection scheme that is able to improve fairness in independent

lIEEE 802.11 DCF consists of many other intricate components that are not described
here. Interested reader is directed to the standards and the vast literature available for
a full description.
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WLAN deployments. The 802.11 DCF MAC remains unchanged,
since channel selection schemes are not part of the standards.

3. RELATED WORK

Akella et al. [2] are one of the first to highlight the challenges of
independent WLANSs coexistence. Using data from existing WLAN
deployments, they study the impact of interference on client per-
formance. In [5], Ergin et al. provide experimental and simulation
results of similar unplanned WLAN deployments. However, they
assume a single collision domain for all the WLANs and do not
capture the unfairness that arises over multiple collision domains.

Least Congested Channel Search (LCCS) [1] is a simple chan-
nel selection scheme where an AP scans its channels to use the
one with the fewest number of neighboring APs. This scheme is
currently implemented in some APs. In [13], Mishra et al. propose
a Hminmax distributed algorithm that formulates the problem as
a weighted graph coloring one where an edge is defined for ev-
ery WLAN that is within the communication range of a particular
WLAN, say i. For every edge, they define as W the number of
’s clients that will be affected by the interference of the WLAN
sharing that edge (if they share the same channel). Along with the
channel separation I between the WLANSs sharing the edge, they
compute the weight of each edge as I x W. Hminmax is performed
periodically and ensures that ¢ selects the channel that minimizes
the I x W value of its maximum weighted edge. Hminmax has
been shown to outperform LCCS, although it requires the clients
to also scan the available channels and provide feedback to the AP,
thereby increasing complexity and communication overheads.

In both LCCS and Hminmax, a WLAN scans a channel by lis-
tening for frames from neighboring WLANS in order to compute
the channel’s utility. However, they are unable to detect the inter-
ference that comes from WLANSs lying outside the communica-
tion range, as their frames cannot be correctly received. LCCS and
Hminmax also do not take into account the traffic load of the net-
works in each channel. A number of works have highlighted these
points and have proposed solutions that compute channel utilities
using more detailed metrics. In [11], Leith et al. propose a simple
learning algorithm, making use of frame error rate as the metric.

Chen et al. [3] introduce a few measurement-based frequency
allocation algorithms. One of the algorithms uses the clients’ mea-
surement of the channel interference /., the received signal power
from the AP to the client R. and the traffic volume Y. between
the AP and client. The utility of each channel is computed by sum-
ming up (g—z - I.) of all clients belonging to the AP. The No-Coord
User (No-U) algorithm uses these utilities, where each AP performs
periodic scanning and independently chooses the channel with the
lowest value. Because it takes into account the clients’ view of the
channel, No-U is shown to perform better than that of [11].

In [4], the authors make use of IEEE 802.11k parameters — the
channel load info and noise histogram — as the metrics to compute
the channel utility. When the channel load falls below a threshold,
it triggers the AP to choose a new channel with the lowest noise
histogram value. Yoo and Kim [22] use a similar threshold-based
approach in their solution.

All the schemes described so far are suitable for independent
WLAN:S as they require no inter-WLAN coordination. However, all
of them are selfish in nature and unlike our schemes, do not specif-
ically address the fairness issue. Since Hminmax [13] and No-U [3]
have been shown to perform better than the majority of schemes
described here, we will compare our schemes against them.

There are also schemes that have been proposed that assign the
channels in a centralized manner, e.g. [14, 18]. They assume all
the WLANS belong to a single managing entity and are therefore



not applicable to independent networks. Their discussion is beyond
the scope of this paper. In [21], even though the authors do not
assume a single managing entity, they assume explicit communica-
tion among the independent WLANS. Thus it is also not a suitable
solution to our problem.

4. GAME THEORY AND LEARNING

Game theory [6] has been applied to network interactions [8] and
in particular, wireless networks [20]. In our prior work [12], it is
asserted that non-cooperative game theory is suitable to model the
interactions of independent wireless networks, where each network
constitutes a player and the actions available to the network, e.g.
channels, transmit power, represent the strategies available.

While classical non-cooperative game theory is able to provide
insights into the interactions of independent wireless networks, it
may not be suitable for practical schemes. This has been pointed
out by Greenwald et al. [8], as they explore the application of game
theory in the networking environment. Classical game theory as-
sumes common knowledge of the set of players and strategies. This
is highly unlikely given the distributed nature of independent net-

works. An independent WLAN would not be aware of all the WLANSs

that could affect its performance (e.g. those deployed beyond its
communication range but within the carrier-sensing range). In ad-
dition, the utility function and the players in the game change as
new WLANSs are deployed and old ones are taken down over time.
In the next section, we will introduce the concept of learning in
game theory that can provide practical channel selection solutions
to the independent networks.

4.1 Game Theoretic Learning

Learning in game [17, Ch. 4] allows initially uninformed players
to acquire information about the state of the world they are in, as
the game is repeatedly played. Learning has been applied to net-
working research in [8], where the authors study what strategies
players will play in the long run as they learn about their environ-
ment. The attribute of game theoretic learning is that information
like the number and identity of players in the game and their util-
ity functions is not required by a player in order to play efficient
strategies in the long run.

4.2 Model and Notations

Let ' = (N, S, {Ui}ienr) be a finite N-player game in normal
form, where N is a finite set of players, [N| = N, and S is the
Cartesian product of the set of strategies available to each player in
Nie., 8 = X;enS; where S; is the set of strategies available to
player i. S = (s1, $2,...,8n) € S is a strategy profile consisting
of a strategy from every player in N. U;: & — R is defined as a
utility function of player ¢ representing the value of the outcome
resulting from a strategy profile S. For a particular strategy profile
S, if the strategy used by player i is s; € S;, we collectively term
the strategies of the other players as s_;.

In game theoretic learning, let U} denote the utility of player
i at time t. S* = (si,s5,...,sk),Vs! € S; denotes the strategy
profile of the players at time ¢. The s! that is played by player i
arises from a probability density ¢} which denotes the probability of
playing each strategy s; € S;. Over time, the probability density g}
will evolve with more favorable strategies taking higher values, as
determined by the learning algorithm. In each period, playeri € N,
chooses a strategy s: € S; in accordance to ¢. ¢ can also be
interpreted as a function ¢} (s;) returning the probability of playing
strategy s; € S;, at time ¢, which is done in this paper.

We will present two different learning algorithms in the subse-
quent sections.
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4.3 Best Response Learning

In best response (BR) learning, gf is updated by each player in
the following manner (assuming no tie among utilities):

.

Essentially, BR learning (as the name suggests) always uses the
strategy that yields the highest utility during the last period when
the game is played.

1, ifj = argmax,es; Uf(si);

0, ey

t+1, -
¢ () otherwise.

4.4 Internal Regret Minimization Learning

While BR learning uses the immediate past period to determine
its strategy choice, internal regret minimization (IRM) learning can
be viewed as using a history of periods to make the decision. In
IRM learning, the notion of internal regret must first be defined.

At time ¢, we denote the internal regret R} that player i feels for
playing strategy s’ rather than s; # s! as

Ri(si,s1) = [Di(st,s0)] @
where []* = max {-, 0} and
Df(8§78i) = Z [Ui(si,sTi) = Ui(si,sZi)]  (3)

t

sT—g
T<t;s] =s;

The value D!(s!,s;) can be interpreted as the average differ-
ence in utilities a player would have obtained if for every time he
had played s! in the past, he had instead played s; # si. In [9],
Hart and Mas-Colell introduce an IRM learning algorithm using
the following ¢! updating scheme:

_ { S Ri(si, ), forall j # s,
R

4" ()
‘ =Y iesyhg; 4 (k) otherwise.

)

where 1 > 0 is a sufficiently large value?.

Briefly, the IRM learning algorithm of Hart and Mas-Colell up-
dates the probability that a player would switch strategy as a linear
function of the average regret. The IRM learning algorithm ensures
that as ¢ — oo, the expected internal regret over the probability
density qf almost surely becomes zero [9].

One can see that unlike BR learning, a better utility of another
strategy in the previous period does not trigger an immediate strat-
egy change in IRM learning. This is because it uses a probability
density and a regret value that are computed over the history of

play.

S. SOCIALLY CONSCIOUS CHANNEL
SELECTION SCHEMES

In this section, we describe how we incorporate the learning al-
gorithms into practical channel selection schemes. We also intro-
duce a novel way of detecting unfairness in the network environ-
ment that requires no explicit message exchange among the inde-
pendent WLANS. By adding this capability into our channel selec-
tion schemes, we are able to develop socially conscious schemes.

5.1 WLANSs Channel Selection Game

We first define the WLANs Channel Selection Game. The game
is played by a set of players A/, where each player i € A is an in-
dependent WLAN deployed within a predefined area. We assume

In most cases, it suffices for j to be |Si| — 1, which is the value
used in our simulations.



each WLAN consists of an AP connected to the Internet via a wired
connection, and a collection of one or more wireless clients. Hence-
forth, the terms player and WLAN will be used interchangeably.

Each WLAN i is able to switch between |S;| numbers of non-
overlapping channels. We assume that each WLAN can only be on
one channel at any given time. The channel s; € S; that WLAN 4
decides on thus constitutes the strategy chosen by player ¢ out of the
available strategy set of S;. Henceforth, the terms strategy and op-
erating channel will be used interchangeably. As mentioned above,
the classical way of computing U; as a known function of the strat-
egy profile of all the players in the game is not possible here. In-
stead, U; is computed by player ¢ by some measurement process.

This game is played repeatedly through time: ¢ = 1, 2, .. ., where
after every T4 € R period of normal operation, each player 3 will
perform some process that will determine U and choose a chan-
nel sEH for the next 1’4 period (shown in Figure 2). The operation
performed during the T’p period differs for the different learning
schemes. Note that we do not assume that the times when the play-
ers perform the channel switching operation are synchronized.

>~
>

[ |

[ ] : [
t=1 i3

T PTC

Figure 2: Timing diagram of the channel selection game, where
each iteration contains an active period of 7’4 duration and (pas-
sive) scanning period of T’p duration.

5.2 Channel Selection using BR Learning
(CSBRL)

In the CSBRL scheme, during each T'p period, a player ¢ per-
forms a passive scanning operation of all channels in S; where each
channel is scanned for ¢ time units. In each ¢, scanning duration,
player ¢ measures tbﬁ(si), which is the total time the channel s; is
sensed busy at time period ¢. Practically, this is the time the clear
channel assessment (CCA) function, as defined in the standards, is
set to busy within the ¢, period.

For each channel scanned, we compute the utility of the channel,

t
— nit(—&),VSi €S

S

Ui(si) =1 (5)
The utility can be seen as an estimation of the fraction of the
channel non-busy time. A higher U} suggests that player i could
have more opportunity to transmit data on that channel.
With the utilities acquired for each channel, the player updates
qf“ using (1), which is essentially choosing the channel with the
lowest channel utilization.

5.3 Channel Selection using IRM Learning
(CSIRML)

In the CSIRML scheme, we apply IRM learning to the chan-
nel selection process. The scanning process and utility remain as
described in (5) for the CSBRL scheme. The difference is in the
updating of the probability density, using (2), (3) and (4). At the
end of the updating process, the new channel will be chosen over
the probability density ¢ ™*

4 .

5.4 Disruption Factor

While most channel selection schemes, including the ones pro-
posed in this paper so far, allow a starved player to switch to a
channel with a higher utility (i.e., lower utilization). The player is
unlikely to see any improvement in its situation if no such channel
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exists. Figure 3 provides an example of this case, consisting of 5
players using 2 channels.

One can see that if both channels were occupied by exactly 2
outer players, Player P1 would not be able to get a better utility
whichever channel it chooses, since P1 will be in a FIM situation
in either channel. However, if any of the outer players can detect
that P1 is unfairly starved, and switches to the other channel, then
P1 could potentially share this channel with the remaining player.
In fact, one can do even better. If both outer players switch chan-
nel such that only P1 remains in that channel, all players will get
maximum performance, since there is now no interference.

Figure 3: Channel Selection Game with N = {P1,P2,... ,P5}
and S; = {C1,C2}. Dotted lines denote interference if players are
on the same channel.

The key challenge is to allow a player to detect that it is causing
unfairness to some players without the exchange of explicit control
messages. That is because in independent WLANS, the players are
not likely to cooperate with explicit feedbacks. In addition, interfer-
ence often extends beyond the communication range of a network.

We will now describe a novel way for a player to make this de-
tection, using a disruption factor value 0. To compute §, we make
use of the fact that during the operation of our channel selection
schemes, there is both an active phase, and a passive phase. The
active phase occurs when a player is sending data over the channel
it has chosen, with duration of 7'4. The passive phase occurs when
the player is scanning the channel set, with duration of 7'», which
is (|Si| x ts) plus the processing and channel switching times.

During the active phase, a player ¢ can compute the utility when
it is actively transmitting on the channel s} using

Tyi(si)

© Ta —Tal(st) ©

where T3! is the total time in the duration T4 that the channel is
sensed busy by player i and 7! is the time that player 4 spent in
transmission mode.

For the period ¢, let

§t(i) = [UL(st) = UL (s ()

The value § thus gives a sense of the difference between the state
of the channel activity when player i is participating actively in the
medium to when it is not. A high ¢ value would mean that there is
more channel activity when player ¢ is passive compared to when
it is active. This gives an indication that player ¢ may be unfairly
causing starvation to one or more other players due to different per-
ceptions of the channel conditions (e.g. in the FIM case). In Sec-
tion 6.1, we show that J is able to detect starvation in a FIM setting.

5.5 Incorporating Social Consciousness

As defined earlier, a channel selection scheme is socially con-
scious if it enables a player to detect unfairness and takes actions to
improve it. Using the disruption factor acquired as described in the
previous section, we show how social consciousness can be incor-
porated into our channel selection schemes.

To enable social consciousness in our schemes, we define a new
utility function, Vi (s}) which is computed according to algorithm 1.



Algorithm 1 Compute SC Uility V!

1: fort =1,2,3,...do

2:  Compute U} (s;) using (5)
3:  Compute Uf(st) using (6)
4:  Compute &¢(3) using (7)

5: ift=1lors "' # s then
6: cumDel«+ 0

7:  endif

8:  cumDel«— cumDel +6°(3)
9:  forevery s; € S; do
10: if 5; = s then
11: Vi(s;) < Ul(s;) — a cumDel, where o € R
12: else
13; VE(ss) — UL(si)
14: end if
15:  end for
16: end for

Algorithm 1 can be understood as follows. For every time period,
the values U}, U} and the disruption factor & are computed. As long
as a player continues using a channel consecutively, each ¢ is added
to a cumDel value (line 8). The cumDel value can be viewed as the
cumulative effect of a player’s disruption factor and it gets larger
the longer this player stays on a particular channel. This counter is
reset to O when a player chooses to switch channel (line 6).

The utility of the current channel is discounted by a factor o of
this cumDel value, while those of the other channels remain un-
changed. The effect of this is to penalize a player for continuing to
use a channel that it is causing disruption to (i.e., consistently hav-
ing a high 6). U} will be substituted with V;* in either (1) or (3) to
compute the probability density for BR Learning or IRM Learning
respectively. We will term the socially conscious schemes CSBRL
with Social Consciousness (CSBRL-SC) and CSIRML with Social
Consciousness (CSIRML-SC) respectively.

Note that the value o determines how much a player is conscious
about its disruption to other networks. When v = 0, CSBRL-SC is
essentially CSBRL and CSIRML-SC is CSIRML. We investigate
the effect of this SC factor «v in Section 6.2.

6. PERFORMANCE EVALUATION

In this section, we present results of simulations conducted to
evaluate the performance of our channel selection schemes. All the
simulations have been conducted on the Qualnet simulator [19], al-
lowing us to evaluate the performance using realistic channel con-
ditions. In addition, the 802.11 DCF MAC and PHY layers have
been realistically implemented in the simulator. We build our chan-
nel selection schemes on top of these layers to illustrate their back-
ward compatibility with existing WLANS. Since as highlighted in
Section 2, unfairness results from the MAC protocol, we use 802.11b
PHY without loss of generality.

In evaluating the channel selection schemes, we run a total of
20 random topologies for each simulation set. Unless stated other-
wise, the following parameters apply to all the simulations. In each
topology, 10 WLANS are deployed with each WLAN consisting of
an AP and 4 clients. There are 3 channels available for selection.
Each WLAN appears randomly in time at the beginning of the sim-
ulation and begins the channel selection process. Since most clients
currently attached to APs are mobile devices, the predominant traf-
fic are downlink flows originating from the Internet [16]. Therefore,
application data packets of size 1460B flow from every AP to each
of its clients, with each flow lasting 2000s.

To evaluate the performance, we look at 3 different metrics:

1. Fairness To investigate overall system fairness, we compute
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Figure 4: The change in the disruption factor over time (Links 1
and 2), for different ¢.

Jain’s fairness index [10], given as (3" z:)*/(n Y. 27), where
x; is the application throughput of each flow i of the n flows
in the system. A number that is closer to 1 signifies that the
WLAN:S are able to achieve a better fairness.

2. Aggregate Network Throughput The total application through-
put of all the networks in each simulation run tells us how well
the various schemes utilize the channel resources.

3. Minimum Flow Throughput As we are interested in the per-
formance of the starved networks, the minimum flow through-
put captures the performance of the worst-performing link in the
simulation.

6.1 Evaluation of Disruption Factor ¢

We first evaluate the effectiveness of the disruption factor § to de-
tect the unfairness in the network region through passive scanning.
We deploy 3 links in the configuration of Figure 1. At the beginning
of the simulation, only links 1 and 2 are active, transmitting satu-
rated traffic. During this time, both links should experience similar
throughput as they share the channel equally. After about 1000s,
link 3 starts transmitting saturated traffic, resulting in link 2 being
starved. At the end of each interval (7’4 = 60s) of actively sending
traffic, the links will passively scan the channel for ¢, after which
0 will be computed. We vary ¢, to investigate the effect of passive
scan time on d.

Figure 4 shows the change in the disruption factor of links 1 and
2 over time, for different ¢, varying from 2 to § beacon intervals
of around 200ms in duration. We can see from the figure that for
link 1 (the outer link), there is a marked increase in the disruption
factor when link 2 becomes starved. At the same time, link 2’s dis-
ruption factor decreases. This is a desired outcome, as it means that
a starved link will not try to be socially conscious.

We can also see that the value of ¢ has minimal effect on the
disruption factor. A smaller ¢, only results in a marginally larger
variance in the disruption factor. This is also a favorable outcome,
as the higher ¢ is, the more time a network would have to spend
doing passive scanning, leading to lower throughput. For the rest of
our simulations, we set ¢s to be (2xbeacon interval).

6.2 Evaluation of SC Factor o

We next investigate the effect of the SC factor o on the channel
selection schemes we have proposed. As discussed in Section 5.5,
« is directly linked to how fast a player reacts to the disruption it
detects in its environment. An « value of O means that the player is
not socially conscious at all. We compute Jain’s fairness index and
channel change frequency for the networks deployed over a 1000m
by 1000m area, shown in Figure 5.
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Figure 6: Throughput fairness for different offered load.

From Figure 5, we can see that increasing « has the effect of
improving the fairness among the networks. With social conscious-
ness, the BR learning scheme achieves higher throughput fairness
compared to IRM learning. The tradeoff is in the channel change
frequency, which represents the number of times the respective
schemes trigger a change in the channel, normalized over the total
number of iterations. BR learning with social consciousness results
in about 5 times more changes in channel. This is to be expected,
since BR learning immediately triggers a change in strategy when-
ever it acquires a higher utility for another strategy. This high rate
of channel switching may not be desirable, as there are always costs
associated with a WLAN changing its operating channel.

From the simulation result, we set the value of @ = 0.5 as the
SC factor for both the CSBRL-SC and CSIRML-SC schemes in all
subsequent experiments.

6.3 Comparison with Existing Schemes

We now evaluate the performance of our schemes against two
existing channel selection schemes described in Section 3 — Hmin-
max [13] and No-U [3]. These 2 schemes are chosen for compar-
ison because they do not require any explicit communication and
coordination among the WLANS, and thus are suitable for use in
independent WLAN deployment. They also show superior perfor-
mance when compared with other existing schemes.

6.3.1 Offered Load

We deployed the WLANSs in a 1500m by 1500m area and varied
the offered load for each AP-client link from 0.5 Mb/s to 2.5 Mb/s.
Figures 6, 7 and 8 show the throughput fairness, aggregate through-
put and minimum link throughputs of the different channel selec-
tion schemes for varying offered load.
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At low traffic load, no starvation is taking place, as the channels
are under-utilized. Consequently, all schemes perform similarly. As
the networks become more congested, unfairness becomes notice-
able. Hminmax performs less well compared to the other schemes
in terms of fairness, aggregate throughput as well as minimum
flow throughput. This shows that information from neighboring
networks that are within the communication range is clearly not
sufficient. Across the varying offered loads, we find little difference
among the fairness and aggregate throughput results of CSBRL,
CSIRML and No-U (within 3% difference), even though No-U re-
quires the additional complexity of client feedback.

When we incorporate social consciousness into our schemes, we
see that CSBRL-SC and CSIRML-SC increase the system fairness
(Figure 6) compared to their non-SC counterparts. In fact, the SC
schemes result in a slightly higher aggregate throughput than their
non-SC counterparts, as shown in Figure 7. We believe this can be
explained by cases similar to the example of Figure 3. Finally, the
SC schemes prevent starvation by providing a much higher mini-
mum throughput compared to the other schemes (Figure 8), as high
as 180% when comparing with Hminmax and 50% when compared
with No-U.

Since the SC schemes outperform their non-SC counterparts,
only the results comparing the SC schemes with Hminmax and No-
U will be shown in subsequent sections.

6.3.2 Network Area Size

Figures 9, 10 and 11 show the same triplet of performance met-
rics as the area where the WLANSs are deployed is varied from
500m by 500m to 1500m by 1500m, with saturated traffic in all
links. This gives an indication of how the different schemes per-
form with respect to how close the WLANS are located. In addition,
the chance of uneven distribution across the area increases with the
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size of the deployment area. This situation is similar to actual de-
ployment, as some areas (e.g. residential) will see a higher density
of WLANS compared to others (e.g. a nearby park).

From the figures, it can be seen that the SC schemes outper-
form the existing schemes by as much as 12% in terms of fairness
and 10% in terms of the aggregate throughput. The minimum flow
throughput also increases by as much as 2.6 times.

6.3.3 Number of Channels

As the total number of channels provided for WLANs may vary
depending on the standards (IEEE 802.11b/g or IEEE 802.11a), we
evaluate our schemes with respect to the number of channels avail-
able. In our simulations, we deployed 24 WLANS consisting of an
AP-client connection in a 1000m by 1000m area. The simulation
time is extended to 4000s. As the number of available channels
increases, we would expect an effective channel selection scheme
to have better fairness and overall throughput. This is because the
increased number of channels reduces the chance of networks in-
terfering with each other.

Figures 12, 13 and 14 show the network fairness, aggregate and
the minimum per-link throughput for different numbers of avail-
able channels. The figures show again that the SC schemes result
in a higher fairness among the networks, as high as 17% compared
to Hminmax and 13% compared to No-U. In terms of aggregate
throughput, CSBRL-SC performs as much as 30% and 10% better
than Hminmax and No-U respectively. Both SC schemes are also
able to achieve higher minimum flow throughputs compared to the
existing schemes.

6.4 Channel Switching Frequency

Figure 15 shows the channel switching frequencies of the differ-
ent schemes for the 1000m by 1000m network area size. The chan-
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nel switching frequencies indicate how often the players switch
channels during the simulation run, normalized over the number of
scanning periods. It shows that even though CSBRL-SC performs
better compared to the other schemes, it results in more frequent
channel switches. The reason for this, as discussed previously, is
that the best response algorithms trigger immediate strategy change
when the previous strategy results in a lower utility. This immedi-
ate change accounts for the frequent channel switch. On the other
hand, the IRM learning algorithms are able to provide a much lower
channel switching frequency at a slightly lower performance cost
(at times).

This observation presents a tradeoff for the choice of channel se-
lection schemes — if the channel switching cost is high (e.g. when
the wireless devices have high channel switching time), the IRM
learning schemes can be seen as better solutions. Finally, even though
Hminmax has the lowest channel switching frequency, it also con-
sistently produces the worst performance. This shows that the infor-
mation it acquires is not sufficient for it to make effective channel
switching decisions.

7. CONCLUSION

Due to the inherent nature of the CSMA/CA mechanism in IEEE
802.11 DCF MAUC, it has been shown that unfairness can occur
among WLANS set up in a region spanning multiple collision do-
mains. As more and more WLANS are being deployed, there is a
need to ensure some level of fairness concerning the amount of
traffic each WLAN can support. In this paper, we look at the use
of channel selection to achieve fairness. We have shown that us-
ing information gathered from networks within the communication
range of a WLAN is not sufficient. As a result, we have described
a number of channel selection schemes that make use of a more
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accurate assessment of the channel condition by using a game the-
oretic learning approach. We also introduce an innovative method
for a WLAN to detect that it is unfairly causing starvation to a
neighboring network and have incorporate this capability into the
learning schemes. This has resulted in socially conscious channel
selection schemes, which we have shown through simulations to
perform better than existing schemes in providing a higher system
fairness, aggregate throughput and minimum flow throughput.
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