Inside L4/MIPS

Anatomy of a High-Performance Microkernel

Gernot Heiser
Version 2.19 (5 syscalls+scheduling) of January 30, 2001

disy@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~disy/

Operating Systems and Distributed Systems Group
School of Computer Science and Engineering

The University of New South Wales

UNSW Sydney 2052, Australia

mailto:gernot@unsw.edu.au
mailto:disy@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~gernot/

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that copying is by permission of the authors. To
copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific permission and/or
afee.

Copyright(©1999-2001 by Gernot Heiser, The University of New South Wales.

Abstract

This document is an attempt to document the internal structure of L4 and its operations. It is based on the L4
implementation for the MIPS R4x00 (L4/MIPS), kernel version 79 (February 1999). The document is meant as
an aid in teaching operating systems internals, and as a guide for kernel implementors. While the actual code
discussed is very specific to the MIPS processor, much of the overall structure and logic of L4 is quite uniform
across platforms.

The present version of this report documents L4/MIPS data structures, exception handling and the IPC system
call. Documentation of the implementation of the other system calls, and issues such as scheduling, will be added
in the near future.

Acknowledgments

This report would not have been possible without Jochen Liedtke, who created L4, and Kevin Elphinstone, who
did an outstanding job in designing and implementing the MIPS version. Special thanks are due to both.

Thanks are also due to a number of other people who helped to get L4 into what is described here. Alan Au
added a number of missing components to the kernel, and fixed a few bugs. UNSW undergraduate thesis students
Brett Nash, Victoria Ong, Cristan Szmajda and Adam Wiggins studied the code, suggested a number of improve-
ments, and helped with the documentation. Students taking Advanced Operating Systems at UNSW in 1997-1999
exercised the kernel and contributed to its stability.

Contents

List of Code Listings iX
List of Figures Xiil
List of Tables Xiv
List of Bugs and Restrictions XV
1 Introduction 1
1.1 Intended Audience e 1
1.2 Why MIPS? . . . e 2
1.3 Conventions e e e 2
1.4 SUUCIUrE e e e e e 3
2 Background 5
2.1 LAOVEIVIEBW . . . 5
2.1.1 L4dphilosophy e 5
2.1.2 Ldabstractions e 6
2.2 Relevant Features of the MIPS R4x00 Processor i v i 10 .
2.21 TargetSystems e e e 1Q
2.2.2 R4x00generalfeatures 10.
2.2.3 Memory managementunit 11
224 Addressspacelayout 13
225 EXCeption proCessing v o i e e 15
3 L4/MIPS Organisation and Data Structures 17
3.1 LA/MIPS Source STruCture e 17
3.2 KernelData Structures e e 18

3.2.1 Kernelmemoryallocation 18

Vi CONTENTS
3.2.2 Miscellaneous kernel dateernel vars 19
323 TCBS . . . 20
3.2.4 Otherkerneldatastructures 22.

4 Exception Processing 23

41 TLBMissHandling 23
4.1.1 Fastmisshandler e 23
4.1.2 STLBmisshandler 25

4.2 General ExceptionHandling 28
4.2.1 Generalexceptionhandler 28.
4.2.2 Returnfromexception 30
4.2.3 Exception dispatchether _excpt 31
424 TLBEeXCeptions o e 31
4.2.5 Exceptions passedtotheuser e 35.
426 TLBmissesduringlongIPC 36
4.2.7 Coprocessorunusableexception 44 .

5 IPC Path a7

5.1 IntroducCtion e e e 47

5.2 ShortIPC e a7
521 Send &receivek ipC 48
5.2.2 Fast context switclthread _switch fast 52
5.2.3 DISCUSSION o o 53

5.3 OtherShortIPCSendCode B5.
5.3.1 Non-blocking sendsend _only _short 55
5.3.2 Blocking sendpending 56
5.3.3 ShortIPCsend:odds &ends 57.
5.3.4 DISCUSSION 59

5.4 ShortIPCReceive 59
541 receive ONly e 59
5.4.2 pending receive only 62
5.4.3 DISCUSSION e 63

55 LongIPC 63
5.5.1 Clans & Chiefs and Deceptioipc _long 64

5.5.2 Performing long IPC operatiordo_long _{ipc 66

CONTENTS Vii

6 Other System Calls 75
6.1 id _nearest 75
6.1.1 Introduction e 75
6.1.2 id _nearest 76
6.1.3 nchief Y 4 ¢

6.2 Ithread _ex_regs i e e 79
6.2.1 Introduction 79
6.2.2 Prologue 79
6.2.3 Threadcreation 79
6.2.4 Exchangingregistervalues e 83.
6.2.5 Cleanup: Terminating pendingorrunningIPCs 83.

6.3 task _new 87
6.4 thread _schedule 101
6.5 thread _switch e 101
6.6 fpage unmap 102
7 Other Stuff (Provisional) 103
7.1 Scheduling 103
7.1.1 make busy 103
7.1.2 ins _busy list ... e 104
7.1.3 get next thread 105

7.2 INterrupts e e 105
7.3 Initialisation 105
T4 SIgMAZErO o e e e e 105
Bibliography 107

Index 109

List of Code Listings

1.1

4.1
4.2
43
4.4
45
46
47
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

51
5.2
53
54
55

Sample code listing. L 2
TLB refill handlerxtlb refill 24
STLB miss handletb2 _miss 26
General exception handigen exc. e 28
Thesyscall _ret macro.. e 30
Exception dispatchether _excpt ,firstpart. L. 32
Exception dispatchether _excpt ,secondpart. 33
General exception return codther _excpt _ret 0. 33
TLB fault handleexc tlbs ,prologue. 34
TLB fault handleexc _tlbs ,mainpart., 35
TLB fault handleexc _tlbs ,longIPCfaults. 36
Resumption code after pager IR fault ret 38
Mapping window TLB missesvindow _fault ,firstpart. 39
Mapping window TLB missesvindow fault ,secondpart.40
Mapping window TLB missesvindow fault ,thirdpart. 41
Mapping window TLB missesvindow _fault ,finalpart. 42
Sender-side continuation after receiver-side page faultdow fault ret 43
Error handling code efindow _fault _ret L. 44
Coprocessor-unusuable exception hanaber:_cpu, firstpart. 44
Coprocessor-unusuable exception haneber:_cpu, secondpart. A5
Coprocessor-unusuable exception hanaber:_cpu, finalpart. 46
Prologueok.pc e e 48
Delivery part ok_ipC e 50
Thethread _switch fast macro. 52
Send-only deliverysend only _short, 55

Blocking send codgoending e 56

LIST OF CODE LISTINGS

5.6 Unblocking sendepending _restart 57
5.7 Determining real destinatioto _chief 58
5.8 Theto _next thread macro. 59
5.9 Prologue ofeceive _only 60
5.10 Interrupt association partdceive only o Lo 61
5.11 Epilogue ofeceive only 62
5.12 Receiver finds sender reaghending receive only L 63
5.13 Long IPC codeipc _long ,firstpart. 64
5.14 Long IPCipc _long ,secondpart. 65
5.15 Prologueoflo_long _ipc e 66
5.16 Locating the receive fpagedo_long _ipc 67
5.17 Processing mappingsdo_long _ipc 68
5.18 Processing memory messagedanlong _ipC 69
5.19 Processing direct stringsdo _long _ipc o 70
5.20 Processing indirect stringsdio _long _ipc ,firstpart.o 71
5.21 Processing indirect stringsdio _long _ipc ,finalpart. 72
6.1 id _nearest 76
6.2 nchief 77
6.3 Prologue ofthread _ex_regs 80
6.4 Allocation and initialisationof new TCBs. 81
6.5 Initialisation of new thread’s scheduling parameters. 82 .
6.6 Exchangingthread attribute values. 83.
6.7 Cancellingpending IPCs. 83
6.8 Targetthread state WA®OCKS. 84
6.9 Targetthread'stackedstate wad OCKS 85
6.10 Targetthread was blockedorready. 86 .
6.11 task _new (create _thread)partO. 87
6.12 task _new (create _thread)partl. 38
6.13 task _new (create _thread)part2. 89
6.14 task _new (create _thread)part3. 90
6.15 task _new (create _thread)part4. 91
6.16 task _new (create _thread)part5. 92
6.17 task _new (create _thread)part6. 93

6.18 task _new (create _thread)part7. 94

LIST OF CODE LISTINGS Xi
6.19 task _new (create _thread)part8. 95
6.20 task _new (create _thread)part9. 96
6.21 task _new (create _thread)part10.. 97
6.22 task _new (create _thread)finalpart.. 98
B.23 VIMLNEW AS. o ot e e e e e e e e e e e 99
6.24 thread _schedule 101
6.25 thread _switch e 101
7.1 The code generated by theke_busy macro. 103
7.2 Thepreempt _ret routine. e 104
7.3 The code generated by tims _busy list macro. 105

7.4 The scheduler functioget next thread 106

List of Figures

21
2.2
2.3

3.1

4.1

The format of R4x00 TLB entries and of the corresponding coprocessor registers. 12. .
MIPS R4X00 addreSS SPaCe. v v v v i e e e e e e e e e e e 14.
R4x00 status register format. L 15.
Kernel physical memory map. 18
Exceptionstackframe 29

List of Tables

21
2.2

51

6.1
6.2
6.3
6.4

R4x00 general purposeregisterset. 11 .
Memory cacheability and coherency attributes onthe R4x00. 13 .
Register usage and naming conventioninIPCcode. 48 .
Register usage id _nearest andnchief code.. 76
Registerusage lthread ex_regs i i 79
Registerusage task create 87

Register usage thread _switch 101

List of Bugs and Restrictions

© 00 N o o B~ W N P

[R e N T =
o~ W N R O

Nogranting e 8
HIJLONOtsaved e e e e e 31
FPU state incorrectly restored 45,
Priority inversion insend only short oo 55
Send queue not prioritised L L L L 57
a7 notinitialised whenpc _nchief iscalled. 58
Wait-for checks real instead of virtual sender 62.
Fourfpagesonly e 68
Fpage processing terminatedtoolate 68 .
Exitingid _nearest may cause fatal TLBmiss. 78
ex_regs incorrectly initialises pager and excepter L. 8Qa
ex_regs returnvalues trashed if terminating IPC 84
Stacked state notresetifinrecursive IPC 85.
Kernel panics on task version or nesting depthoverflow 89.

Terminating nested IPCtrashe® 104

Chapter 1

Introduction

L4/MIPS is the implementation of the L4 microkerneli§93,] on R4000 series CPUS:[699. The
R4600/R4700 is an implementations of the MIPS R4x00 architectlir®}] aimed at embedded applications.
The L4/MIPS API is based on the ix86 version of L44964 as of mid-1996 (“Version 2") with a few minor
extensions (compatible to “Version 4”).

L4/MIPS was designed by Kevin Elphinstone, then a PhD student at UNSW, and Jochen Liedtke, then a researcher
at GMD, Germany, in 1995-6. It was mostly implemented by Kevin Elphinstone between mid 1995 and mid 1997.
Improvements were since made by Kevin Elphinstone and Alan Au, the latter also a PhD student at UNSW. This
document is based on L4/MIPS kernel version 79\199], which was released in February 1999.

L4/MIPS is now in regular use at UNSW for research and teaching. The Mungi single-address-space operating
system |] has been implemented on top if it, Linux has been ported toliitl[* 97], and the kernel is
used in teachind\dvanced Operating Systems

This report is an attempt to document the internal operations of the kernel, and to shed some light on what “makes
it tick” and where it gets its performance from.

1.1 Intended Audience

This document is written to serve two purposes:
¢ to be used in operating systems teaching.

L4/MIPS has been used as a platform on which students built operating systems in UNSW’s COMP9242
Advanced Operating Systemaurse since August 1997. Since 1999 the course took a closer look at mi-
crokernel implementation issues, and the first version of this document grew out of that. It is planned to
expand the coverage of microkernel internals in the future, based on a more complete version of this docu-
ment. Arizona State University is also planning to use this report as an aid in teaching an operating systems
internals course.

e as an aid to future kernel implementors.

L4 implementations are highly optimised, contain lots of assembler code, and tend to employ plenty of
architecture-specific tricks. However, the general structure, and the “course-grain logic” is remarkably
similar across platforms. An in-depth study of L4 source code for one particular architecture will therefore
provide a good guide on how to approach a re-implementation on a different platform.

2 1.2 Why MIPS?

0 mtcO t0, CO_STATUS
1 dii a6, 0
2 i K ipc
3 move a5, a4
4 3 lui a0, KERNEL_BASE
5 Id a0, K_GPT_POINTER(a0)
6 move al, s3
7 and a2, a0, a4
Listing 1.1: Sample code listing.
In both of these aspects, this report aspires to follow the example of the fdrumssBook] ,], also

from UNSW, without pretending to rival the Commentary’s impact and significance.

This report, as well as the source code it describes, is available from the UNSW L4 wébT$itd. site also
contains the latest releases of L4 for various architectures, associated documentations and forms to register for
mailing lists with L4-related announcements. Feedback on this report is highly welcomed and should be directed
to l4.inside@cse.unsw.edu.au

1.2 Why MIPS?

Why did we go through the trouble of writing this report on L4 for the MIPS architecture, when it is more than
doubtful whether this architecture has any future?

The answer comes in two parts:

1. For the purposes stated in the previous section, it doesn’t matter much. For teaching microkernel internals
the specific platform it is of little relevance. Teaching use is also supported by a R4x00 simulator which can
run L4, and thus provides independence from actually available hardReaé¢ Soon Now... Similarly, as
an aid for future kernel builders the MIPS source as relevant as any other.

2. The MIPS implementation is very clean, certainly the most readable one available at this time. It is about
half assembler, half C, but even the assembler code is mostly very readable and not too hard to understand.
The same cannot be said about other implementations.

And, of course, it helped that the code was developed locally, and as a result a number of people were familiar
with at least parts of it, and could therefore answer questions.

1.3 Conventions

Most of this report consists of verbatim source code listings and associated annotations. Source code is shown in
displays called “Listings”, such as the exampleting 1.1 Wherever feasible, listings and annotations appear on

the same or on opposite pages. To make this possible the listings have been condensed as much as possible, by
eliminating empty lines, instrumentation code, compiler directives, and even the (rare) comments.

The listing shows the format of MIPS assembler instructions. In general an instruction consists of an opcode and
up to three operands. The first operandliways the destination register. The second operand is normally the
source register. The third operand is a second input to the instruction, and can be a register or an immediate value.
If a three operand instruction is written with two operands only, then the first operand represents both source and
destination registers. In the case of a store instruction, the first (“destination”) operand is the register to be saved.

1The URL of the UNSW L4 web site isttp://www.cse.unsw.edu.au/ disy/L4/

mailto:l4.inside@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~disy/L4/

CHAPTER 1. INTRODUCTION 3

Assemblers on RISC architectures such as the MIPS generally do a good job of scheduling instructions into
load and branch delay slots. For some of the tightest system code, however, the “DIY” approach is still better.
Consequently, much of the critical kernel code is coveredsby noreorder directives, which prevent the
assembler from changing the order of instructions. To avoid cluttering up the listings with these directives, any
code for which anoreorder directivesis in force, is shown in the listings witbld line numbers. IrListing 1.1

this is the case for Lines 0—3. Here, Line 3 is in Line 2’s branch delay slot; logically Line 3 precedes Line 2.

In the reminder of this document we will make an attempt to point out (often non-obvious) implementation deci-
sions/simplifications as follows:

Implementation choice: This highlights an implementation choice.

Any known bugs in the exhibited code will be indicated like this:

Bug/Restriction 0: Sample bug.
This is how bugs are shown.

A bug is code which causes the kernel to operate in a way that is inconsistent with the specification. This includes
unimplemented features.

There are other shortcomings of the implementation, for example affecting efficiency, which are not bugs as they
do not affect correctness. These are highlighted like this:

Implementation criticism: This criticises the implementation.

Note that these shortcomings are often “quick-and-dirty hacks” which were put in place to get things going, and
were never removed because there was not enough pressure for having them removed. Much of this is actually
nitpicking. The frequent use amplementation criticismshould not create an impression that the L4/MIPS
implementation is highly deficient. In fact, it's great code!

Text in bold italics indicates something that needs fixing up in this document.

1.4 Structure

Chapter 2 provides background information required for the understanding of the remainder of the report. There
are two parts to this: L4 in general, and the MIPS R4x00 architecture. The description of L4 is kept extremely
brief, for the simple reason that we consider it essential to have the L4 Reference Maruab] handy when

reading this document. Hence it makes little sense to repeat much of what is said in the Reference. The R4x00
architecture description is much more detailed, and, hopefully, sufficient for the understanding of the code.

Chapter 3 provides the introduction to the L4 code. It contains a short overview of the structure of the source
code, and then presents and explains the main kernel data structures and their use.

The remaining chapters consist mostly of annotated source code listings. Chapter 4 presents the exception han-
dling code, Chapter 5 the IPC code, and Chapter 6 the code implementing the other system calls.

Chapter 2

Background

This chapter provides some background information on L4 and the MIPS R4x00 architecture.

2.1 L4 Overview

Here we give a quick summary of the main features of L4. However, the reminder of this document assumes a fair
amount of familiarity with L4 and its API, well beyond what is presented in this section. The reader is advised
to have the L4/MIPS reference manuaHL 99 handy when reading on. A practical guide to using L4 and its
various features is provided by the User Manugtps].

2.1.1 L4 philosophy

The design of the L4 microkernel is based on the principle of minimafitfeature should be in the microkernel

if and only if security requires that the feature be implemented in privileged mblde term “kernel” refers to

code which executes in the hardware’s privileged mode. This implies, for example, that device drivers should not
be part of the kernel. While drivers have access to physical memory, and are thus part of the sysséeads
computing basesecurity of the system does not depend on running device drivers in privileged mode, only on
protecting the drivers from interference by untrusted caded6.

Another important principle is thétshould be possible to implement arbitrary systems on top of the microkernel
Together with the minimality principle this leads to a requirement for a small number of powerful and orthogonal
abstractions, and for a strictholicy-freekernel.

Itis important to note that Liedtke does not claim that the present versions of L4 fully satisfies these requirements.
In fact, the L4 API is still developing in an attempt to better meet its design goals.

Interestingly, efficiency is not a primary design principle. However, all features have been carefully analysed
and were only included into the interface if it was clear that they could be implemented efficiently. Smallness
itself is a very good basis for efficiency. The performance of modern computer systems is critically dependent on
maintaining high hit rates in the CPU caches, and the kernel's cache footprint has a dramatic impact on perfor-
mance []. Small is certainly beautiful in the world of microkernels.

But that is not the full story. A careful implementation which makes the best possible use of hardware features is
a major factor for kernel efficiency. A careful design of kernel data structures and algorithms is, maybe, the most
important factor in making a kernel fast.

6 2.1 L4 Overview

2.1.2 L4 abstractions

L4’s main abstractions are:

Threads represent program execution. The CPU is multiplexed between threads, each of which has some context,
including its view of hardware registers. Each thread is uniquely identifiedthieead ID (TID).

Address spacesform the basis of protection. A thread can access data which are mapped into its address space.
Address spaces are constructedigpping sections of other address spaces.

Inter-process communication, based on synchronous message-passing, provides for a controlled way to com-
municate between address spaces. L4 IPC also serves/astaonisationprimitive between threads.

Address spaces and tasks

Each thread belongs tatask There is a one-to-one correspondence between tasks and address shaceing
and deleting tasks implies creating and deleting address spaces. This is dondagk theew system call.

Logically, the number of tasks is fixed (2048 in L4/MIPS Version 79). Hence tasks are strictly speaking not created
or destroyed, but their state is changed frimiactiveto activeor vice versa. Inactive tasks consume (almost) no
resources.

Creation (activation) of a task implies creation of a fixed-size set of threads (128 in L4/MIPS Version 79). These
are numbered consecutively, starting at zero. All of a task’s threads, except local thread zero (“Ithread zero”, or
lp) are logically created executing an idle loop (but without consuming any resour¢eis)inlhmediately active

and starts execution at a start address passed tagke_create syscall.

A new task’s address space is initially empty, and can only be populated by mapping-in parts of other address
spaces. Consequently, when it begins execution, will immediately trigger a page fault when attempting to fetch
its first instruction. It is the responsibility of ifsage fault handlefpager) to provide a mapping for that page.

A task has a number of attributes:

chief or owner. For an active task, this is the task to which the thread belongs which has activated the task. Only
a task’s chief can activate or deactivate a task. As a side effect of deactivation, a taskdwaratesito a
new chief. Task IDs are effectively capabilities conferring rights over tasks.

maximum controlled priority (MCP). This is the upper limit to which a thread of the task can influence the
priority of other threads (including its own). The MCPrist a priority. A task’s MCP is specified at the
time the task is activated (and cannot be higher that the MCP of its chief).

Further attributes are (explicitly or implicitly) specified when a task is activated, but they are attriblfeatber
than the task’s.

Threads

Threads are the active entities in L4, they are the source and destination of IPC messages. Threads have the
following attributes:

task: the task (and thus address space) to which the thread belongs;

pager: the thread responsible for handling this thread’s page faults. On a page fault the kernel will send a page
fault IPC message to the pager, and the pager is expected to reply with a message containing a mapping for
the faulting page;

1For that reason, tasks are not a primitive concept, and it can be argued that the task concept is redundant. Not surprisingly, it is due for
removal in a future version of the L4 specification. But for the time being tasks are an essential component of L4.

CHAPTER 2. BACKGROUND 7

excepter (exception handlef) the thread responsible for handling this thread’s exceptions. On an exception,
the kernel will send an exception IPC message to the excepter. It is then up to the excepter to implement
whatever policy it chooses for handling exceptions;

internal preempter: notimplemented on L4/MIPS Version 79.
external preempter: not implemented on L4/MIPS Version 79.

scheduling priority: determines when a thread will be scheduled by the kernel. L4 implements hard priorities
(values 0-255): The scheduler will select the highest-priority runnable thread, using round-robing within
priority levels;

time-slice length: the value a thread'surrent time-slice lengthvill be set to by the scheduler to the value of the
thread’s time-slice length when selecting the thread to run;

current priority determines preemptability of a thread. A thread may be preempted by another thread whose
priority is higher than the presently running thread’s current priority. The current priority of a thread may
be set at scheduling time, or by time-slice donation;

current time-slice length determines the time a thread is allowed to run until preempted (unless a higher-priority
thread becomes runnable). The current time slice is obtained either by scheduling or by time-slice donation.

Athread’s stack pointer, program counter, excepter, internal preempter and pager can be obtained and manipulated
viathelthread _ex_regs syscall. This call can be performed by any thread on another thread belonging to the
same task. Itis the means by which new threads can, for example, be activated (taken away from their logical idle
loops to more productive endeavours), or moved out of harm’s way (by forcing them to block on an IPC which
will never succeed). An excepter can use this system call to redirect a thread to some code which saves its user
state, and later restores it.

A thread’s scheduling parameters (time-slice length, scheduling priority and external preempter) can be obtained
and manipulated via ththread _schedule system call. A thread may only perform such an operation on
another thread whose priority does not exceed the caller's MCP.

Time-slice donation can happen in one of two ways:

e explicitly via thethread _switch system call. This call donates the remainder of the caller’s current time
slice to a specific thread. If that thread does not exist, or is blocked, the system call becomes a “yield”
operation, i.e., the caller forfeits the remainder of its present time slice, and the scheduler is invoked to
select another thread to run with a new time slice;

¢ implicitly via IPC. IPC operations are often accompanied by a context switch from the sender to the receiver,
in which case the sender’s current time slice is implicitly donated to the receiver.

IPC and mapping

IPC is performed via thgpc system call. All L4 IPC is blocking — a message transfer only takes place when
both he sender and receiver are ready for it. This implies a synchronisation between the communication partners.
It also means that messages only have to copied once, no buffering of messages in the kernel is required.

An IPC system call specifies an optional send operation and an optional receive operation. This reduces the
number of system calls required in many frequent situations, such as RCP (or “call”: send message and wait for
answer) or server-style reply-and-wait-for-next-request.

To prevent indefinite blocking, timeouts are specified for each IPC. An IPC system call has four timeout argu-
ments:

2Excepters are a MIPS-specific feature. Other L4 implementations handle exceptions differently, e.g., by mirroring hardware exceptions

[1.

8 2.1 L4 Overview

send timeout: the maximum amount of time the caller is willing to block on the send operation (if any), measured
from the time of trapping into the kernel until the partner becomes ready to receive;

receive timeout: the maximum amount of time the caller is willing to block on the receive operation (if any),
measured from the time of concluding the send operation (if any, time of trapping into the kernel otherwise)
until the partner becomes ready to send (if any);

send page-fault timeout: the timeout value to use for the send and receive parts of any page-fault IPC that may
be required for the partner’'s address space during delivery of the send message (if any);

receive page-fault timeout: the timeout value to use for the send and receive parts of any page-fault IPC that
may be required for the partner’s address space during delivery of the receive message.

Timeouts may be specified as zero (poll partner) or infinity (block indefinitely).
IPC messages may transfer data in two ways:
By value: data is copied from sender to receiver. By-value data is supported in three forms:

e registers — up to 64 bytes (on MIPS R4x00) may be transferred in registers. This is in many cases a
zero-copy operation, and is therefore highly efficient;

e direct strings — a message buffer contains data which is copied by the kernel into the receiver’s
message buffer. Direct strings must be word aligned;

¢ indirect strings — the message buffer contains an arbitrary number of pointers to data buffers, which
are copied by the kernel into the corresponding buffers pointed to by the receiver’s message buffer.

Direct and indirect strings are copied only once, from the sender’s address space directly into the receiver’s
address space.

By reference: the sender can designate a range of pages in its address space, which get mapped into the receiver's
address space during the IPC. The receiver must specify a window where the pages may be mapped. By-
reference data transfer can happen in two ways:

e mapping — sender and receiver share the mappings after a successful IPC map operations. The sender
may revoke (“flush”) the mappings at any time vifpage _unmap system call;

e granting — the pages are implicitly unmapped from the sender’s address space, who loses any access
or control over them. This operation is not reversible by the sender.

Bug/Restriction 1: No granting.
Granting is not implemented in L4/MIPS Version 79.

Address-space regions are specified via an abstraction of variable size pages, fteieabgor fpage An fpage

is a section of virtual address space whose size is a power-of-two multiple of the smallest page size supported by
the hardware, and must be aligned to its size. A single IPC operation may specify several fpages for mapping.
The receiver specifies its window via a singéeeive fpage

Clans and chiefs

Clans and chiefs are a mechanism allowing control over information flow. Tasks, via the relation to their chiefs,
form a hierarchy. All tasks which are owned by the same chief form that clulei's A thread can send an IPC
message only to

e athread belonging to its chief task,
e athread belonging to a task which is part of the same clan as the sender’s task, or

e athread belonging to a task which is (directly) part of the sender’s task’s clan.

CHAPTER 2. BACKGROUND 9

All other IPC isredirectedto thenearestchief. The nearest chief is

e the sender’s chief, in the case of a message directed to a task not directly or indirectly inside the caller’s
clan,

e otherwise the task inside the caller’s clan whose clan directly or indirectly contains the intended receiver.

Theid _nearest syscall returns the ID of the “nearest” chief which would be the actual receiver of such an IPC
message.

For the purpose of IPC redirection, the chief is thréaaf the chief task. The receiving chief is informed,

via a bit in the IPC syscall’s result word, that the message was redirected, and is also informed of the intended
recipient. The chief has then the option of forwarding the message to the intended receiver (or the next nearest
chief along the way). In order to maintain RPC semantics, the chief can send on the messadeagsimgdPC.

A deceiving IPC specifiesdrtual sender different from the actual sender, which will be returned to the receiver

as the originator of the message. The receiver is alerted to the deceit via a bit in the IPC result code. The kernel
allows a deceit only if it igdirection preserving Loosely speaking, a deceit is direction preserving if the actual
sender is within the sequence of chiefs a message from the virtual sender to the receiver had to take.

System calls

The above mentioned seven syscallg, , fpage _unmap, task _new, id _nearest , Ithread _ex_regs ,
thread _switch , andthread _schedule comprise the full set of L4 system calls.

Interrupts

Interrupts are modelled as threads sending empty messages spontaneously. Each interrupt has a TID, and a single
user thread can bassociatedwith each interrupt, thus becoming a handler for that interrupt. If an interrupt has
an associated hander, the kernel will convert an occurance of that interrupt into a message to the handler thread.

Initial address space

Mapping IPC (particularly in combination with pagers) can be used to build up an address space from others, but
somewhere the recursion must bottom out. For that reason, L4 provides a (somewhat matiagdadddress
spacecalledoy. It is created at system initialisation time with an address space containing a one-to-one image of
physical memory (other than the parts reserved for kernel use).

L4's boot protocol also contains a notioninoftial servers which are started up by, once the kernel has booted.

oy is the pager of all initial servers.y will satisfy any faults within the range of its own initialised address space

by mapping the corresponding page, and ignores faults outside its valid address space range (leading to the server
becoming blocked). Pages are only mapped to one initial server, thus ensuring protection. Special protocols exist
to request mappings for device regions.

Initial tasks

Tasks other tham and initial servers remain inactive and owner-less, until someone claims them. A task is
claimed by performing a deactivating form of ttesk _new syscall, specifying oneself as the new chief.

10 2.2 Relevant Features of the MIPS R4x00 Processor

2.2 Relevant Features of the MIPS R4x00 Processor

2.2.1 Target systems

The kernel code described in this document is for a uniprocessor R4600/R4700 system. There are a number of
minor differences between various processors of the R4x00 family. For the purpose of kernel code, no significant

differences exist between the R4600 and the R4700, and we will use the term “R4600” to represent both processor
models. Similarly, the differences between the R4000193 and the R4400 are very minimal, and we will use

the term “R4000" to refer to both. For most of our purposes there is no need to distinguish between processors of
the family, and we will use the generic term “R4x00” to refer to any of them.

Other related processors, such as the R5000 and the R10000 will probably run L4/MIPS without major changes.
Particularly the R5000's MMU seems to be similar enough to the R4x00 to allow the code to run virtually un-
changed. However, the R5000 and R10000 are multi-issue CPUs, and no attempt has been made in the kernel to
schedule instructions for multiple issue.

2.2.2 RA4x00 general features

The R4x00 processor family is a 64-bit architecture which supports full compatibility with the 32-bit MIPS CPUs
R2000 and R3000. This is achieved by supporting a 32-bit execution mode.

Implementation choice: 32-bit execution is not supported by L4/MIPS and is therefore not covered her(#.

The processor is a RISC design which issues one instruction per clock cycle. The only addressing mode is base-
register plus 16-bit, signed immediate offset. Most instructions execute in a single cycle.

On the R4600, which has a 5 stage pipeline, jump and branch instructions have an additional one cycle delay, and
load instructions also have a one cycle delay. On the R4000, which has a 8 stage pipeline, the branch delay is
3 cycles and the load delay 2 cycles. On all R4x00 processors, the instruction immediately following a jump or
branch (thdoad/branch delay slotis always executed while the target instruction is being fetched.

The pipeline will stall in the case of an attempted access to the result of a load before it is available. Hence
scheduling instructions in a load delay slot will hide the delay but is not necessary for correct execution.

Multiplication and division instructions require between 10 and 133 cycles to complete. They leave their results
in two special registers]l andLO, and the pipeline stalls until the result is available.

The processor can be configured to operate little-endian or big-endian, and can also switch endianess between
user and kernel mode.

Implementation choice: L4/MIPS uses big-endian only. ‘

MIPS instructions support four data typdsyte (b, 8 bits), half word (h, 16 bits),word (w, 32 bits), anddouble
word, or dword (d, 64 bits). Load and store instructions support all four sizes, but data must be aligned®to size.

The processor features 32 general-purpose registers, r0—r31, all 64 bits wide. Assembler programs use symbolic
names based on compilers’ usage conventions. These are summariabttifi.1 Register0 reads as zero and
ignores writes. RegisteB1 is implicitly used by thgump-and-link(jal) instruction.

The following register conventions are important to observe when writing kernel code:

e The AT register is used by the assembler to store intermediate results of pseudo-instruction macros. If
used for any other purpose the appropriate instructions must be surroundssd By and.set noat
directives to prevent interference from assembler macros.

3A special instruction ifui , which loads the specified immediate value into the second-least significant byte, zeroing the least significant
byte, and sign extending.

CHAPTER 2. BACKGROUND 11

e ThekO andkl registers are used as temporary registers by the kernel's exception handlers. As various
exceptions can occur in kernel mode, these must not be used except in situations where it is certain that no
exceptions can occur. This means that interrupts must be disabled. It also means that no mapped addresses
may be used, or it must be ensured that any virtual pages used are already mapped.

register menmonic convention

ro zero always zero
ri AT assembler temporary
r2 —3 vO —v1 integer function results
r4 —+11 a0 —a7 first eight integer function arguments

ri2 —15 t0 —t3 temporary (callee saved)
ri6 —23 sO —s7 caller-saved

r24 —25 t8 —9 temporary (callee saved)
r26 —+27 ko k1 kernel reserved

r28 ap global (data segment) pointer
r29 sp stack pointer

r30 s8/fp frame pointer (caller saved)
r3l ra return address

Table 2.1: R4x00 general purpose register set, mnemonic names and usage conventions (for 64-bit API).

In addition to the general-purpose registers, the processor has three special purpose registers:
e the program counter registét(C

¢ the multiplication and division result registek$l, andLO. These registers can only be accessed via special
instructionsmfhi , mflo , mthi , andmtlo . The first two read the and the last two write the respective
register.

MIPS assembly code general uses the format
op dst, src, trgt

wheredstis the register receiving the result of the operation, smegtrgt are the operands. If only two registers
are specified, thercis taken to be the same dst One exception to the general scheme isstoeeinstructions,
wheredstdesignates the register whose contents are to be stored to memory.

The processor has a numberoofprocessorswhich have their own register sets. Co-processor zero (CPO) is the
system coprocessowhich contains the the memory-management unit (MMU) as well as the status register and a
number of other registers relevant to exception handling. Co-processor 1 (CP1) is the optional floating-point unit
(FPU). Further co-processors are optional.

The processor has separate primary instruction and data caches on chip and accessible in parallel. For the R4600
these are both 16kB big, are two-way associative and feature a 32B line size (8 instructions in the case of the
I-cache). Best case cache miss penalty on a system with 80ns DRAM and no secondary cache is 13-14 cycles for
the I-cache and 15-16 cycles for the D-cache.

2.2.3 Memory management unit

The MMU is part of the CPO. Virtual addresses are translated in one of two ways:
e mappedVM addresses are translated by thenslation lookaside buffefTLB),
e unmapped/M addresses are translated by masking out the most significant bits of the address.

Which mechanism is used depends on the address, as explaifedtion 2.2.helow. Here we summarise the
translation of mapped addresses.

12 2.2 Relevant Features of the MIPS R4x00 Processor

The R4x00 TLB is fully associative and holds 48 entries, each mapping a pair of 4kB pages. TLB entries are
taggedwith an address-space identifi€ASID), an 8-bit number. The TLB isoftware loadeda translation

miss raises a TLB miss exception. The miss handler usetthiive or tlowr instruction to load a TLB entry.

The former instruction loads the entry indicated by @&INDEX register, while for the latter instruction the
target entry is indicated by tHe0_RANDOMegister. TheCO_RANDOMegister is decremented at each instruction
execution. TheCO_WIREDregister can be used to define a lower limit@F RANDOIvkegister values, and is used

to protect some TLB entries from “random” replacement.

Implementation choice: L4/MIPS only uses random replacement (except to update an existing entry) and does
not wire down any entries.

255 217 205 192

‘ 0 ‘ MASK ‘ 0 ‘
39 12 13

CO_PAGEMASK

191 189 168 141 139 136 128

‘ R ‘ FILL VPN2 ‘G‘ 0 ‘ ASID ‘

2 22 27 1 4 8

CO_ENTRYHI

127 94 70 67 64

‘ 0 ‘ PEN ‘ C ‘D‘V‘G‘
34 24 3 111

CO_ENTRYLO1

63 30 6 3 0

‘ 0 ‘ PEN ‘ C ‘DMG‘
34 24 3 111

CO ENTRYLOO
Figure 2.1: The format of R4x00 TLB entries and of the corresponding coprocessor registers.

Figure 2.1shows the format of a TLB entry and the corresponding coprocessor registers from wttlblwthe or

tlbwr load the entry. There is one minor difference between the format of a TLB entry and the coprocessor reg-
isters: TheG(global) bit shown in the EntryHi word exists in the TLB entry but must be zero ICOE&NTRYHI
register. Conversely, th@ bit in the EntryLo words is settable in tt@0_.ENTRYLOQCO_ENTRYLOIregisters

but is zero in the TLB entry. When a TLB entry is loaded @dit is set to the logical AND of thé&s bits in
CO_LENTRYLOMNdCO_ENTRYLO1 The ASID field of CO_LENTRYHIis also used during address translation to
match the ASID value of a TLB entry.

The meaning of the fields are:

MASK Defines the page size. Valid page sizes vary from M4BEK-0) to 16MB (MASK-0xfff) in powers of 4.

‘ Implementation criticism: L4/MIPS presently only uses the smallest page size, 4kB. ‘

R: Indicates that the mapping is valid in kernel mode ofty11), in kernel or supervisor modB£01) or always
(R=00). During address translation tRdfield is matched against bits 63:62 of the virtual address (except
for CKSEG addresses) which ensures that the processor is in the reight mode.

FILL : In CO.ENTRYHImust have all bits equal to the MSB Bf Zero in the TLB entry.
VPN2 Virtual page number (in units of the page size defined byMA&SKfield) divided by two.
G If setthe ASID is ignored when the TLB is looked up.

ASID: Used to distinguish mapping for the same page belonging to different processesGlisthiaset on a

CHAPTER 2. BACKGROUND 13

TLB entry, it will only match if theASID field matches the ASID value presently set in @@ENTRYHI
register. If the TLB entry’$5bit is set the ASID is ignored.

PFN Physical frame number (in units of the page size defined bivthgkKfield).
C: Cacheability and cache coherency setting (&egge 2.J.
D: Dirty bit — iff set (and theV bit is set also) the page is writable.

V: Valid bit — iff unset a TLBL or TLBS exception occurs when accessing the page mappede by this entry.

C Cacheability and coherency XKPHY Sstarting address
0f | Cacheable, non-coherent, write-through, no write alloga@000 0000 0000 0000
11 | Cacheable, non-coherent, write-through, write allocate 8800 0000 0000 0000
2 | Uncached 9000 0000 0000 0000
3 | Cacheable, noncoherent, write back 9800 0000 0000 0000
41 | Cacheable, coherent exclusive A000 0000 0000 0000
51 | Cacheable, coherent exclusive on write A800 0000 0000 0000
61 | Cacheable, coherent update on write BO0OO 0000 0000 0000
7 | Reserved B800 0000 0000 0000

Table 2.2: Memory cacheability and coherency attributes on the R4x00. “C” represents the cacheability field of
a TLB entry (bits 5:3 of EntryLo) for mapped accesses, orkidield (bits 2:0) of theCO_.CONFIGregister, or

bits 61:59 of aXKPHYSaddress for unmapped accesses. Attributes majrkead R4600 only and are unavail-

able (“reserved”) on the R4000. Attributes markedre R4000 only and are unavailable (“reserved”) on the
R4600/R4700.

2.2.4 Address space layout

The MIPS R4x00 features a 64-bit address space. The processor can run in three differentisegdrgervisor

andkernel In each of these modes some regions of the address space are accessible while others lead to addressing
exceptions. The valid address range in supervisor mode is a subset of the user mode address range, and the kernel
address range is a superset of the supervisor address Fagge= 2.2shows the address map, indicating for each
address-space region the minimum privilege (kernel, supervisor or user) required.

As the figure shows, the MIPS’ virtual address range is 1TB (40 bits). Address-space regions denw@ppes
are translated by the TLB, whereas regions denotedamppedre translated by masking out the most significant
bits of the address.

The processor supports up to 64GB of physical memory, all of which can be addressed unmapped via the various
XKPHYSsegments. When usingKPHY Saddresses, address bits 61:59 are interpreted astheabilitybits.

Their interpretation is the same as the corresponding bits in a TLB entriFigees 2.2.3. Table 2.2summarises
cacheability and coherency attributes selected by bits 61:5X&RHY Saddress.

The CKSEQregions (top 2GB of the address space) are caltedpatibility spacesas they correspond, via sign
extension of the address, to kernel and supervisor regions in 32-bit mode.

Implementation choice: L4/MIPS does not make use of supervisor mode. The supervisor address space

XKSSEGSs used, but only as another kernel mapped area (for temporary mappings). Supervisor mode|does not
provide sufficient privilege to be useful inside the kernel. The design of L4 does not seem to make it necessary
to use supervisor privilege outside the kernel.

14

2.2 Relevant Features of the MIPS R4x00 Processor

FFFF FFFF FFFF FFFF
0.5GB | CKSEG3
Mapped | kernel
FFFF FFFFEO00 0000
0.5GB | CKSSEC
Mapped | superv
FFFF FFFF C000 0000
Unmapped kernel
FFFF FFFF A000 0000|Yncached
Unmapped kernel
FFFF FFFF 8000 0000| Cached
Invalid
C000 00FF 8000 0000
1 <1TB XKSEG
. Mapped ' kernel
C000 0000 0000 0000
- 8X64GB : y\ ppve
‘Unmapped:
ClUnc kernel
8000 0000 0000 0000
Invalid
40000100 00000000
. 1TB : XKSSEC
. Mapped : superv
4000 0000 00000000
Invalid
00000100 0000 0000
¢ 1TB XKUSEC
: Mapped : user
0000 0000 0000 0000 \—‘

Figure 2.2: MIPS R4x00 address space.

Implementation choice: L4/MIPS only uses the compatibility spaceKSEGQCKSEGIin kernel mode. Th¢

%

reason is that these addresses allow the kernel to use 32-bit address constants, which are faster tg load than
64-bit constants. In some cases, in particular, page tables, pointers are also stored in 32-bit form, resulting in

more compact data structures. Furthermore, 0.5GB is more than enough memory for kernel use.

Note, however, that the kernel presently only supports 0.5GB as the maximum RAM size. Addressing based on
CKSEGQCKSEGImeans that on a machine with more than 0.5GB of RAM the kernel’s dynamic memory pool
could no longer reside at the high end of physical memory. The necessary changes to the kernel’s startup code

would be straightforward.

One drawback of the use &KSEGUOor unmapped cached memory accesses is that there is no control over the
cache coherency protocol via the address. This is not an issue on the R4600/R4700, which does not offer a choice
of coherency protocols. On other processors the cacheabil@KSEGQccesses is defined via the KO field (bits

CHAPTER 2. BACKGROUND 15

2:0) of theconfig registetCO_.CONFIG

2.2.5 Exception processing
Exceptionsare events which disrupt the normal flow of instruction execution. On the R4x00 this includes the
synchronous events of TLB miss, arithmetic overflow and system calls as well as asynchronous interrupts.

When an exception occurs, the CPU enters kernel mode, saves some context in CPO registers and jumps to the
appropriate exception handler. The architecture defines four different exception handlers:

TLB at PA 0x000: Used during 32-bit execution for primary TLB refill exceptions.

‘ Implementation choice: The 32-bit TLB miss handler is not used by L4. ‘

XTLB at PA 0x080: Used during 64-bit execution for primary TLB refill exceptions.
CACHE at PA 0x100: Used for cache errors.

‘ Implementation choice: L4/MIPS Version 79 handles cache errors by panicking. ‘

GENERAL PA 0x180: Used for all other exceptions (overflow, system call, interrupt, or nested TLB miss).

Exception handlers are addressed®KSEGQuring normal operation, except cache errors whichCKEEG1
(for uncached access). During boot time the exception vector base address is shifted up to 0xfff ffff bfc0 0200 (a
ROM address), but this is only of relevance when writing ROM monitors.

The relevant CPO registers are:
CO_BADVADDR Contains the virtual address causing a TLB or cache exception.
CO_STATUS Contains the processor status, see below.

CO_CAUSE Contains, among others, a field indicating the cause of the exception and a mask indicating pending
interrupts.

CO_EPC Contains the saved PC value during exception processing.efidte instruction will reload the PC
from this register, if it finds th€ STATUS.EXL bit set and the&C STATUS.ERLbit unset.

CO_ErrPC : Contains the saved PC value during error processingefdte instruction will reload the PC from
this register, if it finds th&€€_STATUS.ERL bit set.

In addition there is €0_COUNTegister which is decremented on every second clock cycle, ail@i@OMPARE
register, which triggers a timer interrupt when it matches the contents fQH@OUNTegister.

31 28 27 26 25 16 8 7 6 5 3 2 1 0
CcuU ‘RP‘ FR‘RE‘ DS M ‘KX‘SX‘UX‘ KSuU ‘ERLLEXJ IE ‘
4 1 1 1 9 8 1 1 1 2 1 1 1

Figure 2.3: R4x00 status register format.

Figure 2.3shows the contents of the status regisB,STATUS The relevant fields are:

IM: Interrupt mask; a bit, if set, enables the corresponding interrupt, providing thii thi is set.

KX, SX, UX: If set turns on 64-bit addressing in kernel, supervisor and user modes, respectively.
KSU: Processor mode — values of 00, 01, 10 for kernel, supervisor and user mode, respectively.

ERL: Error level — if set, the CPU is executing @rror mode which implies kernel mode irrespective of the
setting of theKSUfield.

16 2.2 Relevant Features of the MIPS R4x00 Processor

EXL: Exception level — if set, the CPU is executingdrception modenhich implies kernel mode irrespective
of the setting of th&SUfield.

IE: Interrupt enable — if set, interrupts are enabled or disabled according to the setfihgitofinset, interrupts
are disabled irrespective of the setting idf.

Chapter 3

L4/MIPS Organisation and Data
Structures

3.1 L4/MIPS Source Structure

The directory structure of the L4/MIPS distribution is relatively simple:

example/ a simple example program
doc/ Ref man, User man, C inferface man pages
src/ source tree
Makefile.conf master configuration file
include/ header files
*.h rudimentary C library
kernel/ kernel-internal header files
14/ C bindings for L4 syscalls
lib/ rudimentary C library
tools/dit Boot file builder
kernel/ kernel source
vm/*/ various versions of page table code
drivers/ user-level device drivers (shouldn't be in kernel directory)
indy/ Indy-specific kernel code
p4000i/ code for Algorithmics board
u4600/ code for UNSW R4700 board
libkern/ minimal libraries for kernel code
test/ a number of test programs
Most directories contain &lakefile which contains generic rules and incluslee/Makefile.conf for
parameterisation.

In the reminder of this document, unless there is an explicit statement to the contrary, we will denote file path
names relative to therc/ directory.

Two header files should be mentioned at this staysude/regdef.h defines the mnemonic register names.
include/r4kc0.h defines architecture-dependent constants defining the address-space ldyjigutef3.1

the exception vectors, CPO register names and status, cause and TLB register fields. It also defines constants for
setting the caching field and cache instructions.

18 3.2 Kernel Data Structures

3.2 Kernel Data Structures

3.2.1 Kernel memory allocation

The kernel is loaded across an ethernet interface by the resident boot monitor, PMON. The boot image is built
from the kernel executable (in ELF format) via a tool called DIT. The kernel must be linked to start at virtual
memory address Oxffff ffff 8005 0000, theKSEGQaddress corresponding to physical address 0x50000. (This is

for the P4000i and U4600 systems, on the Indy the addresses are shifted but the layout is the same.) This address
is defined adakefile.conf:LINKADDR

50000
/| Kernel
4F0b0 Info Page
//4E000 unused
Max
4D000|
Kernel 63000 ,
Heap //DIT Hdr + Interrupt
0.9*Max 60000 |Kernel data K 40000| TcBs (5)
//' Kernel 4B000
K Text ASID
50000 / apooo) Free List
, Kernel Invalid
; Statically 49000, TCB
K Allocated NIL
! Data
/40000 48000 'CB
J \\ Sigma0
/ 47000 'CB
free : TLB2 46000
) N 45000/ Debugger
/ Stack
20000 “ 44000
// \\ 43000,
, unused? 42000 TID
K N Table
/ 41000
63000 / Cer.”eb'l
. | Variables
O|Kernelstat | 0 |Excpt Hdlrs 40000,

Figure 3.1: Kernel physical memory map.

At boot time the kernel sets up physical memory as showhidgnure 3.1 The region from 0x1000—-0x20000
(124kB) seems presently unused. Possibly this is used by the resident boot monitor on either the U4600 or the
Indy.

Implementation criticism: There is to be no reason why this memory is not used once L4 has booted up. It
should be added to the kernel’s memory pool.

CHAPTER 3. L4/MIPS ORGANISATION AND DATA STRUCTURES 19

The region marked as “TLB2" is used for the software TLB, it supports an STLB of up to 128kB.

Implementation criticism: ldeally, the STLB size should be determined as a function of physical memory size.
This would imply allocating it at a dynamically determined location, but that could be done without slowing
down the TLB miss handler.

The memory layout is defined by constantsnolude/kernel/kernel.h

3.2.2 Miscellaneous kernel datakernel _vars

Page 0x40 contains a structure, calkednel _vars , defined ininclude/kernel/kernel.h . It contains

global kernel data, mostly simple types. It also contains the jump tables for the system call despatcher and general
exception handler, and the array of pointers to the ready queues for each of the 256 scheduling priorities. Its fields
are (somewhat out of order for the purpose of grouping related ones):

stack _bottom : the kernel stack for the current thread (top of the current TCB);
s0 _save —s4 _save : place for exception handlers to saf-s4 as long as no kernel stack is set up;

soon wakeup _list ,wakeup _list ,late _wakeup _list : pointerto the heads of the three wakeup lists of
threads blocked with a timeout. The thread is inserted into the “soon” wakeup list if its timeout is at most
16ms, into the medium-term wakeup list if its timeout is not more than 1024ms, and the “late” wakeup list if
it has a finite timeout of more than 1024ms. The three lists are used to reduce the amount of list processing
required at each 1ms clock tick;

present _list : list of all valid TCBs, grouped by task;

int _list : list of threads preempted by interrupts;

clock : system clock, mirrored in KIP;

timeslice : remaining current time slice (i.e., time until next preemption);
priority @ current priority (as assigned by last scheduler invocation);
memory_size : total RAM size;

trace _reg _save: place where instrumentation code may save a register;
tlb _t0 _save -tlb _t8 _save : place for TLB miss handlers to satf@ —8 ;
gpt _pointer : root of running thread’s page table;

profile _addr : when kernel profiling is enabled, this is used to store the address where execution was inter-
rupted by the timer;

tcb _gpt _pointer ,tcb _gpt _guard : root and root guard of kernel page tables (mapping TCBs)ppar-
ently unused,

frame _list : pointer to head of list of free kernel heap frames (i.e., high physical memory);

free _asid _list ,gpt free _list ,gpt _leaf _free _list ,mtfree _list : pointer to head of free lists
for: ASIDs, GPT internal nodes, GPT leaf nodes, mapping tree nodes, respectively. A separate free list
is maintained for each data structure of (potentially) different size. The ASID free list is in static kernel
memory, all others are on the kernel heap;

break _on: used for setting kernel break points for debugging;
sigz _tcb : TCB of oy

asid _fifo _count : pointer to next ASID due for FIFO preemption;

20 3.2 Kernel Data Structures

int0 _thread -int4 _thread : TID of handler thread of user-visible interrupts 0—4;
fp _thread : TID of thread “owning” the FPU;

tlb _miss ,tlb _miss _time ,tlb2 _miss : used in instrumented TLB miss handler to store miss counts and
handling times;

syscall _jmp _table[8] : jump table used by syscall dispatcher;
exc jmp _table[16] : jump table used by exception handler dispatcher;

prio _busy _listftMAX _PRIORITY+1] : pointers to each priority’s circular list of runnable threads, null if a
particular list is empty. The array entries actually point tottikof the list, which is the TCB of the thread
that was last scheduled (and on whose time slice the present thread, whoever it might be, is executing). If
prio _busy _list[p] is non-null, therprio _busy _list[p]->busy _link is the TCB at the head
of the list;

frame _table _base,frame _table _size ,frame _table _pointer : unused.

3.2.3 TCBs

TCBs are allocated as a large array in virtual mem@i$EG. The structure of a TCB is definedimclude/kernel/kernel.h
Each TCB is half a page (2kB) in size. Only about 0.5kB of this is needed for various data structures describing a
thread, the reminder is used as the stack during execution in kernel mode.

TCBs are allocated on demand: When a thread with no previously allocated TCB is created, a frame on the kernel
heap is allocated and mapped to the appropriate entry in the TCB array. If an unmapped TCB of a non-existing
thread is touched (e.g., when someone attempts to IPC to that thread), the Invalid TCB is mapped (by the TLB
miss handler).

The individual fields of the TCB are listed here (again somewhat reordered). Entries mgrkegltask attributes
which are only defined fok’s TCB; all others are defined for any active thread (even though some are logically
task attributes):

sndq _start ,sndq _end: head and tail pointers for the doubly linkddFO??? queue of send operations
pending for this thread;

sndg _next , sndq _prev : link fields for send queue, only relevant if thread’s state is PENDING;

soon ‘wakeup _link , wakeup _link ,late _wakeup _link : link field for short term, medium term, long
termwakeuglists, respectively;

wakeup: time at which the thread’s timeout expires (defined for threads presently linked in a wakeup list);
busy _link : link field for busy list (prioritised ready queue), zero if thread is not in the busy list;
int _link : link field for list of interrupted threads;

present _next : linkfield for TCB presentist. This links all allocated TCBs of a task to allow efficient cleanup
on task destruction;

wfor : TID of partner this thread is waiting to receive from;

stack _pointer : top of thread’s kernel stack;

asid : ASID value of task, -1 if task has no ASID allocated at present;
gpt _pointer : root of task’s page table;

myself : this thread’s ID (TID);

CHAPTER 3. L4/MIPS ORGANISATION AND DATA STRUCTURES 21

coarse _state : state of this TCBunused, used, invalidhe latter is used to identify TCBs which are presently
mapped to the sharddvalid TCB

fine _state : thread state. Set of:
BUSY ready to run or running,
WAITING: blocked on a receive,
POLLING: blocked on a send; also callpeénding
WAKEUPwaiting or polling thread with a finite timeout; is in a wakeup queue,
LOCKS inlong IPC, sending,
LOCKR inlong IPC, receiving,
DYING task being killed (duringask _new),
INACTIVE : not activated but has a TLB allocated anyway (because it's the buddy of an active thread).
Only WAKEURan occur in combination with other state valuEs{ECK!
timeout : timeout value in L4 timeout format (only some fields still relevant by the time it gets stored here...);
recv _desc : receive descriptor for receive phase of IPC, stored here during send and while blocked on receive;
child _task f: pointer to TCB of first child task (or NULL);
sister _task f{: pointer to TCB of next task in same clan (or NULL);
rem_timeslice : remaining time slice of preempted thread;
timeslice : thread’s time slice length;
mcpt: maximum controlled priority (MCP) as defined by tfask _new system call;
bpadl: byte padding (should never be accessed);
tsp : scheduling priority of current thread,;

ctsp : scheduling priority under which the current thread is presently executing. This can be differetgrom
due totime-slice donatiorandpriority inheritance

pager _tid : TID of thread’s pager;
excpt _tid : TID of this thread’s exception handler;
commpartner : pointer to TCP of thread we are waiting (or polling) for or are presently communicating with;

wdw map.addr : the base address, in the receiver’'s address space, of the temporary mapping area. This is used
during long IPC to allow mapping a page fault address inside the temporary mapping area back to an address
in the receiver’s address space;

interrupt _mask: if thread is associated with an interrupt, this holds the corresponding interrupt mask. It has
a single bit set which corresponds to the interrupt the thread is associated with;

stacked _fine _state ,stacked _commprtnr : valuesofiine _state andcommpartner saved while
in recursive (page fault) IPC;

fp _regs[32] ,fp _control : thread’s FPU context;
pt _size , pt _number: page table space usage and number of mappings, used by instrumentation code;

cpu _time : thread’'s accumulated CPU time.

22 3.2 Kernel Data Structures

3.2.4 Other kernel data structures

Other statically allocated data are:

TID Table: Array of task version numbers indexed by task ID. The format of a (32-bit wide) entry is:

0 (3) chief(H) 0 (2) |9 VerS(14)

Herechief is the present owner (chief) of the taskrsis the present task version numbieif set, indicates

that the task is inactive, analindicates version overflow (task activated too many times). Note that the
chief field is at the same position as in the upper word of a thread ID, and can therefore be matched without
additional shift operations.

Debugger stack: Used as kernel stack during boot time, later as the stack for the kernel debugger.
Sigma0 TCB: Thread control block fos. Only first half of page is used.
NIL TCB: TCB of NIL threadwhat is it used for???.

Invalid TCB: Page of two TCBs whoseourse _state is marked invalid. Mapped on demand to TCB of
non-existing thread (when faulting on an unmapped TCB).

ASID Table: Array, indexed by ASID. For each ASID presently in use the entry contains the task ID it is asso-
ciated with. For unused ASIDs it contains a pointer to the next free one, zero indicates the end of the list.
The list head (pointer to first free entry) iskernel _vars.free _asid _list

Interrupt TCBs: TCBs of virtual threads representing interrupts. Inherit scheduling parameters from their re-
spective interrupt handler threads (if associated).

Page tables are dynamically allocated on the kernel heap. Their structure is discussed with the miss handling code
in Section 4.1.Dbelow. Still TO DO: mapping database.

Chapter 4

Exception Processing

4.1 TLB Miss Handling

TLB miss handling is, together with “short” IPC, the kernel operation most critical to performance of systems
built on top of L4.

The L4/MIPS distribution contains a number of page table implementations, each in a separate subdirectory
of kernel/vm/ . multi-level page tableMm-mpt/), inverted page tablevin-ipt/), clustered page table
(vm-cpt/), and guarded page tablnf-gpt/). The guarded page table (GPT) structure is also implemented in
combination with two versions of a software TLB (STLBn-tlbcache-gpt/ andvm-tlbcache-gpt-pair/).
The version to be built is specified bjakefile.conf:VM _CODEThe kernel-internal API for the page tables

is defined ininclude/kernel/vm.h

Implementation choice: Elphinstone [] showed thatvm-tlbcache-gpt-pair/ is, of the ones
implemented, the most appropriate version for L4. We will therefore not consider any of the other implementa-
tions.

The page table implementation wm-tlbcache-gpt-pair/ supports four different implementation of the
STLB:tlb2-1way-8.S ,tlb2-1way-128.S , tIb2-2way-128.S ,andtlb2-2way-8.S . The one used
is selected byakefile.conf/TLB2 _OBJ.

Implementation choice: Again, the study has shown that the most appropriate verstti2idway-128.S
and only it will considered in this report. See Elphinstone’s PhD thési®P[] for details on the various page
table implementation and their analysis.

In summary, the kernel's page tables consist of a global, direct-mapped STLB of 128kB size, tagged with VPN

and ASID. It contains 8k entries, each mapping two pages. Hence the total coverage of the STLB is 16k pages,
or 64MB best case. Note that equals times the physical memory size for which the configuration was optimised.
This results in reasonably high STLB hit rates.

On a miss the STLB is reloaded from a per-address-space GPT. Given that the STLB is configured for high hit
rates, the GPT lookup costs are not very critical. However, GPTs can potentially grow rather deep (7-10 levels
are not extraordinary), the GPT lookup code is therefore highly optimised.

4.1.1 Fastmiss handler

Owing to the architecture-determined allocation of exception vectors, the TLB miss handler (like other exception
vectors) can be up to 128 bytes (32 instructions) long, any extra code must be allocated elsewhere and accessed via

24 4.1 TLB Miss Handling

0 lui kO, KERNEL_BASE # kernel vars ptr
1 sd t0, K_TLB_TO_SAVE(KO) # save tO
2 lui kl, TLB2_BASE # TLB cache base adr
3 dmfcO kO, CO_ENTRYHI # has VPM/2
4 dsll t0, kO, 38
5 dsrl to, t0, 47 # STLB index
6 daddu K1, tO, k1
7 Id t0, (k1) # EntryHi
8 bne t0, kO, 2f # check tag
9 Ilwu t0, 8(k1) # EntryLol
10 Iwu ko, 12(k1) # EntryLoO
11 dmtcO t0, CO_ENTRYLOO
12 dmtcO kO, CO_ENTRYLO1
13 lui kO, KERNEL_BASE
14 tibwr # load TLB
15 Id t0, K_TLB_TO_SAVE(k0) # restore tO
16 eret
17 2 i tlb2_miss # TLB cache miss
18 lui t0, KERNEL_BASE
Listing 4.1: TLB refill handlextlb _refill
ajump instruction. The handledtlb _refill in kernel/vm/vm-tibcache-gpt-pair/tlb2-1way-128.S ,

reloads the TLB from the STLB. It is shown insting 4.1

Line O loads the address &krnel _vars into the kernel-reserved register k0. Note thatlthie instruction
does not introduce a load delay, lg® can be used in the next cycle.

Line 1 saves regist#® in kernel _vars , asthe two reserved regist&® andkl are not sufficient for this TLB
miss handler.

Line 2 loads the address of the STLB irkb. The result is not used until Line 6. This means that, provided that
the STBL base was allocated to the same cache likeEsB_TO_SAVE there would be no extra cost for loading
the STLB base frofkernel _vars , as would be required for a dynamically sized STLB.

Line 3 loads the CPO EntryHi register ink®. On a TLB exception this coprocessor register is loaded by the
hardware with the VPN2 value corresponding to the faulting virtual address, and the present ASID value.

Lines 4-5load0 with the value of VPN2*16)%TLB2 _SIZE, ready to use as an index into the STLB. Lines 6—7
loadtO with the first half of the 16-byte STLB entry, which contains the EntryHi value.

Line 8 compares the EntryHi value of the STLB entry with the value obtained from CPO (note the pipeline stall
due to the immediate use tff). A mismatch indicates a cache miss and the code branches to Line 17 from where
it jumps to the STLB miss handler (outside frame zero). The addrdesroél _vars is reloaded intd0 in the

delay slot of the jump.

Line 9 (executed in Line 8's delay slot, although not used if the branch is taken) loads the third quarter of the STLB
entry intotO , and the following line loads the final part of the entry ikfb. These two values are the compressed
EntryLo values for the two pages represented by VPN2. Lines 11-12 load them into the corresponding CPO
registers. Note that the top 34 bits of the EntryLo registers are always zero on the R4x00, so both are effectively
32-bit quantities. Line 14 loads the TLB with the new entry, randomly replacing an existing one.

Lines 13 and 15 restore the original valuet®f and Line 16 performs the return from exception handling.

The fast TLB miss handler code is 16 instructions long. It contains four memory loads, one of which has an
unused delay slot. There is one branch instruction which is usually not taken. It may take a maximum of two data

CHAPTER 4. EXCEPTION PROCESSING 25

cache misses.

4.1.2 STLB miss handler

The STLB miss handleitlb2 _miss in kernel/lvm/vm-tlbcache-gpt-pair/tib2-1way-128.S
reloads the cache from the page table proper, i.e., the GPT belonging to the faulting task. Each GPT node is an
array of GPT entries of the form
127 69 67 64
G ‘ s, ‘ S ‘ ptr
52 6 6 64

where:

s1: # untranslated address bits (guard & node index stripped)
so: # address bits to be translated at naglefér child node)

s1 — s;: log of child node size (# child index bits)

so — s1. # guard bits

G: extended guard (index bits + guard)

u: node index

For a given partially translated virtual address these fields look as follows:
127 69 67 64
G ‘ s, ‘ S ‘ ptr
52 6 6 64

Implementation choice: The pointer could be stored in 32-bit, relying on sign extension during the |load.
However, this would not by itself make more compact page tables feasible due to the resulting unaligned data.
However, since virtual addresses on the R4x00 are only 40 bits long, 28 bits would suffice for the extended
guard, and the pointer could be packed into the remaining 24 bits. This would half the page table size, but the
requirement for unpacking the data would result in a significant slowdown of page table lookup and manipula-
tion code.

26 4.1 TLB Miss Handling

The STLB miss handler is entered with EntryHikf, the address of the cache bucket to loadin and the
address okernel _vars int0O . The code is shown ihisting 4.2

Lines 0-2 free up additional work registdils, t2 , and load2 with the address of the root of the current page
table fromkernel _vars . Line 3 is redundant (but see comments to Line 30).

Line 4 loads the shift count used in Line 5 to extract the top bits of the VPN as an index into the root node of
the GPT.GPTROOTSIZES the number of index bits required (the root node has in the present implementation

a constant size afCPTROOTSIZEgntries), and is the size of each GPT node entry. Note that bits 3:0 of the
value resulting from Line 5 are not masked out and are therefore undefined. To save the masking operation Line 6
constructs a GPT entry pointer not by adding but by or-ing the base pointer with the offset. This leads to a defined
result if it is ensured that the “node pointer’t® has bits 3:0 all set. It is in this form that all GPT pointers are
stored, including the root pointer kernel _vars .

This becomes evident in Lines 7-8, where the 128-bit GPT entry is loadetDirdmdt2 . The specified offsets
of —15 and—7 result in the correct address when added to the result of Line 6.

0 sd tl, K_TLB_T1_SAVE(tO)
1 sd t2, K_TLB_T2_SAVE(tO)
2 Id t2, K_GPT_POINTER(tO)
3 dmfcO kO, CO_ENTRYHI

4 dli tl, WORDLEN - 4 - GPTROOTSIZE
5 1 dsrlv t1, kO, t1

6 or 2, t1

7 Id t0, -15(t2)

8 Id 2, -7(t2)

9 xor ko, tO

10 dsrl t1, kO, tO

11 beq| t1, zero, 1b

12 dsrl t1, t0, 6

13 dsrl ko, t0, 6

14 dsliv 1, t1, kO

15 bne tl, zero, xtlb_refill_fail
16 nop

17 Iw t0, (t2)

18 Iw t1, 4(t2)

19 dmfcO t2, CO_ENTRYHI

20 sw t0, 8(k1)

21 sw t1, 12(k1)

22 sd t2, (k1)

23 dmtcO t0, CO_ENTRYLOO

24 dmtcO t1, CO_ENTRYLO1

25 lui kO, KERNEL_BASE

26 tibwr

27 Id t0, K_TLB_TO_SAVE(kO)
28 Id tl, K _TLB_T1 SAVE(kO)
29 Id t2, K_TLB_T2_SAVE(kO)
30 nop /* avoid a potential 48 instruction routine */
31 eret

Listing 4.2: STLB miss handldtb2 _miss .

CHAPTER 4. EXCEPTION PROCESSING 27

Lines 9-11 implement the matching of the guard. The extended guard from the first word of the GPT entry is
xor-ed with the as yet untranslated part of the address (the full EntryHi value on the first iteration of the loop).
This destroys bits 11:0 of the value, as the GPT entry stares, in those bits, but since these bits are not part of

the page number this is irrelevant. (In fact, bits 7:0 of EntryHi contain the ASID.) Line 10 shifts the xor result to
the right bys{,, which leaves the guard bits and the bits already used for indexing the GPT node. Both fields are
stored in the GPT node as part of tdended guardThe index bits are guaranteed to match (and are therefore
zero in the result left iml after Line 10), sd1 contains zero iff the guard matched. This is tested in Line 11.

Note that Line 10 relies on the shift instruction only using bits 5¢) 6f tO for determining the shift count. This
field is shifted out by Line 12 which is in Line 11's branch delay slot and is executed prior to executing Line 5
the next time, which then usas as the shift count. Line 11 uses theql instruction which nullifies the branch
delay slot if the branch isot taken, so Line 12 is not executed if the loop is exited due to a guard mismatch.

Lines 13-15 test the reason the loop terminated: guard mismatch or a leaf has been reached. Loop exit at a
leaf entry is forced by storing “incorrect” index bits in the extended guards of leaf nodes. The xor result from
Line 9 is shifted right bys;, which only leaves the xor of the guard proper, and is zero iff the guard matched
(indicating a leaf entry). Otherwise a page fault has occurred, which is handieith in_refill _fail . The

latter restores registers and jumpdad _tlb _rfl _ent , which is part of the general exception handling code

in kernel/lexc.S , to invoke the faulting thread’s pager (sdeting 4.5.

Lines 17-19 load the EntryLo values from the leaf node and the EntryHi value from CPO and Lines 20-24 and 26
load the complete entry into the STLB and the TLB. Lines 25 and 27-31 restore registers and return.

Thenop instruction in Line 30 is to avoid the possibility that the whole miss will be handled in exactly 48 cycles.
This would mean that th€0_.RANDOMegister would point to the same TLB entry (remember, the TLB has 48
entries) and would thus run the risk of the entry just loaded being replaced right away. This would bear the risk of
getting into an infinite loop if a single instruction faults on two pages (as is possible for a load or store instruction).

More details on this very tight code can be foundliip5].

28 4.2 General Exception Handling

4.2 General Exception Handling

All exceptions, other than cache errors and TLB misses occurring outside exception mode, are vectored to the
general exception handlemhis includes all system calls.

4.2.1 General exception handler
The general exception handler is the last exception vector, so it is not restricted to a length of 128B (and is, in fact,
180B long). The code is ikernel/exc.S:gen _exc and is shown irListing 4.3

Lines 0-7 load thé&xcCode from CPO and invokether _excpt to handle exceptions other than system calls.
As well, the Status register value is loaded ikioand the pointer t&ernel _vars into k0.

Lines 8-11 reset the error level and exception level flags, disable interrupts and turn on kernel mode. Kernel mode
was already active while in exception mode, but turning off exception mode (by resettiftXth#ag) would

0 mfcO kO, CO_CAUSE

1 mfcO k1, CO_STATUS

2 andi kO, CA_EXC_CODE
3 subu kO, CA_Sys

4 beq kO, zero, 1f

5 lui kO, KERNEL_BASE
6 i other_excpt

7 nop

8 1 move t0, k1

9 srl ki, 5

10 sll ki, 5

11 mtcO k1, CO_STATUS
12 andi ki, t0, ST_KSU

13 beq k1, zero, 1f

14 move t2, sp

15 Id sp, K_STACK_BOTTOM(kO)
16 1 dmfcO t1, CO_EPC

17 sd t2, -8(sp)

18 daddiu t1, t1, 4

19 sd t1, -16(sp)

20 sb t0, -24(sp)

21 bne AT, zero, 1f

22 dsubu sp, 24

23 i k_ipc

24 tcbtop(t8)

251 slti t1, AT, MAX_SYSCALL_NUMBER + 1
26 beq tl, zero, 2f

27 dsli AT, 3

28 daddu tO, kO, AT

29 Id t0, K_SYSCALL_JMP_TABLE(t0)
30 ir t0

31 ori t8, sp, TCBO

32 2 syscall_ret

Listing 4.3: General exception handigen _exc .

CHAPTER 4. EXCEPTION PROCESSING 29

otherwise return the CPU to user mode. Similarly for interrupts; these are implicitly disabled when in exception
mode and need to be disabled explicitly when resetting exception mode.

Note that during a system call the kernel is allowed to trash certain registers, particularly the “callee-saved”
t registers.

Lines 12-15 check whether the CPU was in kernel m&IeKSU prior to the exception. If not, the stack pointer
is set to the kernel stack area in the executing thread’s TCB, after temporarily saving #pe@tle int2 (in
Line 13's branch delay slot). Note that this allows kernel threads, such as the idle threagl &amgerform L4
system calls without changing the kernel stack.

Lines 16-20, 22 set up an exception frame, as showfigare 4.1 on the kernel stack. The old stack pointer
is stacked as well as the exception PC (adjusted to restart exeedtiorthe syscall instruction) and the least
significant byte of the old status register value (which will still differ from the pre-exception value ISTtHexL
bit).

Lines 21, 23 invoke the IPC handlkripc if the syscall number iiAT is zero. Line 24, executed in Line 23's
branch delay slot, load8 with the address of the top of the running thread’s TCB, by masking in the least
significant bits of the stack pointer.

Lines 25-31 check whether the syscall number is within range and, if yes, invoke the appropriate system call via
the jump table stored ikernel _vars .

Implementation criticism: Line 31 is identical to Line 24 anshould really use the same macro

Implementation choice: L4/MIPS uses théAT register to hold the system call number, while Linux on |the
MIPS uses the/O register. This prevents binary compatibility of statically linked binaries between native
Linux and L4-based systems. However, statically linked binaries are rarely used in the Linux world, |mostly
for some maintenance tool, whose source code is readily available. We therefore do not consider thjs choice
problematic.

An out-of-range syscall is silently ignored, as Line 32 simply continues execution of the caller.

Implementation criticism: Ignoring invalid system calls is a bad idea, an exception should be raised instead.
This would then allow the use ofteampolinemechanism to emulate other system calls.

The code uses all load and branch delay slots. However, the memory access at Line 15 is likely to cause a cache
miss. The total execution time for an IPC system call is 25 cycles plus one possible D-cache miss.

0
Sp
S 8
EPC 16
ESP
stack bottom 24

Figure 4.1: Exception stack frame set up on the kernel stack by the general exception handler. The field denoted
by Sis the least significant byte of the Status word.

1Theslti instruction set the destination register to one if the source register (here same as destination) is less than the signed immediate
operand; otherwise the destination is zeroed.

30 4.2 General Exception Handling

4.2.2 Return from exception

Thesyscall _ret macro, defined innclude/kernel/macros.h is worth looking at. It generates the
code shown irListing 4.4

Lines 0-2 turn the exception mode bit back on in the Status register. This is required for correct operation of the
eret instruction, which checks the exception and error mode bits to determine whether to reload the PC from
the EPC or ErrorPC CPO registers. (“Errors” include cache errors and reset, which can happen during exception
handling.) The interrupt-enable BE is also turned off as a side effect. Remember that interrupts are disabled
while in exception mode irrespective of the settingi©f

Lines 3—6 combine int&O bits 31:8 of the status register with the old value of bits 7:0 which was stacked in
Line 20 of the general exception handler. This leaves, among others, the interrupt mask unchanged, and thus
allows the interrupt mask to change during the execution of a system call. This is necessary to allow correct
interrupt handling, sekisting 5.11 The pre-exception value ¢ (normally on) is restored. Interrupts remain
disabled as the exception flag is on.

Note, however, that the mask in Line 3 does not have the top four bits set, which ma3K_@¥e (coprocessor
usable) bits in the status register. As a result, all coprocessor use is unconditionally disabled upon return to the
user. This includes the FPU, and any subsequent FPU use by the user will resuibpnoaessor unusable
exception, which will be handled xc _cpu (Listing 4.18.

Lines 7-8 load the exception PC, stacked in Line 19 of the general exception handler, back into the appropriate
coprocessor register, from where gt instruction will reload the PC to return to the caller. Line 9 resets the
status register so that its least significant byte now contains the value from immediately after the exception was
taken (which will be the pre-exception setting with the exception oShdEXL bit). This changes the processor
status from normal kernel-mode back to exception mode.

Line 10 restores the stack pointer and Line 11 leaves exception mode and returns to the caller.

The load delay slots of the two load instructions (Lines 5 and 7) are unused, leading to a pipeline stall. The total
execution time is therefore 14 cycles, plus a possible D-cache miss on Line 5.

Note that the syscall macro uses ti&, k1 registers. These registers are trashed during exception handling,
including TLB reloads. Hencthis code must not cause a page fault, or thie register contents might get lost,

with unpredictable results. The (only) point where a page fault can happen is Line 5, where the stack pointer is
first dereferenced. Remember, the stack pointer points to the kernel stack, which is part of the TCB, which is in
kernel mapped memory.

The way to avoid a page fault at this point is to touch the TCB before invokingytbeall _ret macro,after

0 mfcO kO, CO_STATUS
1 ori kO, kO, ST _EXL
2 mtcO kO, CO_STATUS
3 li k1, OxOfffff00

4 and kO, kO, ki1

5 Ibu k1, (sp)

6 or kO, kO, ki

7 Id k1, 8(sp)

8 dmtcO ki, CO_EPC

9 mtcO k0, CO_STATUS
10 Id sp, 16(sp)

11 eret

Listing 4.4: Thesyscall _ret macro.

CHAPTER 4. EXCEPTION PROCESSING 31

any other references to mapped memory.

4.2.3 Exception dispatchemother _excpt

The code for handling general exceptions other than system callkésriel/exc.S:other _excpt . This
entrypoint is aliased téail _tlb _rfl _ent , which is invoked when a TLB refill fails due to a page not being
mapped in the page table (a proper page fault). The handler is shown in Liéting<o.

Lines 0-5 load the processor status and save a number of temporary regiktrein _vars .

Lines 6-13 reset exception mode and set kernel mode, and load the kernel stack pointer if coming from user
mode. This is identical to the code of Lines 8—15 of the general exception vector. Note that this needs to be done
here as the corresponding code in the general exception vector was not executed prior to jumping here, nor was it
executed in the TLB miss handler.

Lines 14, 17-19 set up the exception stack frame consisting of the excepting thread’s PC, stack pointer and
processor status, as ffigure 4.1 This is like in the general exception vector, except that the PC is not adjusted,
so the excepting instruction will be restarted upon return from exception.

Lines 20-54 stack the whole register set, other than the kernel-reddhvaadkl , and the stack pointer, which
is already stacked. This includes the registers already savastiel _vars which are now also pushed onto
the stack (Lines 36—45; note the order of loads and stores which makes use of all load delay slots).

Having saved all registers the exception handler is now able to call C functions. Some registers which are not used
by kernel assembly code would not need saving for the sake of invoking C functions. However, a context switch
may occur as a side effect of an exception, and it is therefore important that the full processor context is saved.

Bug/Restriction 2: HI/LO not saved.
The code as shown fails to save the multiplication and division result registiees)dLO.

Lines 55-61 dispatch the appropriate exception handler function via the jump tdelmel _vars , using the
Cause register fiel@ AEXC CODEas the index. The handlers are invoked with the address causing the exception
(CO_.BADVADDRIN s3.

General exception return: other _excpt _ret

The return codegther _excpt _ret , is a straightforward extension of tegscall _ret macro. It restores all
stacked registers prior to performing the same operatiosgs=all _ret (mindful of the different stack state,
Listing 4.7).

4.2.4 TLB exceptions

The MIPS R4x00 knows four types of TLB exceptions:

TLB Refill: No TLB entry matches the virtual address. This exception vectors to the fast TLB miss handler
discussed irsection 4.1.1unless the CPU is in exception mode (as for a secondary TLB miss). However,
remember that the fast TLB miss handler reverts back to the general exception handler code in the case of a
page fault (when no mapping is found in the page table, see Line 1i5tafg 4.2).

In the latter case the exception is vectored to the general exception handler like a TLB Invalid exception.
Note that L4 does not access mapped memory in exception mode (exceptsystadl _ret macro,
which must be used with care), so this type of exception indicates a kernel bug.

32 4.2 General Exception Handling

TBL Invalid — Load or Store: A matching entry for a virtual address was found in the TLB but it is marked
invalid (i.e., theV bit is off). The CAEXCCODHS set toCATLBL or CATLBS depending on whether the
exception occurred on a memory read or write operation.

TLB Modified: A store is attempted to a page which is mapped read-only in the Vi {s on butD bit is off).
The CAEXCCODESs set toCAMod

These exceptions (except the Refill exception vectored to the fast TLB exception handler) can have three causes: a
kernel bug (as indicated above), a page fault in kernel mapped memory (i.e., the TCB array), or a user page fault.
In the latter case the user thread’s pager must be invoked by sending an IPC message to it.

The TLB Modified and TLB Store exceptions use the same hanelker flbs being an entrypoint iexc _-mod),
except thaexc _modfirst checks for a documented processor bug (and panics it that bug is tripped). The handler
for TLB Load exceptionsdxc _tlbl) is almost identical, except it omits one instruction.

Implementation criticism: These functions should share some code. ‘

0 mfcO k1, CO_STATUS

1 sd s0, K_SO0_SAVE(kO0)
2 sd s1, K_S1_SAVE(k0)
3 sd s2, K_S2_SAVE(kO0)
4 sd s3, K_S3_SAVE(kO)
5 sd s4, K_S4_SAVE(kO)
6 move sO, k1

7 srl ki, 5

8 sli ki, 5

9 mtcO k1, CO_STATUS

10 andi k1, sO, ST_KSU

11 beq k1, zero, 1f

12 move sl, sp

13 Id sp, K_STACK_BOTTOM(kO)
14 1 dmfcO s2, CO_EPC

15 dmfcO s3, CO_BADVADDR
16 mfcO s4, CO_CAUSE

17 sd s1, -8(sp)

18 sd s2, -16(sp)

19 sb s0, -24(sp)

20 sd AT, -32(sp)

21 sd v0, -40(sp)

22 sd vl, -48(sp)

23 sd a0, -56(sp)

24 sd al, -64(sp)

25 sd a2, -72(sp)

26 sd a3, -80(sp)

27 sd a4, -88(sp)

28 sd a5, -96(sp)

29 sd a6, -104(sp)

30 sd a7, -112(sp)

31 sd t0, -120(sp)

32 sd t1, -128(sp)

Listing 4.5: Exception dispatchether _excpt |, first part.

CHAPTER 4. EXCEPTION PROCESSING

33

33 sd t2, -136(sp)
34 sd t3, -144(sp)
35 lui kO, KERNEL_BASE
36 Id t0, K_SO0_SAVE(kO)
37 Id tl, K_S1_SAVE(kO)
38 sd t0, -152(sp) /* sO */
39 Id t0, K_S2_ SAVE(kO)
40 sd t1, -160(sp) /* s1 */
41 Id tl, K_S3_SAVE(kO)
42 sd t0, -168(sp) /* s2 */
43 Id t0, K_S4_SAVE(KO)
44 sd tl, -176(sp) /* s3 */
45 sd t0, -184(sp) /* s4 */
46 sd s5, -192(sp)
47 sd s6, -200(sp)
48 sd s7, -208(sp)
49 sd t8, -216(sp)
50 sd 19, -224(sp)
51 sd ap, -232(sp)
52 sd s8, -240(sp)
53 sd ra, -248(sp)
54 daddiu sp, sp, -(ST_EX_ SIZE)
55 andi t0, s4, CA_EXC_CODE
56 dsli to, 1
57 daddu t0, t0, kO
58 Id kl, K_EXC_JMP_TABLE(tO)
59 nop
60 ir k1
61 nop

Listing 4.6: Exception dispatchether _excpt , second part.
0 Id ra, (sp)
1 Id s8, 8(sp)
26 Id v0, 208(sp)
27 Id AT, 216(sp)
28 mfcO kO, CO_STATUS
29 ori kO, kO, ST _EXL
30 mtcO kO, CO_STATUS
31 li k1, OxOfffff00
32 and ko, ko, ki1
33 Ibu k1, 224(sp)
34 or kO, kO, ki
35 Id k1, 232(sp)
36 dmtcO k1, CO_EPC
37 mtcO kO, CO_STATUS
38 Id sp, 240(sp)
39 eret

Listing 4.7: General exception return cooliner _excpt _ret .

34 4.2 General Exception Handling

Listing 4.8shows the first part of the TLB Modify/TLB Store handler. It is invokeddtlger _excpt with the
exception PC irs2, the exception virtual address$3 and the value of the Cause registesih.

Line 0 checks whether the fault address is negative, which indicafé&&SGaddress and thus a fault on a non-
existent TCB. If so, it jumps to the TCB handling code at the end, which is discussed below.

Lines 2-27 of the code deal with page faults during long IPC. Understanding of this code requires some under-
standing of the operation of long IPC, in particular the implementation of the memory copy operation between
address spaces. We defer its descriptioGdotion 4.2.helow.

0 bltz s3, 3f
1 move t2, sp

Listing 4.8: TLB fault handleexc _tlbs , prologue.

The reminder of the TLB fault handler is shownlirsting 4.9 The instruction (Line 40) missing iaxc _tlbl
is flagged by a comment.

Line 28 is the continuation point for faults other than long-IPC page faults. The addredsof _excpt _ret
is loaded as the restart address itBoand an infinite timeout is loaded in&2. Long IPC page fault code will
have loaded the appropriate values into these registers when it joins this code at line 30.

Lines 30-33 enable interrupts. The reason is that the user's pager may fail to send a valid mapping. TLB ex-
ceptions take priority over interrupt exceptions on the MIPS, so this would result in the fault being re-triggered
immediately on return from the exception. Interrupts would never become enabled again and the system would be
livelocked. Hence we enable interrupts for a short while to introdysee@mption pointinterrupts are disabled

again (Line 47) prior to invoking the pager IPC (Line 49).

‘ Implementation criticism: The kernel should prevent unlimited repetition of page faults. ‘

Line 34-50 set up the IPC message to the pager. A pseudo-exception stack is set up (Lines 34-37) containing
a saved PC value pointing to tlother _excpt _ret code, so that the IPC codesyscall _ret sequence in

fact “returns” to the exception return code, which does the proper return to user code. (In the case of a page
fault during long IPC the return addressiie _fault _ret , see Line 9). The register message containing the
fault address, writable bit (except fexc _tlbl) and exception PC, is set up (Lines 38—41). A send descriptor
(Line 43), receive descriptor (Line 44), timeouts (Line 29), destination (= pager) TID (Lines 42 and 45) and wait-
for TID (Line 50) are set up and the IPC code is called as if the call came directlydemmexc . Note that long

IPC page faults skip lines 28-29, as they have already had their restart address and timeout values set up.

Implementation criticism: Line 48 (setting the virtual sender to zero) is redundant (deceive bit is off in|send
descriptor), as is Line 46 (redone in the branch delay slot, Line 50).

Implementation criticism: This code trigger8ug 15 which results from the way an error status is returned

if an IPC operation is aborted. The page fault IPC may be aborted or cancelled (e.g., by a handler using the
lthread _ex_regs system call to save the faulter’s state). The cleanup code will then overwrite the|saved
value ofv0 with an error value. If the faulter is then restarted,vifs register is restored from the modified
value in the TCB, resulting in a trashing of the thread’s register. It is necessary teGaaparately, like the
thread state and communication partner are stacked in Lines 10 and 12.

U

The end of the routine (Lines 51-56) is concerned with handling page faults in the TCB array.

The code calls the C functioom.tcb _insert (in kernel/vm/*/vm.c), passing as parameters the pointer
(from kernel _vars) to the current page table, the fault address, and the (physical) addressrfalice TCB
statically allocated in low memory (séégure 3.).

This function allocates a GPT leaf node (by callgygf.c:gpt _insert) and inserting the physical address of
the frame containing the invalid TCB. This is ok, as an unmapped TCB can only belong to an invalid (not yet

CHAPTER 4. EXCEPTION PROCESSING 35

28 4. dla t3, other_excpt_ret

29 dli a2, L4 IPC_NEVER

30 5: mfcO t0, CO_STATUS

31 li tl, ST_IE

32 or t1, to, t1

33 mtcO tl1, CO_STATUS

34 daddiu sp, sp, -24

35 sb t0, (sp)

36 sd t3, 8(sp)

37 sd t2, 16(sp)

38 dli sO, "(L4_FPAGE_RW_MASK | L4_FPAGE_GRANT_MASK)
39 and s0, sO, s3

40 ori s0, sO, L4 FPAGE_RW_MASK /* TLB Mod/Store ONLY! */
41 move sl, s2

42 tcbtop(t8)

43 dli a0, L4_IPC_SHORT_MSG

44 dli al, L4 IPC_SHORT_FPAGE|(L4_WHOLE_ADDRESS_SPACE<<2)
45 Id a4, T_PAGER_TID-TCBO(t8)

46 move ab, a4

47 mtcO t0, CO_STATUS

48 dii a6, 0

49 i K ipc

50 move a5, a4

51 3: lui a0, KERNEL_BASE

52 Id a0, K_GPT_POINTER(a0)

53 move al, s3

54 dii a2, INVALID_TCB_BASE

55 jal vm_tcb_insert

56 i other_excpt_ret

Listing 4.9: TLB fault handleexc _tlbs , main part.

activated) thread. The kernel must obviously avoid modifying the invalid TCB, so when a thread is created it

must check whether its TCB is the invalid one, and, if yes, allocate, initialise and map a new one. The code of
gpt _insert is inherently ugly and we leave it to greater masochists to delve in it. We note, however, that the

function can be called with either a GPT or a TCB pointer as its first argument. In the latter case (obviously not
usable if the fault is on a TCB) the GPT pointer is taken from the TCB. The two types of pointers can be distin-

guished by the fact that TCB pointers are 8-byte aligned while GPT pointers have bits 3:0 se$t{sget.1.9.

vmtcb _insert turns on theglobal bitin the page table entry, to ensure that the mapping is valid no matter
which user thread executes. The function also ¢hifs1way-128.S:1lb2 _sync _shared whichremoves
any matching TLB and STLB entries. Normal TLB refill handling is relied on to activate the mapping.

4.2.5 Exceptions passed to the user

A number of exceptions (address error on load, address error on store, bus error on fetch, bus error on load or
store, breakpoint, reserved instruction, arithmetic overflow, and floating-point exceptions) are handled by in-
voking the excepting thread’s user-level exception handler. They all use the same kernel exception handler,
with the aliaseexc _adel , exc _ades, exc _ibe , exc _dbe, exc _bp, exc ri , exc _ov, andexc fpe . A
coprocessor-unusable exception, handleghy cpu, is also diverted here if it originated in user mode for a
coprocessor other than the FPU. The code is almost identical to the TLB exception Smaéiam 4.2.4ignoring

36 4.2 General Exception Handling

the part dealing with long IPC page faults. The differences are the that the IPC goes to the exception handler
rather than the pager and is “short” (no mapping). Kernel exceptions are not meant to occur and result in a kernel
panic.

Implementation criticism: This code trigger88ug 15as does the TLB miss handlers. In the case of user
exceptions this is actually more serious than for page faults, as it makes it impossible for a user-level exception
handler to save an excepting thread’s complete user state.

4.2.6 TLB misses during long IPC

As mentioned above, the middle part of the TBL fault handés _mod, exc _tlbs andexc _tlbl deal with
TLB misses occurring during cross-address-space memory copies while processing long IPC. We will examine
this code here.

As stated earlier, this code is unlikely to make much sense to someone who does not understand the implemen-
tation of long IPC. The reader is therefore encouraged to skip this section for now and return to it after reading
Section 5.5

Listing 4.10shows the relevant part of the TLB miss handlers. Here we are dealing with a TLB miss which
occurred in kernel mode but outside the TCB array. Faults of this kind should only result from long IPC processing.
They can be either in user space (resulting from “normal” page faults while the kernel is trying to access the
sender’'s message buffers) or XKSSEG which is used as theemporary mapping area allowing the

kernel to access the receiver’s data from within the sender’s contextL.iSew 5.16 paget7 for details.

2 tcbtop(a0)

3 Iw t0, T_FINE_STATE-TCBO(a0)

4 andi al, t0, FS_LOCKS

5 beq al, zero, 4f

6 dsrl al, s3, 62

7 bne al, zero, window_fault

8 nop

9 dla t3, ipc_fault_ret

10 sw t0, T_STACKED_FINE_STATE-TCBO(a0)
11 Id t0, T_COMM_PARTNER-TCBO(a0)
12 sd t0, T_STACKED _COMM_PRTNR-TCBO(a0)
13 li a2, 0x01010000

14 Iw t1, T_TIMEOUT(tO)

15 Iw a3, T_TIMEOUT-TCBO(a0)

16 andi a3, a3, 0xff0o

17 andi t1, t1, Ox0f00

18 srl t1, t1, 4

19 or az, a2, tl

20 sl t1, t1, 4

21 or a2, a2, t1

22 or a2, a2, a3

23 daddiu sp, sp, -8

24 move t2, sp

25 sd s3, (sp)

26 b 5f

27 nop

Listing 4.10: TLB fault handleexc _tlbs , long IPC faults.

CHAPTER 4. EXCEPTION PROCESSING 37

Line 2 loadsa0 with the address of the faulting thread’s TCB. Note th@tpoints to the top, not the bottom of
the TCB (compare thke_ipc code,Listing 5.1).

Lines 3-5 test whether the faulting thread is in H@CKSstate, indicating that it is in the middle of performing

long IPC. If so then we test whether the fault address is outside the user-mode address range (Lines 6—7). A TLB
miss outside the user address range and outside the TCB array can only result from faulting on the temporary
mapping area (or from a kernel bug). This case is handled by jumpwintiow _fault , see pagés.

If we reach Line 9 we must be dealing with a fault in user space resulting from the kernel accessing the sender’s
message buffers during a long IPC operation. Handling this requires invoking the faulting thread’s pager. That
means that a (nested) IPC must be performed by the sender while it is in the middle of a (long) IPC. In order to
allow clean unwinding of the stack if the page fault IPC is aborted, Lines 10-12 save the thread’s state and its
communication partner in special locatiossacked _fine _state ,stacked _commprtnr) of the TCB.

The send and receive timeout for the page-fault IPGa@h are constructed from the receive page-fault timeout
value of the faulting thread’s communication partner (Lines 13—-22); the faulter's page-fault timeouts are preserved
(so they would be used if the pager itself faults).

The real fault address is stacked (Lines 23, 25) for later uspdyfault _ret . The address of the restart
codeipc _fault _ret isloaded intad3 as the “exception PC” (Line 9), and the “exception SP” into regiger

(Line 24); these will further down be used to set up an “exception stack” (Lines 34-37). We are now ready to
handle this like any user page fault (but we use a different restart routine from other faults). The code jumps to
Label 5, which is at Line 30 dfisting 4.9

38 4.2 General Exception Handling

Restart after long IPC page fault: ipc _fault _ret

The TLB exception handlers, prior to invoking the sender’'s pager for handling a page fault during long IPC,
push the address of this function as the post-pager-IPC resumption code (Lines@raf 4.10and Line 36 of
Listing 4.9.

0 tcbtop(s2)

1 Iw t0, T_STACKED_FINE_STATE-TCBO(s2)
2 sw t0, T_FINE_STATE-TCBO(s2)

3 sd zero, T_STACKED_FINE_STATE-TCBO(s2)
4 Id s3, T_STACKED_COMM_PRTNR-TCBO(s2)
5 sd s3, T_COMM_PARTNER-TCBO(s2)

6 Id s0, (sp)

7 daddiu sp, sp, 8

8 andi t0, vO, L4_IPC_ERROR_MASK

9 bne t0, zero, 1f

10 Id a0, T_GPT_POINTER-TCBO(s2)

11 move al, sO

12 jal vm_lookup_pte

13 beq v0, zero, 1f

14 Iw a0, (v0)

15 and t1, a0, EL_Valid

16 beq t1, zero, 1f

17 j other_excpt_ret

18 1. daddiu sp, s2, 1 - 24

19 dli v0, L4 _IPC_RESNDPFTO

20 move t8, s2

21 move t9, s3

22 Id vl, T_MYSELF-TCBO(t8)

23 b send_only_short

Listing 4.11: Resumption code after pager IRee: fault _ret

Lines 0-5 restore the sender’s state which was saved in the TCB prior to the pager IPC. Lines 6—7 restore the
original fault address, which was stacked by the TLB exception handler (Lines 23, 25 above). The return value of
the IPC is checked, diverting to the error code at the end if the IPC failed (Lines 8-9).

Lines 10-12 call the page table lookup function to check wether a mapping now exists for the page (as expected
from a successful pager invocation), and, if found, the validity of the page table entry is verified (Lines 13-16). If
there is a valid entrypther _excpt _ret is invoked to perform a return-from-exception and continue long IPC
processing (Line 17).

Lines 18-23 constitute the cleanup code for the case of an unsuccessful pager invocation. The stack is unwound
back to the original frame set up by the system call handler (Line 18). The return value is set to indicate a page-
fault timeout on the sender’s side (Line 19), and the register conventions expected by the short IPC code (see
Table 5.) are re-established (Lines 20—-22). The code then branclestb_only _short to perform delivery

of the register message.

TLB misses in temporary mapping area: window _fault

Thewindow _fault code shown in Listingg.12-4.15is invoked from the TLB exception handlezzc _tibl
exc _tlbs , exc _modif the fault address is in kernel space but outside the TCB array (LineLtsthg 4.10.
Such a miss address indicates a page fault in the temporary mapping area during long IR€i(ge8.17).

CHAPTER 4. EXCEPTION PROCESSING 39

Line 0 loads the faulting thread’s ID int® (a0 points to the top of the faulter's TCB). Lines 1-6 compute from
the local thread number the base of the thread’s slot in the temporary mapping area (compare this with the C code
in do_long _ipc , Listing 5.17, which sets up the temporary mapping area).

Line 7 subtracts this from the fault address (left in registerby other _excpt). This yields the offset of the
fault address from the base of the mapping window. Lines 8-9 add the window’s base address in the receiver’s
address space (left in the TCB fieddiw map_.addr bydo_long _ipc). The result (irs5) is the fault address in
the receiver’'s address space, which is what is needed to look up the mapping in the receiver’s page table.

Lines 10-13 calvm.lookup _pte to find the mapping for the fault address. The function’s parameters are the
base address of the receiver's page taal® @nd the fault addressi{). The function’s implementation is very
similar to the STLB miss handldth2 _miss discussed irSection 4.1.2 The difference is in register usage
(k0, k1 cannot be used here), and the calling conventiltn2 (_miss obtains the fault address from CPO and
reloads the TLB and the STLB, whichm_lookup _pte does not do). The return value winlookup _pte is

the address of thENTRYLQword containing the mapping. Note that this is a 32-bit entity.

Line 14 tests the return value for zero, indicating that no mapping exists. A non-existing mapping requires
invocation of the receiver’s page fault handler, which is done below starting at Line 56.

Lines 15-18 check whether the page table entryalédd andwritable (i.e., has the “dirty” bit set). If not, the
receiver’s pager must be called after all. Line 23 constructs the c@&MNTRYHIvalue containing the sender’s
ASID (Lines 19-20) and the VPN2 (half of the faulting page number, Lines 21-22).

Lines 24-30 check whether the TLB already contains a mappingforRYHL If not, indicated by a negative
value left inCO_INDEX after the TLB probe instruction, execution diverts to Line 42.

A matching entry can exist either because the same entry was loaded earlier and then invalidated, or, more likely,

0 Id t0, T_MYSELF-TCBO(a0)

1 dli tl, TID_THREAD_ MASK

2 and to, to, t1

3 dsrl t0, t0, TID_THREAD_SHIFT

4 dsll t0, t0, RECV_WINDOW_SHIFT
5 dli tl, RECV_WINDOW_BASE

6 daddu t0, t1, tO

7 dsubu al, s3, t0

8 Id a2, T_WDW_MAP_ADDR-TCBO(a0)
9 daddu s5, al, a2

10 Id a2, T_COMM_PARTNER-TCBO(a0)
11 Id a0, T_GPT_POINTER(a2)

12 move al, s5

13 jal vm_lookup_pte

14 beq v0, zero, 1f

15 Iw a0, (v0)

16 li t0, EL_Valid|EL_Dirty

17 and t1, ao, t0

18 bne t1, to, 1f

19 tcbtop(t8)

20 Id al, T_ASID-TCBO(t8)

21 dli t1, 7(8192-1)

22 and a2, s3, tl

23 or a3, a2, al

Listing 4.12: Mapping window TLB missesvindow _fault , first part.

40 4.2 General Exception Handling

because a mapping exists for the faulting page’s buddy. Remember that on the R4x00 a TLB entry always maps a
pair of pages.

Lines 27 and 32 test whether the faulting page number is even or odd, corresponding to th&ENIRYLO0)
ENTRYLOwords respectively. The matched TLB entry is read (Line 31),BENGRYLOword constructed in

Line 23 is written to the appropriate coprocessor register (Lines 34, 37) and the new entry is loaded into the TLB
(Line 39). We can now return from the exception (other _excpt _ret).

Lines 42-55 deal with the case that the TLB does not yet contain a matching entry. It is a straigthforward variation
of Lines 32—41, except that now boENTRYLOwords are set, one as above, the other to zero (for an invalid

mapping).

24 dmtcO a3, CO_ENTRYHI
25 nop

26 tlbp

27 andi t0, s3, 4096

28 mfcO t2, CO_INDEX

29 bltz t2, 2f

30 nop

31 tibr

32 beq t0, zero, 3f

33 nop

34 dmtcO a0, CO_ENTRYLO1
35 b 4f

36 nop

37 3: dmtcO a0, CO_ENTRYLOO
38 nop

39 4. tibwi

40 j other_excpt_ret

41 nop

42 2: beq t0, zero, 3f

43 nop

44 dmtcO zero, CO_ENTRYLOO
45 dmtcO a0, CO_ENTRYLO1
46 nop

47 tibwr

48 i other_excpt_ret

49 nop

50 3: dmtcO a0, CO_ENTRYLOO
51 dmtcO zero, CO_ENTRYLO1
52 nop

53 tibwr

54 j other_excpt_ret

55 nop

Listing 4.13: Mapping window TLB missesvindow _fault , second part.

Note: The window mappings are truly “temporary”, they are entered into the TLB but not into any page tables,
not even the TLB cache. This is appropriate, as they are, by definition, very short lived and unlikely to be replaced
from the TLB while still active. The cost of adding the entries to, and removing them from, the page table would
not be justified.

Line 56 is reached if the destination buffer is not presently mapped and the copy operation therefore triggers a
user-visible page fault in the receiver's address space. This fault must be handled by sending a message to the

CHAPTER 4. EXCEPTION PROCESSING 41

56 1: daddiu sp, sp, -8

57 dla a0, window_fault_ret

58 sd a0, (sp)

59 tcbtop(t8)

60 li t0, FS_LOCKS

61 sw t0, T_FINE_STATE-TCBO(t8)

62 sd sp, T_STACK_POINTER-TCBO(t8)
63 Id t8, T_COMM_PARTNER-TCBO(t8)
64 Id sp, T_STACK_POINTER(t8)

65 Id t0, T_ASID(t8)

66 bgez t0, of

67 dmtcO t0, CO_ENTRYHI

68 jal asid_get

69 nop

70 9: Id t0, T_GPT_POINTER(t8)

71 lui t9, KERNEL_BASE

72 sd t0, K_GPT_POINTER(t9)

73 li t0, FS_LOCKR

74 sw t0, T_STACKED_FINE_STATE(t8)
75 Id t0, T_COMM_PARTNER(t8)

76 sd t0, T_STACKED_COMM_PRTNR(t8)
77 li a2, 0x01010000

78 Iw t1, T_TIMEOUT(tO)

79 Iw a3, T_TIMEOUT(t8)

80 andi a3, a3, Oxffoo

81 andi t1, t1, Oxf000

82 srl t1, t1, 8

83 or az, a2, t1

84 srl t1, t1, 4

85 or a2, a2, t1

86 or a2, a2, a3

Listing 4.14: Mapping window TLB missesvindow _fault , third part.

receiver’'s pager from the receiver’s context.

The address of the continuation code for the sendlieidlow _fault _ret is pushed onto the stack (Lines 56—
58). The sender’s state is sett0CKSindicating it is blocked during a send operation. (The previous state would
have beemh OCKS|BUSY)

Lines 62—72 perform a context switch to the receiver. This code is analogtluséal _switch _fast (List-
ing 5.3. The difference is that thie registers cannot be used here as this code is pre-emptible. Instead general-
purpose registers can be used, as user state is already saved.

Lines 73-86 are completely analogous to Lines 10-2Rising 4.10(the TLB exception handler), with two
exceptions: in Line 73 the (receiver) thread’s state is explicitly seQGKR(blocked during receive operation),

and in Line 82 the sender’s send-pagefault timeout value is used to construct the timeout value for the pagefault
IPC.

42 4.2 General Exception Handling

87 daddiu t2, sp, -16

88 daddiu sp, sp, -40

89 dla t3, 1f

90 mfcO t0, CO_STATUS

91 sb t0, (sp)

92 sd t3, 8(sp)

93 sd t2, 16(sp)

94 dli s0, “(L4_FPAGE_RW_MASK | L4 FPAGE_GRANT_MASK)
95 and sO, sO, s5

96 ori s0, sO, L4 FPAGE_RW_MASK

97 move sl, zero

98 sd s5, 24(sp)

99 sd s3, 32(sp)

100 tcbtop(t8)

101 dli a0, L4 _IPC_SHORT_MSG

102 dli al, L4 IPC_SHORT_FPAGE|(L4_WHOLE_ADDRESS_SPACE<<2)
103 Id a4, T_PAGER_TID-TCBO(t8)

104 i K ipc

105 move a5, a4

106 1: Id s0, (sp)

107 Id sl, 8(sp)

108 daddiu sp, sp, 16

109 tcbtop(t8)

110 Iw t0, T_STACKED_FINE_STATE-TCBO(t8)
111 sw t0, T_FINE_STATE-TCBO(t8)

112 sd zero, T_STACKED_FINE_STATE-TCBO(t8)
113 Id tl, T_STACKED_COMM_PRTNR-TCBO(t8)
114 sd tl, T_COMM_PARTNER-TCBO(t8)

115 li t0, FS_LOCKS | FS_BUSY

116 sw t0, T_FINE_STATE(t1)

117 lui t2, KERNEL_BASE

118 thread_switch_fast(t8, t1, t2)

Listing 4.15: Mapping window TLB missesvindow _fault , final part.

Lines 87-105 are similar to Lines 34-50Lo§ting 4.9(TLB exception handler). The main difference is that here

the fault address and its equivalent in the receiver’s address space is saved (Lines 87, 98—99) above the “exception
stack frame”, for later continuation. The “exception PC” stacked (Line 92) is actually the address of Line 106
below. Thesyscall _ret executed by the IPC code will therefore return to that line. Khipc entry point is

invoked to deliver the page-fault IPC (Line 104).

Line 106 is invoked by the IPC'syscall _ret as discussed above. The fault address in the receiver’'s address
space (Line 106) and the original fault address in the temporary mapping window (Line 107) are restored from
the stack. The receiver’s state is restored (Lines 109-114) in analogy to Lines (pe&5 dault _ret (List-

ing 4.11). The sender’s state is set backUOCKS|BUSY indicating that it is in the process of delivering long

IPC (Lines 115-116) and a context switch is performed back to the sender. This will leave the receiver blocked
on the IPC, until resumed byend _only _short . The sender will resume execution at the restart address,
window _fault _ret , stacked in Line 57.

Note that a fast thread switch is possible here as the register message has not yet been delivered to the receiver.
It is therefore ok to trash the receiver’s registers. The sender’s registers were stacked by the general exception
handler, and will be restored upon return from exception.

CHAPTER 4. EXCEPTION PROCESSING 43

window _fault _ret

Thewindow _fault _ret code shown in Listingd.164.17is invoked by the context switch at the end of the
window _fault routine. The invocation is a result of a receiver-side page fault, which was handled by invoking
the receiver’s pager. This code then restarts the long IPC (remember, all IPC is performed in the sender’s context).

The routine is called with the return status of the page fault IP@inpand the fault address, and the receiver's
equivalent of the fault address, in registels sO, respectively.

Line O pops the restart address (its own address) off the stack. Lines 1-4 check for the success of the IPC, and divert
to Line 49 for error handling if it failed. Lines 5-16 are essentially identical to Lines 11-28nofow _fault
(Listing 4.12), except for the different fault handling code (Label 1, Line 49 above or Line 8énafow fault).

Implementation criticism: Line 12 aborts the IPC if a page fault is handled by an invalid or read-only mapping,
instead of taking a repeated fault. This behaviour is not strictly correct, the IPC should only be aborted when
the page fault timeout is reached. However, the definition of page fault timeouts implies that the timeout is
restarted with each repeated fault, so that timeouts do not help in this case. Hence the present implementation
is probably the best that can be done to stop denial-of-service attacks. Note that this problem does ngt exist in
thewindow _fault code.

Lines 17-48 are identical to Lines 24-55whdow _fault (Listing 4.13, except for a different register assign-
ment affecting Line 20.

Implementation criticism: Lines 17—48 should be replaced by a branch to the appropriatiow _fault
code, the different register assignment could easily be fixed. The run-time overhead introduced by the back-
wards branch would most likely be offset by a reduction of the number of cache missess resulting from denser
code.

0 daddiu sp, sp, 8

1 tcbtop(s2)

2 Id s3, T_COMM_PARTNER-TCBO(s2)
3 andi t0, v0O, L4 IPC_ERROR_MASK
4 bne t0, zero, 1f

5 Id a0, T_GPT_POINTER(s3)

6 move al, sO

7 jal vm_lookup_pte

8 beq v0, zero, 1f

9 Iw a0, (v0)

10 li t0, EL_Valid|EL_Dirty

11 and t1, a0, to

12 bne t1, to, 1f

13 Id al, T_ASID-TCBO(s2)

14 dli t1, 7(8192-1)

15 and a2, si, tl

16 or a3, a2, al

17 dmtcO a3, CO_ENTRYHI

47 i other_excpt_ret

48 nop

Listing 4.16: Sender-side continuation after receiver-side page fauttow _fault _ret .

44 4.2 General Exception Handling

0 1: daddiu sp, s2, 1 - 24

1 dli v0, L4_IPC_RERCVPFTO
2 move 8, s2

3 move 19, s3

4 Id vl, T_MYSELF-TCBO(t8)
5 b send_only_short

Listing 4.17: Error handling code efindow _fault _ret .

Lines 49-54 handle unsuccessful page-fault IPC exactly as Lines 18ig23 dhult _ret (Listing 4.17) except
that the error code is set to indicate a page-fault timeout on the receiver’s side.

4.2.7 Coprocessor unusable exception

Thecoprocessor unusable exceptisiandled by thexc _cpu routine. This exception occurs as a result of a user
thread attempting to access a coprocessor. L4/MIPS presently only supports two of the possible four coprocessors:

e CPO, the system coprocessor (incorporating the MMU) is never enabled for user mode. Any attempted
access is treated as a “normal” user exception and handled by invoking the user’s excepter.

e CP1,the FPU, is enabled on demand. The first user-mode access will triggectlgpu exception, which
L4 handles by enabling the FPU and returning to the user.

Saving and restoring FPU state (a total of 33 registers) is an expense which the kernel tries to avoid as much as
possible, by keeping the FPU disabled by default (compgseall _ret , Listing 4.4). It keeps track of which

thread has last used (“owns”) the FPU. If an exception happens as a result of a user trying to use the FPU, the
kernel checks whether that thread owns the FPU already. If not it saves and restores FPU state prior to enabling
access.

0 Ibu t0, 224(sp)

1 andi t0, t0, ST_KSU

2 beq t0, zero, 3f

3 move t2, sp

4 l t0, CA_CE_MASK

5 and t1, s4, t0

6 li t0, CA_CE_FP

7 bne tl, t0, exc_user

8 nop

9 mfcO t0, CO_STATUS

10 li tl, ST _CU1

11 or to, t0, t1

12 mtcO t0, CO_STATUS

13 lui a0, KERNEL_BASE

14 tcbtop(t8)

15 Id al, K_FP_THREAD(a0)
16 Id a2, T_MYSELF-TCBO(t8)
17 beq a2, al, 2f

18 nop

Listing 4.18: Coprocessor-unusuable exception handbar:_cpu, first part.

CHAPTER 4. EXCEPTION PROCESSING 45

19 tid2tcb(al,a3)

20 Id a4, T_MYSELF(a3)

21 bne a4, al, 1f

22 nop

23 cfcl t2, $31

24 nop

25 sd t2, T_FP_CONTROL(a3)
26 sdcl $f0,T_FP_REGS+0(a3)
57 sdcl $f31,T_FP_REGS+248(a3)
58 1. ldcl $f0,T_FP_REGS+0(a3)

89 ldc1 $f31,T_FP_REGS+248(a3)
90 Id t2, T_FP_CONTROL(a3)
91 ctcl t2, $31

92 sd a2, K_FP_THREAD(a0)

Listing 4.19: Coprocessor-unusuable exception handbar:_cpu, second part.

This lazy saving of FPU state works well unless there is a thread which uses the FPU heavily and also performs
very frequent system calls. Such a thread would trigger a coprocessor-unusuable exception after every system
call, resulting in significant overhead. However, such a behaviour is unusual for heavy users of floating point
operations, and the approach chosen works well in practice (as indicated by the SPEC-FP benchmarks presented

in D).

Listings4.18-4.20show theexc _cpu routine. Remember, this is invoked bther _excpt with the exception
PC ins2, the exception virtual address$8 and the value of the Cause registeséh.

Lines 0—3 check whether the exception occurred in kernel mode, if yes, it jumps to Label 3 (Line 133) to cause a
kernel panic, as the kernel does not use the FPU, and cannot trigger this exception for the system coprocessor.

Lines 4-8 examine CE (coprocessor number) field in the Cause register. Any value other than one (indicating
CP1, i.e, the FPU) leads to diverting éac _user , which invokes the user's excepter. Lines 9-12 enable the
FPU, so the kernel can access its registers.

Lines 13-18 check whether the excepting thread is already the “owner” of the FPU. If so, no further action is
required other than returning to the user without disabling the FPU. This is done from Line 93 on.

Line 19 locates the TCB of the present owner of the FPU. The TID recorded in that TCB is then compared to the
TID of the owner (Lines 20—-24). If there is no match, the original owner no longer exists (its task was killed in
the meantime) and saving of FPU state can be skipped.

Lines 25-57 save the FPU state in the previous owner’s TCB. FPU state consist&Bfil@&ontrol Registeand

32 general floating point registers. The FPU Control Register is copied to a general purpose registefdiy the
(move control word from CRLine 23) instruction and subsequently stored in the TCB. The general floating point
registers can be stored directly to memory bydtel (store double word from CBinstruction (Lines 26-57).

Lines 58-92 perform the corresponding restore of FPU state from the excepting thread’s TCB. That thread is then
recorded as the new owner of the FPU (Line 92).

Bug/Restriction 3: FPU state incorrectly restored.
The code in Lines 58-91 restores the FPU state from the previous owner’s context, rather than the excepting
thread’s. The effective addre$sFP_REGS+0(a3) should readl _FP_.REGS-TCBO+0(t8) etc.

46

4.2 General Exception Handling

93 2: Id ra, (sp)

94 Id s8, 8(sp)

120 Id AT, 216(sp)

121 mfcO kO, CO_STATUS
122 ori ko, kO, ST_EXL
123 mtcO kO, CO_STATUS
124 li k1, Oxffffff0O

125 and kO, kO, ki1

126 Ibu k1, 224(sp)

127 or kO, kO, ki1

128 Id k1, 232(sp)

129 dmtcO k1, CO_EPC
130 mtcO kO, CO_STATUS
131 Id sp, 240(sp)

132 eret

133 3: dla a0, kern_exc_msg
134 i panic

Listing 4.20: Coprocessor-unusuable exception handbar:_cpu, final part.

The remainder of the code is straightforward. It is almost identicather _excpt _ret , the general exception

return code: restore registers (Lines 93-120), followed by the equivaleytoéll

is in Line 124: Contrary to Line 3 adyscall

_ret . The only difference

_ret (Listing 4.9 this line doesot mask out the coprocessor-
enable bits, and thus leaves the FPU enabled for user code.

Lines 133-134 performs the kernel panic resulting from a coprocessor exception in kernel mode.

Chapter 5

IPC Path

5.1 Introduction

IPC is the “heart” of L4, and its efficiency of paramount importance to any L4-based system. This applies in
particular to the “short” IPC path, which, as a consequence, is highly optimised.

IPC is considered “short” if it only passes a “short” message, i.e., only uses registers to transmit data. “Short”
IPC does not involve fpage mappings or messages in memory buffers (direct or indirect strings). Note that the
distinction between “short” and “long” IPC has nothing to do with whether the operation is between local partners

(threads of the same task) or not, but has to do with the time it takes to perform.

L4 IPC is blocking, hence an IPC can only be started when one of the partners is currently blocked (waiting
for the IPC to happen) and the other is running (trying to perform the IPC). Most IPC processing is done in the
sender’s context. In the case of a sender being originally blocked, waiting for the receiver to be available, and
the IPC is consequently initiated from the receiver’s context, this implies a context switch to the sender before
any other processing. At the end a context switch is performed from the sender to the receiver, which delivers the
register part of the message to the receiver. The present implementation always continues the receiver first after a
successful IPC.

Implementation criticism: This is not always the correct behaviour, see commereiiion 5.3.1

Remember, L4 terminology calls the state of a thread blocked on a send “polling” or “pending”, while a thread
blocked on a receive is considered “waiting”. The latter can be an “open” wait, if the thread is willing to receive
from any thread, or a “wait-for” if it is trying to receive from a specific partner.

The thread state is recordedtith.fine _state . The distinction between open wait and wait-for is by the
tcb.wfor field, which is zero for an open receive.

5.2 ShortIPC

The short IPC code is contained kernel/exc.S:k _ipc , which is called by the general exception handler

gen _exc . The code uses a register convention and introduces mnemonic aliases for a number of them, as shown
in Table 5.1 Thetypeindicates whether a register is an input (1), output (O), input and output (I/O) to the system
call or a temporary (T). I/O registers are delivered to the receiver unchangedtctheregister is set up by the
general exception handler prior to invokikgipc , the other temporaries and outputs are set up by tipe

code prior to thaleliver label.

48 5.2 Short IPC

alias standard type usage
sdesc a0 I send descriptor
rdesc al I receive descriptor
timeout a2 I timeout struct for IPC

dthrd ad I/O (intended) destination TID

a3 T various
wfor a5 I wait-for TID
vsend a6 I virtual sender TID

s0-s7 I/O register message

vO O result word

vl O sender TID (may be deceived)
stch t8 T source TCB pointer (+TCBO)
dtcb t9 T (actual) destination TCB pointer

Table 5.1: Register usage and naming convention in IPC code.

5.2.1 Send & receivek_ipc

The k_ipc code is shown in Listing$.1 and5.2. The function contains the code for a complete short IPC
message delivery in the sender’s context. Send-only and receive-only IPC operations use separately optimised
code 6end _only _short ,receive _only , respectively), which get invoked frokiipc if appropriate.

0 bltz sdesc, receive_only

1 tid2tcb(dthrd, dtchb)

2 Id t0, T_MYSELF(dtcb)
3 Id vl, T_MYSELF-TCBO(stch)
4 Iw t3, T_FINE_STATE(dtcb)
5 xor t1, to, vl

6 dsli t1, 4

7 dsrl t1, 53

8 bne t1, zero, to_chief

9 move v0, zero

10 return_to_chiefl:

11 bne t0, dthrd, invalid_dest
12 return_to_chief2:

13 andi t3, t3, FS_WAIT

14 bne sdesc, zero, ipc_long
15 nop

16 beq t3, zero, pending

17 Id t2, T_WFOR(dtch)

18 beq t2, zero, deliver

19 nop

20 bne vl, t2, pending

21 nop

22 deliver:

Listing 5.1: Prologue ok _ipc .

CHAPTER 5. IPC PATH 49

Prologue

Listing 5.1shows the prologue of the IPC code. It performs various validity checks: is the destination TID valid,
is redirection required, is an attempted deceit legal. None of these are relevant for receive-only IPC: redirection
and deception do not apply to receive operations, and receiving from an invalid thread is legal, and is in fact the
way sleeps are implemented in L4. A receive from a non-existent thread is guaranteed to block the caller until the
specified timeout is exhausted.

Line 0 consequently diverts teceive _only if the system call does not request a receive operation, as indicated
by a nil (-1) send descriptor.

Line 1 uses thdid2tcb macro to convert the destination TID into a TCB pointer. That macro uses the con-
catenated task and thread numbers from the TID as an index into the TCB array. Note thigtthe macro
expands into five instructions (none of which access memory). The first of these falls into the branch delay slot of
Line 0. Its result is ignored if the branch is taken.

Lines 2—-3 load the TIDs of source and destination. The source (caller’s) TID was not known before, and the des-
tination TID, although supplied by the caller, cannot be trusted. The caller could be using an incorrect destination
TID (a thread which has not yet been created, or a task with an incorrect version number). Also the code requires
thechief field in the TID, which it cannot trust in a user-supplied TID.

Here it becomes obvious that the sourst&lf) and destinationdtcb) TCB pointers are aligned differently:

The former has been obtained by masking in the least significant bits of the (kernel) stack pointer and points to
the end of the thread’s TCB, while the destination TCB pointer has been obtained from the TID and points to the
beginning of the respective TCB. ConsequenfigBOmust be subtracted from altcb offsets. This approach

saves one cycle in the shortest IPC path.

Note that Line 2 may result in a page fault, if the caller has supplied an invalid TID which was not referenced
before. The kernel page fault handler érc _tlbl , see pag&4) will handle this by establishing a mapping to

the Invalid TCB, which a TID of zero, inconsistent with whatever entry in the TCB array it is mapped to. The
only thread with a task number of zero and a thread number of zero is the idle thread. It is intentionally given an
“inconsistent” TID to make sure it can never be the destination of an IPC operation.

Lines 5-8 check whether source and destination are part of the same clan (by checking whether the chiefs are the
same). If not, the IPC may need to be redirected,tangthief is called to determine the real destination. That
function returns to Line 10 or Line 12.

Line 9 sets up the return value (optimistically) as “successful, undeceived, not redirected, no mappings”. Note
that this line is in the branch delay slot of Line 8. Tioe_chief function modifiesvO as appropriate if it finds
that the IPC is to be redirected.

Line 11 tests whether the caller-supplied destination TID agrees with the one recorded in the TCB corresponding to
the task and thread number in the user-supplied TID. Ifingglid _dest isinvoked, which sets an appropriate

error code in the return value and returnssyacall _ret . As a consequence of what was said for Line 2, the
branch will be taken if the user supplied the TID of a non-existing thread. Line 13 is in the branch delay slot, but
its execution is irrelevant if the branch is taken.

The test in Line 11 is skipped by the _chief function if redirection is required, a® _chief has already
verified a valid receiver.

Line 14 diverts tdpc _long if the send operation includes memory messages, mappings or deceiving.

Lines 4, 13, 16—-20 check whether the message can be delivered without blocking. This requires that the receiver is
in the WAIT state (Line 16) and the wait-for partner is zero (indicating an open receive, Lines 17-18) or equal to
the sender (Line 20). Otherwise the caller must enter the PENDING state, which is donpémtiieg routine.

Thenops in Lines 15, 19, 21 are there to make unfilled branch delay slots obvious, as an aid in cycle-counting.
All other delay slots are utilised. If there are no cache misses, this code executes in 20 cycles (open receive) or 22

50 5.2 Short IPC

cycles (closed receive). Lines 2 and 17 may miss on different cache lines in the destination TCB, and Line 3 may
cause a cache miss in the source TCB.

Delivery

Having made it to Line 22 we now know that we are ready to deliver the message. All registers lisidtkin. 1

are set up (although the valuew@ might still change if something goes wrong). This label is jumped to by some
other parts of the IPC code, once they are ready to do the deligery:long to do the “fast” bit after processing
mappings and memory operations, grehding _restart when a sender becomes unblocked.

Line 23 diverts tosend _only _short if there is no receive part in the IPC, so thend&receiveand pure send
can be optimised independently. The instruction in the branch delay slot is irrelevant if the branch is taken.

The reminder of the function contains the “magic” of L4 IPC. At the very end (line 52) a limited context switch

is performed to the receiver, leaving most of the sender’s general purpose registers unchanged. This is partially
where L4 IPC gets its high performance from: The limited context switch reduces the amount of context that needs
to be saved and restored, and at the same time transfers part of the message (the register ns@ssge in

22 deliver:

23 bltz rdesc, send_only_short

24 ori t0, zero, FS_BUSY

25 sw t0, T_FINE_STATE(dtcb)

26 bne wfor, zero, 1f

27 lui tl, KERNEL_BASE

28 Id t0, T_SNDQ_START-TCBO(stch)
29 beq t0, zero, 1f

30 daddiu sp, sp, -32

31 sd rdesc, 24(sp)

32 sd wfor, 16(sp)

33 sd timeout, 8(sp)

34 dla t0, sender_restart_receiving

35 sd t0, (sp)

36 daddiu t3, stcb, -TCBO

37 ins_busy_list(t3, t1, t0)

38 dli t0, FS_BUSY

39 b 3f

40 1: andi s8, timeout, L4 RCV_EXP_MASK
41 beq s8, zero, 2f

42 dli t0, FS_WAIT

43 li t0, FS_WAIT+FS_WAKEUP

44 daddiu t3, stcb, -TCBO

45 receive_timeout(timeout, t2, t2)

46 ins_wakeup(t2, t3, tl)

47 2. sd rdesc, T _RECV_DESC-TCBO(stch)
48 sw timeout, T_TIMEOUT-TCBO(stcbh)
49 sd wfor, T_WFOR-TCBO(stch)

50 3: sw t0, T_FINE_STATE-TCBO(stch)
51 thread_switch_fast(stcb, dtcb, tl)

52 syscall_ret

Listing 5.2: Delivery part ok _ipc .

CHAPTER 5. IPC PATH 51

The code in Lines 24-51 serves to set up that context switch. The caller/sender must be set up so it will complete
its IPC (by performing the receive part) once it gets to execute again. Part of L4’s context switch protocol (see
to _next _thread , Listing 5.8 is that the top of the kernel stack of a runnable thread which is not currently
executing points to the instruction where execution is to continue.

Lines 24-25 mark the receiver as BUSY, as the IPC will unblock it.

Lines 28—-38 are executed only if the receive part of the caller’s IPC operation (remember, we are doing a send
and a receive operation with the same system call) is an open wait (i.e., we're reatlyply&wait call, but see
further comments below).

The send-queue of the caller's TCB is checked for any pending sends to this thread (Lines 28-29). If there
are any, the receive will be processed the next time the caller is dispatched. This is achieved by pushing the
address obender _restart _receiving as the restart address on the stack (Lines 30, 34-35). This func-
tion will perform the receive part of the IPC. The parameters for the restart function, the receive descriptor,
wait-for TID (zero in this case) and timeout are pushed on the stack as well (Lines 31-33). When called
sender _restart _receiving will simply pop these parameters off the stack and dkive _only .

Note that the timeout is irrelevant in this case: the source thread of the receive part of the IPC was already pending,
SO ho receive timeout can occur. As well, we are in short-only IPC, so no page faults (with associated timeouts)
can occur. However, the restart function is common to all cases and therefore takes a timeout parameter.

In Line 37 the caller is inserted into the busy list by the _busy _list macro (see.isting 7.3. Even though it

is currently executing, it may not have been entered into the busy list, as it may be executing on time slice donated
by the receiver (lazy scheduling). Note that the list insertion macros expect a properly aligned TCB pointer, so it
is adjusted in Line 36 (similarly in Line 44).

The caller is then marked BUSY (Lines 38, 50) and the context switch is performed (Lin€€bhgequently,
the syscall _ret macro at Line 52 returns not to the caller, but to the thread which received the caller’s
message.

If the receive is not an open one we are assumed to beatl #C, send and receive from the same partner. The
receive part of the IPC will necessarily block, until the partner gets to do its send operation to the caller thread
(or a timeout occurs). Note that it is not necessary to stack a continuation address in this case: Once the receive
part of the IPC is performed (as a send operation in the partner’s context) it will, after message delivery, involve a
(fast) context switch back to the caller, who has then nothing more to do than to return from the system call. This
is done by thesyscall _ret macro, which uses the exception stack frame, which is already on the top of the
stack.

Since the partner is (by definition) not yet ready to send, the receive part of the IPC can time out. If a finite receive
timeout is specified, the TCB is added to the wakeup queue (Lines 45-46) so it will be unblocked when the receive
times out. The thread state is set to WAIWAKEUP to indicate that it is blocked but also in the wakeup queue.

The zero timeout case is not handled separately: the thread cannot be dispatched anyway (as we are switching to
the receiver) and processing can be left to the next time the wakeup queue is processed.

Implementation criticism: The code shows that a “zero” timeout really means a timeout of less than the
timeout resolution (1ms).

Implementation criticism: If the receive is not an open one, the code assumes that it is to receive from the
same partner (consistent with L4/ix86 Version 2 specification). However, the L4/MIPS IPC interface allows the
specification of different TIDs for destination and wait-for. The above code should therefore check whether the
wait-for thread’s send is already pending, and threat this like the open receive. The present implementation will
probably block until timeout and then return a failure status if the send is pending. T

Lines 47-49 save the receive descriptor, timeout value and wait-for TID in the caller's TCB prior to switching
context. Note that since the send phase is completed and the receive timeout already taken care of via the wakeup

52 5.2 Short IPC

gueue, the only remaining timeout value of interest at this stage would bedéire page-fault timeoufAs we
are in short IPC, that one is not ever used either.

The fastest path through this code, with an open receam@y&wait semantics) and an infinite timeout, requires
12 cycles, plus the time taken by thlread _switch _fast and thesyscall _ret macros. The fast path
does not cause D-cache misses or pipeline stalls.

5.2.2 Fast context switchthread _switch _fast

The last bit of IPC magic is hidden in thleread _switch _fast macro, defined ifkkernel/macros.h Lt
implements the limited context switch which is at the heart of the fast IPC. It expands into the code shown in
Listing 5.3 (t1 still contains the address kérnel _vars .)

Line 0 saves the caller’s (= sender’s) stack pointer in its TCB. That freep up use as a temporary regista
is also used as a temporary.

Line 1 loads the receiver's ASID value from its TCB. If this is non-negative (Line 3) it is defined (Line 4) as the
new ASID for the MMU to use for matching TLB tags (see page

The current page table is set to the one of the receiver thread (Lines 2, 12) and the stack pointer is set to
the one saved in the receiver's TCB (Line 13) — this is the point where the context switch “really” happens.
kernel _vars.stack _bottom is set appropriately (TCB address plus TCB size, Lines 13-14). This is to
allow unwinding the stack later on.

0 sd sp, T_STACK_POINTER-TCBO(stch)
1 Id sp, T_ASID(dtcb)

2 Id AT, T_GPT_POINTER(dtcb)
3 bgez sp, 255f

4 dmtcO sp, CO_ENTRYHI

5 sd AT, K_GPT_POINTER(t1)

6 Id sp, T_STACK_POINTER(dtcb)
7 daddiu AT, dtcb, TCB_SIZE

8 jal asid_get

9 sd AT, K_STACK_BOTTOM(t1)
10 b 254f

11 nop

12 255: sd AT, K_GPT_POINTER(t1)

13 Id sp, T_STACK_POINTER(dtcb)
14 daddiu AT, dtcb, TCB_SIZE

15 sd AT, K_STACK_BOTTOM(t1)
16 254:

Listing 5.3: Thethread _switch _fast macro.

A negative ASID value implies that the destination thread does not currently have an ASID allocated, and
asid _get is called (Line 8) to obtain one, possibly preempting another task’s ASID. Otherwise the code is
the same as in the case of a valid ASID.

As the stack pointer is now switched to the destination’s kernel stackyizall _ret macro (see pade0) will

use thereceiver'sexception stack frame to restore processor status, including its PC. TherBialinstruction

will thus “return” to the receiver, completing the IPC operation for the receiver, and leaving the sender blocked
until it can perform its own receive operation.

If the receiver thread has an ASID already allocated, the macro executes in 9 cycles, assuming no cache misses.
All delay slots are utilised. Lines 1 and 2 may cause D-cache misses in different lines of the destination TCB.

CHAPTER 5. IPC PATH 53

5.2.3 Discussion

As can be seen from the above, only very minimal context is saved and restored. The sender thread gets restarted
with very few of its registers in tact. Only the receive descriptor, the timeouts and the wait-for id will be restored,

or just enough to perform the receive part of the IPC. $hegisters will be overwritten by the receive anyway,

andvO is implicitly known to be zero, as otherwise no receive would be attempted.

The other point to note is that, while the sender thread is put into the busy list to allow it to be scheduled again,
the context switch to the receiver is actually performed without any schedulding $cheduling 1. The
receiver simply continues in the remainder of the sender’s time slice. This is an instame-sfice donatiorin

L4.

The best-case execution time of the short IPC pegply&wait semantics with infinite timeouts) &5 + 20 +
12 + 9 + 14 = 80 cycles. It was benchmarked at 99 cycles. The difference is most likely due to cache conflict
misses. It should be possible to construe an example which avoids any cache misses (but what would it prove?)

Note that interrupts remain disabled throughout the whole short IPC path.

CHAPTER 5. IPC PATH 55

5.3 Other Short IPC Send Code

5.3.1 Non-blocking sendsend _only _short

This code [isting 5.4 is a simplified version of the delivery part &fipc . The main difference is that it
does not need to check for a sender to match the receive phase of the IPC and that a different restart code,
send _only _short _restart ,isused.

Lines 8-14 mark sender and receiver both as BUSY. (This code is also invoked to finish up long IPC, during which
the sender may have become blocked.)

Line 15 performs the context switch to the receiver and Line 16 returns (to the receiver).

Bug/Restriction 4: Priority inversion in send _only _short .
This unconditional context switch is incorrect. A send-only operation with waiting receiver should, after mes-
sage delivery, continue executing the sender rather than donating the sender’s time slice to the fF¢eeiidr

—

0 daddiu sp, sp , -16

1 dla t0, send_only_short_restart

2 sd t0, (sp)

3 andi t1, vO, L4_IPC_ERROR_MASK
4 beq t1, zero, 1f

5 sd zero, 8(sp)

6 ori t1, v0, L4_IPC_SND_ERR_MASK
7 sd t1, 8(sp)

8 1: dli t0, FS_BUSY

9 S t0, T_FINE_STATE-TCBO(stcb)
10 ori t0, zero, FS_BUSY

11 sw t0, T_FINE_STATE(dtch)

12 daddiu t3, stch, -TCBO

13 lui tl, KERNEL_BASE

14 ins_busy_list(t3, t1, t0)

15 thread_switch_fast(stcb, dtcb, t1)

16 syscall_ret

Listing 5.4: Send-only deliverysend _only _short .

56 5.3 Other Short IPC Send Code

5.3.2 Blocking send:pending

Thepending routine (isting 5.9 is called if the message cannot be delivered right away because the receiver
is not ready for it. It is called fronk _ipc and fromipc _long . Upon entryyv1 contains the senders TID or, in

the case of aeceiving sengdthe virtual sender ID specified by the calleraf. Reordering by the assembler is
enabled in this code.

Lines 0-6 check the send-timeout specified in the syscall. If it is zero the operation is aborted with an error status.

0 andi t2, timeout, L4 SND EXP_MASK
1 dsrl t2, t2, 4

2 beq t2, zero, 1f

3 send_timeout(timeout, t2, s8)

4 bne s8, zero, 1f

5 dli v0, L4 IPC_SETIMEOUT

6 syscall_ret

7 1 bne dthrd, v1, 1f

8 dli vO, L4 IPC_ENOT_EXISTENT
9 syscall_ret

10 1: dli t0, FS_POLL

11 lui tl, KERNEL_BASE

12 daddiu t3, stcb, -TCBO

13 beq t2, zero, 2f

14 l t0, FS_POLL+FS_WAKEUP
15 ins_wakeup(s8, t3, tl1)

16 2: sw t0, T_FINE_STATE-TCBO(stch)
17 ins_sendq_end(t3, dtcb)

18 daddiu sp,sp,-144

19 sd sdesc, 8(sp)

20 sd rdesc, 16(sp)

21 sd timeout, 24(sp)

22 sd dthrd, 32(sp)

23 sd wfor, 40(sp)

24 sd vsend, 48(sp)

25 sd dtcb, 56(sp)

26 sd dtcb, T_COMM_PARTNER-TCBO(stcb)
27 sd s0, 64(sp)

28 sd sl, 72(sp)

29 sd s2, 80(sp)

30 sd s3, 88(sp)

31 sd s4, 96(sp)

32 sd s5, 104(sp)

33 sd s6, 112(sp)

34 sd s7, 120(sp)

35 sd vl, 128(sp)

36 sd v0, 136(sp)

37 dla t0, pending_restart

38 sd t0, (sp)

39 lui t0, KERNEL_BASE

40 to_next_thread(t0)

Listing 5.5: Blocking send codgaending .

CHAPTER 5. IPC PATH 57

IPC with zero timeout effectively polls the communication partner, as it can only succeed it the destination is
already waiting.

Note that Lines 1 and 2 are logically inverted. The above order was probably chosen to prevent the assembler
from inserting anop in the branch delay slot.

Lines 7-9 abort with a status nbn-existent destination or sourf&hich here really means “invalid destination”).

While receives from invalid partners are legal (and used to implement timed sleeps), send operations are only
considered legal if a message can actually be delivered. It is therefore legal to attempt to receive from oneself, but
illegal to attempt to send to oneself. This includes deceiving sends pretending to come from the receiver.

Lines 10-16 insert the thread into the wakeup queue if the send timeout is finite, and set the thread state accord-
ingly (POLL indicating pending send). The sender is inserted into the recesen® queuethe list of pending
send operations.

Bug/Restriction 5: Send queue not prioritised.
The send queue should be in priority order rather than FIFO.

The sender’s state is stacked (Lines 18-36). Temporary registers and inputs are not sagtch Tregister is
not stacked as it can be recomputed from the stack pointer usirighitogp macro. The receiver TCB is also
recorded in theommpartner field of the sender’'s TCB.

In Lines 37—-38 the address pénding _restart is pushed as the restart address. Lines 39—-40 then use the
to _next _thread macro to switch to another thread.

5.3.3 Short IPC send: odds & ends
Unblocking sender: pending _restart
Thepending _restart code (isting 5.6 first restores all the registers stackedd@nding (not shown). The

thread then removes itself from the destination TCB’s send queue (Lines 1-2) and marks itself BUSY (Lines 3-4).
Delivery is then performed by invokindeliver oripc _long _deliver as appropriate.

Implementation criticism: A commentinpending _restart indicates that the code does not properly deal
with the case where the receiver has been killed in the meantime. | think this comment is obsolete.

0 [* pop registers */

1 daddiu t3, stcb, -TCBO

2 rem_sendq(t3, dtcb, t0)

3 dli t0, FS_BUSY

4 S t0, T_FINE_STATE-TCBO(stch)
5 bne sdesc, zero, ipc_long_deliver
6 b deliver

Listing 5.6: Unblocking sendepending _restart

Find redirection target: to _chief

Theto _chief routine is called fronk_ipc (Listing 5.1Line 8) if it was found that the sender and destination
had different chiefs, and redirection was therefore required. The routine is to determine the actual destination of
the IPC message, i.e., the appropriate chief. It is called with the sender’s TiDand the receiver’s TID it .

58 5.3 Other Short IPC Send Code

0 dsli t1, t0, 32

1 Xxor t1, t1, vl

2 dsli t1, t1, 4

3 dsrl t1, t1, 53

4 beq tl, zero, return_to_chiefl
5 dsli t1, vi, 32

6 xor t1, t1, t0

7 dsli t1, t1, 4

8 dsrl t1, t1, 53

9 beq tl, zero, return_to_chiefl
10 move s8, vl

11 beq t0, zero, invalid_dest

12 move 2, vl

13 jal ipc_nchief

14 move vl, tO

15 tid2tcb(v1,dtcb)

16 Iw t3, T_FINE_STATE(dtcb)
17 Xori v0, vO, L4 IPC_SRC_MASK /* invert inner/outer */
18 b return_to_chief2

19 move vl, s8

Listing 5.7: Determining real destinatioto _chief

Lines 0-3 check whether the task of the intended receiver is the sender’s chief (by comparing the task number in
the receiver TID with the chief number in the sender TID). If so, delivery can go ahead to the intended receiver,
and the routine returns (Line 4) to where it was called fromgtern _to _chiefl labelink_ipc). Similarly,

Lines 5-9 return without changing the destination if the sender is the receiver's chief.

At Line 10 we know that proper redirection is required, &nd _nchief is called in Line 13 to determine the
actual destinationipc _nchief is actually an entrypoint inchief , the routine which implements most of the
id _nearest system call [(isting 6.2). It skips the tests which were already donéiipc orto _chief (the
code cannot be shared due to inconsistent register assignmentapseé.).

The ipc _nchief code expects the (intended) destination TIDvih (Line 14) and the sender TID it2
(Line 12). It returns the actual destinatiameg@res} in vl and thedirectionin vO, exactly as théd _nearest
system call. Prior to invocation the sender TID is saves8r(Line 10).

Bug/Restriction 6: a7 not initialised when ipc _nchief is called..
The entry pointipc _nchief also expects the caller to set af to contain the source task number in the
chief position (sed.isting 6.2 Line 14). The invoking code ito _chief does not initialisa7 at all.

Upon return frompc _nchief , k_ipc s register conventions are re-established (Lines 15, 16) to match the new
destination. Line 17 sets up the IPC return codednfor the receiver with the direction (type) field, which for

the receiver is the inverse as for the sender (for whom it was evaluated ipgthechief call). The sender TID

is restored (Line 19) and the code return&tgpc .

Note thatipc _nchief will return outer as type and the caller’'s chief agarestif invoked with an invalid
destination ID. While this makes sense in the context ofdhenearest system call, it does not make sense to
redirect a message destined to an invalid thread to the chief; the IPC is to be aborted in this case. Therefore the
validity of the destination TID is checked prior to the call (Line 11). As the same check is performed by Line 11

of k_ipc after the redirection test, this part@f _chief returns to theeturn _to _chief2 label ofk_ipc ,

skipping the redundant test.

CHAPTER 5. IPC PATH 59

0 move sO, kernel _base

1 move a0, kernel_base

2 jal get_next_thread

3 tcbtop(t0)

4 thread_switch_fast(t0, vO, s0)
5 Id ra, (sp)

6 ir ra

Listing 5.8: Theto _next _thread macro.

Context switch on blocking: to _next _thread

Theto _next _thread macro expands into the code showriiating 5.8

Line 2 invokes the scheduleschedule.c:get _next _thread , in order to select a runnable thread; its TID
is returned inv0. The familiarthread _switch _fast macro is used to perform a minimal context switch. The
new thread is restarted by invoking the restart routine which had been stacked earlier (Lines 34-iB5 of
Listing 5.2 and which is responsible for restoring any required context.

5.3.4 Discussion

The advantage of havirtg _next _thread invoke a restart routine whose address was pushed to the stack prior
to suspension is obvious: it allows reducing the context that needs to be saved and restored to the minimum
required in the particular situation.

5.4 Short IPC Receive

5.4.1 receive _only

Sectionss.2 and5.3 have presented the code for the send side of basic short IPC. The receive code, activated by
sender _restart _receiving after the context switch to the receiver, is contained inrdezive _only

function. This function is also invoked from tleipc if the system call does not contain a send phase (Line 0 of
Listing 5.1).

As pointed out on pagé9, the receive code does not perform any validity checking of the source TID, as an
attempted receive from a non-existing thread is allowed and has a well-defined semantics.

However, there is more, as user-level interrupt handling in L4 is implemented via IPC receive operations from
virtual hardware threads. This makes the receive code more complicated (and worth looking at).

The code ofreceive _only is shown in Listings5.9-5.11 At the time the function is invoked (bly_ipc or
sender _restart _receiving) only the IPC arguments provided by the user atab are set up, all other
registers infable 5.1are undefined.

Lines 0-1 check whether a send operation is already pending for the caller, if so, execution is diverted to
pending _receive _only (Listing 5.12 which will deliver the message if possible, and otherwise return to
Line 2 (if the wait-for partner is not in the queue).

We now know that no IPC message can be delivered immediately. If the receive timeout is finite (Lines 7-8) we go
straight to the epilogue (Line 112) to set up the wakeup and block the caller. If the timeout is infinite (Lines 5-6)
wakeup processing is skipped by jumping to Line 115 in the epilogue.

60 5.4 Short IPC Receive

Interrupt association

At this stage in the receive operation we know that we have a zero timeout, and that the partner is not ready to
receive the message. This would normally imply that the IPC has timed out. However, L4 uses IPC also for
invoking user-level interrupt handlers, and a zero-timeout receive framtemupt threadis used to associate the

caller thread with this interrupt, i.e., register the caller as the interrupt handler. Note that we will not get here as
long as an interrupt message is pending, so (dis)association is only effective when there are no pending interrupts.

The MIPS supports 8 different interrupts, numbered 0-7, each corresponding to a bit in the interrupflrimask
the status register. Of these, interrupts 2—6 are available to user code, the others are used by the kernel itself (e.g.,
timer interrupt).Check!

L4 models these user-visible interrupts as virtual threads, each having a TID and a TCB. The five user-visible
interrupts are mapped to TIDs 1-6.

The code first checks whether the specified TID refers to an interrupt (TID;j8, Lines 9-10), if not, the IPC is
aborted with a timeout (Lines 110-111).

We now know that the caller attempts interrupt association. First, any previous interrupt association of the caller
is removed by zeroing its interrupt mask in the TCB (Line 11), and removing the caller from the list of iterrupt
handlers irkernel _vars (Lines 12-31).

Implementation criticism: Any attempt to associate with an interrupt, whether successful or not will always
remove any previous association. This is in conflict with the reference manidab[]. It is probably better tg
consider the behaviour of the code correct and document it in the manual.

If the destination TID specified by the caller is zero, then interrupt dissociation is all the caller wanted, and the call
returns with a timeout status (Lines 32, 110-111). Otherwise the caller wants to associate with a new interrupt.
This is possible if the interrupt is presently free (unassociated).

Each interrupt is now checked by the same procedure. The wait-for value is decremented, and, if zero, would
refer to user-visible interrupt number 0, which is hardware interrupt number 2 (Lines 33—34). Lines 35—-36 check
whether this interrupt is free, which is indicated by a zero TID having been recordediit@hethread field

of kernel _vars . If not, the operation is aborted with a stahmn-existing partnefLines 108—109).

We now know that the requested interrupt is free and can proceed with associating the caller with it. The interrupt
mask corresponding to hardware interrupt number 2 is recorded in that caller's TCB (Lines 37-38).

Line 39 loads the address of the TCB of the virtual interrupt thread. Note that the coiit@ntTCB BASE
(defined ininclude/kernel/kernel.h) points to the top of the TCB, the bottom of the interrupt stack,
rather than the top of the TCB, which is the reason for masking out the least significant bits in the address.

Lines 40-45 copy the scheduling parameters (priority and time slice length) of the caller to the interrupt TCB. This
allows the kernel to deal with interrupts according to the priorities of their handlers; the virtual interrupt thread

0 Id t0, T_SNDQ_START-TCBO(stch)
1 bne t0, zero, pending_recv_only

2 leave_waiting:

3 dli t0, FS_WAIT

4 lui tl, KERNEL_BASE

5 andi t3, timeout, L4 RCV_EXP_MASK
6 beq t3, zero, 2f

7 receive_timeout(timeout, t3, t9)

8 bne t9, zero, 1f

Listing 5.9: Prologue ofeceive _only .

CHAPTER 5. IPC PATH 61

effectively inherits the handler's scheduling parameters. The caller's TID is recorded as the handler of user-
visible interrupt O (hardware interrupt 2) kernel _vars.intO _thread (Line 46) and the syscall returns
with a timeout status (Lines 47, 110-111).

Lines 48-107 perform the corresponding actions for the other interrupts. Note that specification of a non-existent
interrupt (TID=7) will correctly lead to a timeout abort (Line 107).

9 dsrl t0, wfor, 3
10 bne t0, zero, 3f
11 sd zero, T_INTERRUPT_MASK-TCBO(stch)
12 Id t0, T_MYSELF-TCBO(stch)
13 Id t2, K_INTO_THREAD(t1)
14 bne t2, t0, 5f
15 sd zero, K_INTO_THREAD(t1)
16 b 4f
17 5: Id t2, K_INT1 THREAD(t1)
18 bne t2, t0, 5f
19 sd zero, K_INT1 THREAD(t1)
20 b Af
21 5: Id t2, K_INT2_THREAD(t1)
29 5: Id t2, K_INT4_THREAD(t1)
30 bne t2, t0, 4f
31 sd zero, K_INT4_THREAD(t1)
32 4. beq wfor, zero, 3f
33 daddiu s0, wfor, -1
34 bne s0, zero, 5f
35 Id s1, K_INTO_THREAD(t1)
36 bne sl1, zero, 6f
37 dli t3, ST_IM2
38 sd t3, T_INTERRUPT_MASK-TCBO(stch)
39 dli t2, INTO_TCB_BASE & ((TCB_SIZE-1))
40 Ibu t3, T_TSP-TCBO(stch)
41 sb t3, T_TSP(t2)
42 sb t3, T_CTSP(t2)
43 lhu t3, T_TIMESLICE-TCBO(stch)
44 sh t3, T_TIMESLICE(t2)
45 sh t3, T_REM_TIMESLICE(t2)
46 sd t0, K_INTO_THREAD(t1)
47 b 3f
48 5: daddiu sO, sO, -1
49 bne s0, zero, 5f
106 sd t0, K_INT4_THREAD(t1)
107 b 3f
108 6: dli v0, L4 IPC_ENOT_EXISTENT
109 syscall_ret
110 3: dli v0, L4 _IPC_RETIMEOUT
111 syscall_ret

Listing 5.10: Interrupt association parti&ceive _only .

62 5.4 Short IPC Receive

112 1: li t0, FS_WAIT+FS_WAKEUP

113 daddiu t3, stcb, -TCBO

114 ins_wakeup(t9, t3, t1)

115 2: ld t2, T_INTERRUPT_MASK-TCBO(stch)
116 mfcO t3, CO_STATUS

117 or t3, t3, t2

118 mtcO t3, CO_STATUS

119 sw t0, T_FINE_STATE-TCBO(stch)
120 sd rdesc, T_RECV_DESC-TCBO(stcb)
121 sw timeout, T_TIMEOUT-TCBO(stcb)
122 sd wfor, T_WFOR-TCBO(stch)

123 to_next_thread(tl)

Listing 5.11: Epilogue ofeceive _only .

Epilogue

The epilogue ofeceive _only blocks the caller, as there is no pending message, and performs a context switch.

Line 112 is jumped to by the prologue code if the receive has a finite timeout. The caller’s state is set to
WAIT+WAKEUP (Lines 112, 119), indicating it is blocked for a finite time. The thread is inserted into the
wakeup gqueue according to the timeout value (Lines 113-114). Lines 115-118 perform interrupt acknowledge-
ment as explained below. The receive descriptor, timeout and wait-for TID are stored in the caller’s TCB (Lines
120-122) prior to scheduling a new thread (Line 123).

Remember, all the short IPC code is executed with interrupts disabled. The interrupt mask in the status register
is left unmodified, so when thgyscall _ret macro turns off the interrupt-disable bit in the status word, the
interrupt status will be as before the system call.

An interrupt, once raised, is disabled until it is received its handler. This implies that an IPC receive operation
may change the interrupt mask: When a handler receives an interrupt IPC, that interrupt must be enabled again.

This may have occurred when we reach Line 115. Therefore the interrupt mask stored in the thread’s TCB (zero
for threads not associated with an interrupt) is or-ed to the interrupt mask in the status register (Lines 115-118).
If the caller is an interrupt handler this will enable the corresponding interrupt, in all other cases it has no effect.

5.4.2 pending _receive _only

If the caller of areceive IPC has a non-empty pending listr¢lseive _only code in the prologueSection 5.4.1
diverts topending _receive _only , shown inListing 5.12

Line 0 test for an open wait, if so, the message can be delivered (Lines 6—11). Otherwise we loop through the send
gueue (list of pending sends to this thread) to see if one of them matches the caller's TID (Lines 1-4). If there is
no match, the receive will have to block, and Line 5 returns to Liner2oéive _only .

Implementation criticism: The comment “FIXME: check if wfor interrupt” in the source (between Lings 0
and 1) is no longer relevant and should be removed.

Bug/Restriction 7: Wait-for checks real instead of virtual sender.
Lines 1-2 check the send queue for a sender’s TID matching the receiver’'s wait-for specification. This will
produce incorrect results in the case of deceiving sends. The code should instead check thevderedpster
which contains the sender TID for non-deceiving sends and the virtual sender otherwise.

CHAPTER 5. IPC PATH 63

Lines 6-7 store the deceive descriptor and timeout word in the caller's TCB. These are needed during delivery of
long messages.

A limited context switch is now performed to the sender (Line 9). Remember, all IPC handling is performed in the
sender’s context. The context switch will restart the blocked sender which had, prior to context switching, pushed
the address gpending _restart (Line 37 of pending , Listing 5.5. That function will now be executed

in the sender’s context, restoring as much of the sender’s context as required, in particular the message registers
s0—s7. It will then invoke thedeliver part ofk_ipc (Listing 5.2 or the corresponding long IPC delivery

code, as appropriate. This will switch back to the receiver’s context, thereby delivering the message.

0 beq wfor, zero, 1f

13 Id t1, T_MYSELF(t0)

2 beq t1, wfor, 1f

3 Id t0, T_SNDQ_NEXT(t0)

4 bne t0, zero, 3b

5 i leave_waiting

6 1 sd rdesc, T_RECV_DESC-TCBO(stcb)
7 sw timeout, T_TIMEOUT-TCBO(stcb)
8 lui tl, KERNEL_BASE

9 thread_switch_fast(stch, t0, t1)

10 Id ra, (sp)

11 ir ra

Listing 5.12: Receiver finds sender reaghgnding _receive _only .

5.4.3 Discussion

Abstracting interrupts as virtual threads, which occasionally send messages to their handlers, binds interrupt
handling nicely into L4 IPC, with a minimum of API constructs and little extra kernel code. It also provides an
elegant means of prioritising interrupt processing.

Using zero-timeout receive operations, to change association of handlers with interrupts, moves these operations
off the critical IPC path, as this processing is done only in cases where the IPC would block (and is therefore more
expensive anyway).

Delivery of a pending send involves two limited context switches, the second one taking the message with it. This
is all done in the receiver’s time slice, without any scheduler invocation. This is an instalaay sthedulingn
L4.

5.5 LongIPC

Line 8 of k_ipc (Listing 5.1) branches tapc _long when thesource descriptoof the operation is not empty.
A non-empty source descriptor indicates that the operation is not of the simplest kind, it may involve deceiving,
memory messages or mappings.

Similarly, thepending _restart code, which is (eventually) executed by a receive-only operation, diverts to
ipc _long _deliver if the source descriptor (describing the receive operation) is non-zero.

In both cases, mostly the same code is executeighcaslong _deliver is an entrypoint iripc _long . Most
of the actual long IPC code is in C functioripc _long itself contains mostly the clans&chiefs and deception
code.

64 5.5 Long IPC

0 andi t0, sdesc, L4 IPC_DECEIT_MASK
1 beq t0, zero, 2f

2 tid2tcb(vsend,t0)

3 Id t0, T_MYSELF(t0)

4 beq t0, zero, invalid_dest

5 move t3, vO

6 move s8, vl

7 move 2, vl

8 move vl, vsend

9 jal long_ipc_nchief

10 move a3, vo

11 move t2, s8

12 move vl, dthrd

13 jal long_ipc_nchief

14 xor t0, a3, vO

15 andi t0, t0, L4 _IPC_SRC_MASK
16 beq t0, zero, 3f

17 move vl, vsend

18 ori v0, t3, L4 IPC_DECEIT_MASK
19 b 2f

20 3 move vO, t3

21 move vl, s8

Listing 5.13: Long IPC codepc _long , first part.

5.5.1 Clans & Chiefs and Deceptionipc _long

Lines 0-1 test the deception bit in the source descriptor and continue at Line 22 if the operation is not deceiving.

Hence, we are now looking at a deceiving send operation. We have to check whether the deceit is legal, i.e.,
direction preserving. To this end, the direction of the deceiving operation is compared with that of the operation
would actually be performed. Informally speaking, the deceit is legal if the actual send can form part of a (most
direct) message chain from the virtual sender to the intended receiver. This means that the virtual sender and the
intended receiver must lie at different sides of the actual sender’s clan boundaiysioleand the otheoutside

Lines 2—6 prepare for calls fong _ipc _nchief , another entry point inside thechief . Lines 2—3 load the

real TID of the virtual sender (note that this may cause a page fault on the TCB access). A zero TID (indicating
an Invalid TCB) leads to returning with aron-existing partneresult (Line 4). Lines 5 and 6 save the values of
registersvO andvl, which are used for output bgng _ipc _nchief , in registerd3 ands8, which are not

used by that routine.

In Lines 7-9long _ipc _nchief is invoked with the sender’'s TID as the source and the virtual sender’s TID
as the destination. This will deliver the redirection target of a message sent from the caller to the virtual sender,
which is the opposite direction of what is logically to be tested. This will be taken into account later.

Line 10 saves thgyperesult ina3. Lines 11-13 invokdong _ipc _nchief again, this time with the sender’s
TID as the source and the caller-supplied receiver TID as the destination.

Lines 14-16 compare thdirection bits returned by the two calls. If they differ, the directions (from the actual
sender) to the virtual sender and the intended receiver are the different, and hence the attempted deceit is legal. It
is performed by loading (Line 17) the virtual sender TID into (which will later return the “sender TID” to the
receiver) and turning on theeceitbit in the result word/O (Line 18).

An attempted illegal deceit is ignored, and Lines 20-21 simply restore the previous valeandvl.

CHAPTER 5. IPC PATH 65

Implementation criticism: Note that this logic allows deceiving between an inner task and another task| of the
same clan, but not between an outer task and another task of the same clan. This asymmetry is justified by the
fact that a sibling task can send to the same outer destinations as the caller, and no deceit is necessary to achieve
the communication. Still, this behaviour required by the present L4 specification increases the overhead of
implementing multi-threaded servers.

If the deceit is direction preserving, the sender TID is set to the virtual sender (Line 17) and the deceit flag is set
in the return value (Line 18), otherwise the real source is used and no deceit happens (Lines 20-21).

Lines 22—-27 check whether a send is pending. If notpdreding routine is invoked (sekisting 5.5 is invoked,
which, on restart vigpending _restart , will eventually return tapc _long _deliver (Line 28), which is
exactly where the code continues if there is an appropriate pending send operation.

Lines 29-46 stack all registers whose contents are still needed and also save in the TCB the timeout value, which
may be needed for setting page-fault timeouts. Lines 47-51 set up the arguments to the odting _ipc ,
called at Line 52. The address of the stackaggisters is passed to the functioraip).

After return Lines 53—63 restore registers. Lines 64—-67 merge the result value returned from the C function with
what had been accumulated before. If the result indicates an emod, _only _short is invoked to finish
quickly (ignoring any receive part of the IPC), otherwise kh@c entrypointdeliver is used to finish the

send and process the receive part of the IPC.

22 2: Iw t3, T_FINE_STATE(dtcb)
23 andi t3, t3, FS_WAIT

24 beq t3, zero, pending

25 Id t2, T_WFOR(dtchb)

26 beq t2, zero, ipc_long_deliver
27 bne vl, t2, pending

28 ipc_long_deliver:

29 daddiu sp, sp, -128

30 sd rdesc, (sp)

31 sd timeout, 8(sp)

32 sw timeout, T_TIMEOUT-TCBO(stch)
33 sd dthrd, 16(sp)

46 sd s7, 120(sp)

47 Id al, T_RECV_DESC(dtch)
48 daddiu a2, sp, 64

49 daddiu a3, stch, -TCBO

50 move a4, dtcb

51 move a5, v0

52 jal do_long_ipc

53 move a0, vO

54 Id rdesc, (sp)

61 Id v0, 56(sp)

62 daddiu sp,sp,128

63 tcbtop(stcb)

64 or v0, vO, a0

65 andi t0, a0, L4_IPC_ERROR_MASK
66 beq t0, zero, deliver

67 b send_only_short

Listing 5.14: Long IPCipc _long , second part.

66 5.5 Long IPC

Implementation criticism: This code calls C completely unnecessarily if the IPC is deceiving but otherwise
short (register-only and no mappings). After Line 28 we should retudeliwer if there is no other “long’
IPC operation to perform.

5.5.2 Performing long IPC operations:do _long _ipc

All the remaining IPC code, i.e., processing mappings and memory copies, is in the fushetlong _ipc (in
ipc.c).

Prologue

The prologue is shown ihisting 5.15 The state of the communicating threads is marked as LOCKED, indicating

in the process of performing long IPC. The sender is also marked BUSY (remember, IPC processing is all done
in the sender’s context). The communication partners are recorded in the TCBs so it is possible to find out who is
locking whom.

0 dword_t do_long_ipc(dword_t sdesc,

1 dword_t rdesc,

2 dword_t *sregs,
3 tcb_t *stch,

4 tcb_t *dtcb,

5 dword_t status) {
6 [4_msgdope_t ;

7 dword_t window_addr;

8 r.msgdope = status;

9 window_addr = O;

10

11 stch->fine_state FS_LOCKS | FS_BUSY;

12 dtcb->fine_state FS_LOCKR ;
13 stcb->comm_partner = dtcb;
14 dtcb->comm_partner = stcb;

Listing 5.15: Prologue oflo _long _ipc

The next section of the function is concerned with processing mappings (fpage specifications). The first part of
this, locating the receive fpage, is showrlisting 5.16

Receive fpage

Line 15 tests for the mapping bit in the send descriptor (if it is unset there will be no mappings). We then look for
the receive fpage. This can either specified as part of the receive descriptor, if the map-bit is set in the descriptor
(Lines 19-22). Otherwise, the first word of the message header pointed to by the receive descriptor is expected to
contain the receive fpage.

As the IPC is performed in the sender’s context, the receiver’'s memory, including a potential receive fpage, is not
currently accessible. Unless we want to bear the overhead of copying things twice (which we don’t) we need to
set up a mapping of the receiver’s buffer(s) in some free address-space region.

L4/MIPS uses the supervisor address refi6i8 SEGas theemporary mapping arealhere is a slot in this region
for each thread in the sender’s task, and it can map a 16MB window in the receiver’s address space. Note that long
IPC can block on a page fault, so it is inherently preemptible. Care must be taken that the temporary mappings

CHAPTER 5. IPC PATH 67

15 it (sdesc & L4_IPC_FPAGE_MASK)

16 {

17 dword_t recv_fpage;

18 recv_fpage = 0;

19 if (rdesc & L4 _IPC_FPAGE_MASK)

20 {

21 recv_fpage = rdesc;

22 }

23 else if (rdesc & (“(dword_t)(L4_IPC_FPAGE_MASK|L4 IPC_DECEIT_MASK)))
24 {

25 if (rdesc < USER_ADDR_TOP)

26 {

27 window_addr = RECV_WINDOW_BASE +

28 (((stcb->myself & TID_THREAD_MASK) >> TID_THREAD_SHIFT)
29 * RECV_WINDOW_SIZE) +

30 (rdesc & (4 * 1024 * 1024 - 1 - 7));

31 stch->wdw_map_addr = rdesc & ("(dword_t)(4*1024*1024 -1));

32 recv_fpage = *(dword_t *) window_addr;

33 }

34 }

Listing 5.16: Locating the receive fpagedo _long _ipc .

used in long IPC do not overlap. Mappings from different tasks are no problem as the TLB entries are tagged
with the sender’s ASID. (ASID tags are active even in kernel mode unless a TLB entry has the global-bit set.) But
within a task mapping windows must be kept disjoint, which is why each local thread has its own slot.

Lines 27-29 determine the address of the mapping slot, and Line 30 shifts the receive buffer address (specified
in the receive descriptor) into that slot. The resulting pointéndow _addr , will later be used to access the
receiver’s buffer. The base address of the window in the receiver’'s address space is recomdearegp addr

the sender’'s TCB.

Line 32 reads the receive fpage from the reveiver's address-space window. This will trigger a page fault (called
window faul) which will be handled by translating the address back into the receiver’s address space, looking up
the mapping in the receiver’s page table, translating it into the correct mapping area address, and loading the TLB.
These mappings are truly “temporary” in that they are never entered into any page table — TLB entries for them
are created on-the-fly. For details seewhedow _fault code, Listingst.124.15

Implementation choice: Note that in the case of intra-task messages the temporary mapping area is not neces-
sary. The long IPC code could be optimised to make use of the fact that the sender and receiver buffers are both
directly accessible within the sender’s address space. However, sending memory messages intra-tasklis silly, as
the same effect could be achieved by user-level memory copy operations, without any help from the kernel. It
therefore makes sense not to complicate kernel code in an attempt to optimise a case which should not be used
in the first place.

10bviously, this would be a bit more difficult to manage if the number of threads per task wasn't fixed.

68 5.5 Long IPC

Processing mappings

Next is processing the sender’s fpages, this is showiristing 5.17. The mapping descriptors (2 words each)

are processed in turn by passing thengpd.c:vm _map (in thevmdirectory) which does the actual work. The

eight message registers can hold up to four mapping descriptors, and further descriptors should be located in the
direct string. The operation stops when a descriptor containing a null fpage is encountered.

Bug/Restriction 8: Four fpages only.
The direct string is presently not searched for mapping descriptors, limiting the number of mappings to four.

Bug/Restriction 9: Fpage processing terminated too late.
The vm.map function does not have a return value and therefore cannot indicate whether it has set up the
mapping successfully. This means that mapping processing is not terminated immediately when an invalid
fpage is found (e.g., one specifying an invalid size), which is contrary itd_p9].

35 if (recv_fpage != 0)

36 { int i

37 for (i = 0; i < 4; i++)

38 {

39 if (sregs[i*2+1] != 0)

40 {

41 vm_map(stch, sregs[i*2+1], sregs[i*2],
42 dtcb, recv_fpage);

43 r.md.fpage_received = 1;

44 }

45 else

46 {

47 recv_fpage = 0;

48 break;

49 }

50 }

51

52 if ((sdesc & (“(dword_t)(L4_IPC_FPAGE_MASK]|L4_IPC_DECEIT_MASK)))
53 && (recv_fpage != 0))

54 {

55 /* FIXME: implement fpages from memory */
56 }

57 }

58 }

Listing 5.17: Processing mappingsdo _long _ipc .

Memory messages

Line 59 checks whether there is anything left to do, i.e., whether a send buffer is supplied. The buffer address is
checked to be in the valid user address range (Line 61), the three-word message header is extracted (Line 64) and
checked whether it specifies any direct or indirect strings to be copied (Lines 65—66). If not we are done and can
return, after first flushing any temporary mappings from the TLB.

Implementation criticism: This seems to be purely defensive, as | do not think any harm could come from
leaving them in. Better safe than sorry!

CHAPTER 5. IPC PATH 69

59 if (sdesc & ("(dword_t)(L4_IPC_FPAGE_MASK | L4_IPC_DECEIT_MASK)))
60 {
61 if ((sdesc + sizeof(l4_msghdr_t)) < USER_ADDR_TOP)

62 {

63 4 _msghdr_t *snd_hdr;

64 snd_hdr = (I4_msghdr_t *) (sdesc & ("(dword_t) 7));

65 if (snd_hdr -> snd_dope.md.dwords == 0 &&

66 snd_hdr -> snd_dope.md.strings == 0)

67 {

68 if (window_addr != 0)

69 {

70 tlb_flush_window(window_addr);

71 }

72 return r.msgdope;

73 }

74

75 if (((rdesc & L4 IPC_FPAGE_MASK) == 0) &&

76 (rdesc & (“(dword_t)3)) &&

77 ((rdesc + sizeof(l4_msghdr_t)) < USER_ADDR_TOP))
78 {

79 4 _msghdr_t *rcv_hdr;

80 window_addr = RECV_WINDOW_BASE +

81 (((stcb->myself & TID_THREAD_MASK) >> TID_THREAD_SHIFT)
82 * RECV_WINDOW_SIZE) +

83 (rdesc & (4 * 1024 * 1024 - 1 - 7));

84 stch->wdw_map_addr = rdesc & ("(dword_t)(4*1024*1024 -1));
85 rcv_hdr = (I4_msghdr_t *) window_addr;

86

87 if (((sdesc + sizeof(l4_msghdr_t) +

88 8 * snd_hdr->size_dope.md.dwords +

89 sizeof(l4_strdope_t)*snd_hdr->size_dope.md.strings)
90 >= USER_ADDR_TOP) ||

91 ((rdesc + sizeof(l4_msghdr_t) +

92 8 * rcv_hdr->size_dope.md.dwords +

93 sizeof(14_strdope_t)*rcv_hdr->size_dope.md.strings)
94 >= USER_ADDR_TOP) ||

95 (snd_hdr->snd_dope.md.dwords >

96 snd_hdr->size_dope.md.dwords)

97)

98 {

99 r.msgdope |= L4_IPC_REMSGCUT;

100 tib_flush_window(window_addr);

101 return r.msgdope;

102 }

Listing 5.18: Processing memory messagedanlong _ipc .

The receive descriptor is similarly checked for a valid pointer to the receiver's message buffer (Lines 75—77). The
temporary window is set up for the receiver’s address space as above (Lines 27-31) to make the receive buffer
accessible (Lines 80-84) and the receive message header is extracted (Line 85).

Lines 87-102 check whether one of the buffers extends outside the valid user address range or the sender’s string

70 5.5 Long IPC

dope specifications are nconsistent. If so we return with an error status indicating “message truncated”. Nothing
is copied at all in this case.

Note that the address of the mapping window is always maintained up-to-date in the TCB. This is necessary
to allow the TLB miss handler to inverse the mapping if a TLB miss occurs during access (see Line 8 of
window _fault , Listing 4.19).

Direct strings

We are finally ready to process the direct string (if any), the code is showisting 5.19 If the sender’s string
exceeds the receiver’s buffer we again return with a “truncated message” error status. Otherwise a straight-forward
memory copy is performed, and the actual number of words copied is recorded in the result word.

During the memory copy (Lines 119-122) interrupts are enabled, by cafliag _on (in likern/ints.S)
before andnts _off immediately after. This createspgeemption poinin long IPC, which is necessary as
interrupts could easily be lost in the time it takes to copy 4MB. Note that this is the first point in the IPC path
where interrupts are enabled.

Implementation criticism: The simple copying algorithm is inefficient for long strings, the copy loop should
be unrolled.

103 if (snd_hdr -> snd_dope.md.dwords != 0)

104 {

105 dword_t *sp,*rp;

106 int i

107

108 if (rcv_hdr->size_dope.md.dwords <

109 snd_hdr -> snd_dope.md.dwords)

110 {

111 r.msgdope |= L4_IPC_REMSGCUT,;

112 tib_flush_window(window_addr);

113 return r.msgdope;

114 }

115

116 sp = (dword_t *)((char *) snd_hdr + sizeof(l4_msghdr_t));
117 rp = (dword_t *)((char *) rcv_hdr + sizeof(I4_msghdr_t));
118 ints_on();

119 for (i = 0; i < snd_hdr->snd_dope.md.dwords; i++)
120 {

121 rpli] = spli;

122

123 ints_off();

124 r.md.dwords = snd_hdr->snd_dope.md.dwords;

125 }

Listing 5.19: Processing direct stringsdo _long _ipc .

Indirect strings

After checking that string copying is requested and doing the obvious sanity checking (Lines 126-141) we are
ready to start processing the indirect strings. Pointers are set up to the string dopes in the sender’s and receiver’s
buffers.

CHAPTER 5. IPC PATH 71

126 if (snd_hdr->snd_dope.md.strings != 0)

127 {

128 int i;

129 dword_t direct_map_addr;

130

131 I4_strdope_t *snd_strings, *rcv_strings;

132 if ((snd_hdr->snd_dope.md.strings >

133 snd_hdr->size_dope.md.strings) Il

134 (rev_hdr->size_dope.md.strings <

135 snd_hdr->snd_dope.md.strings)

136)

137 {

138 r.msgdope |= L4 IPC_REMSGCUT;

139 tlb_flush_window(window_addr);

140 return r.msgdope;

141 }

142 snd_strings = (14_strdope_t *)

143 ((char *) snd_hdr + sizeof(l4_msghdr_t) +
144 8 * snd_hdr->size_dope.md.dwords);
145 rcv_strings = (14_strdope_t *)

146 ((char *) rcv_hdr + sizeof(l4_msghdr_t) +
147 8 * rcv_hdr->size_dope.md.dwords);
148 direct_ map_addr = stch->wdw_map_addr;

149 for (i = 0; i < snd_hdr->snd_dope.md.strings; i++)

150 {

151 char *rp, *sp;

152 int j;

153

154 if ((snd_strings[i].snd_size > L4 _MAX_STRING_SIZE) ||
155 (rev_strings[il.rcv_size > L4_MAX_STRING_SIZE) ||
156 (snd_stringsl[i].snd_size>rcv_strings[i].rcv_size)||

157 ((snd_strings]i].snd_str +

158 snd_strings[i].snd_size) >= USER_ADDR_TOP) ||
159 ((rcv_strings|i].rcv_str +

160 rcv_stringsli].rcv_size) >= USER_ADDR_TOP)
161)

162 {

163 r.msgdope |= L4_IPC_REMSGCUT;

164 tlb_flush_window(window_addr);

165 return r.msgdope;

166 }

Listing 5.20: Processing indirect stringsdo _long _ipc , first part.

Line 148 copies the temporary mapping window address from the TCB into a local variable, essentially saving
it on the sender’s kernel stack. This is necessary as it contains the description of the window mapping for the
receiver's message buffer. The receiver’s strings may lie in completely different parts of the receiver’s address
space, and accessing them may result in conflicting mappings.

Lines 149-185 then process the strings one at a time, starting with the usual sanity checks (Lines 158-166).

72 5.5 Long IPC

167 sp = (char *) snd_stringsli].snd_str;

168 rp = (char *) (RECV_WINDOW_BASE +
169 (((stcb->myself & TID_THREAD_ MASK)
170 >> TID_THREAD_SHIFT)

171 * RECV_WINDOW_SIZE) +

172 (rcv_strings[i].rcv_str & (4 * 1024 * 1024 - 1)));
173 j = (int) snd_strings|il.snd_size - 1,

174 stch->wdw_map_addr = rcv_strings[i].rcv_str &
175 ("(dword_t)(4*1024*1024 -1));

176 tib_flush_window(window_addr);

177 ints_on();

178 for (jj >= 0; j--)

179 {

180 rpll = spll;

181 }

182 ints_off();

183 stch->wdw_map_addr = direct_map_addr;
184 tlb_flush_window(window_addr);

185 }

186 r.md.strings = snd_hdr->snd_dope.md.strings;
187 }

188 }

189 else

190 {

191 r.msgdope |= L4_IPC_REMSGCUT,;

192 return r.msgdope;

193 }

194 }

195 else

196 {

197 r.msgdope |= L4_IPC_REMSGCUT,;

198 }

199 }

200 if (window_addr !'= 0)

201 {

202 tlb_flush_window(window_addr);

203}

204 return r.msgdope;

205 }

Listing 5.21: Processing indirect stringsdo _long _ipc , final part.

In Lines 167—-175 the mapping window is set up for the receiver’s string. The TLB must then be flushed of window
mappings for the receiver's message buffer (or for strings mapped in the previous loop iteration), as these may
overlap with the mapping window for the string. The string is then copied, again with interrupts enabled.

Line 183 restores the mapping window address in the TCB to the correct value for the message buffer so that the
next loop iteration can access the receiver’s string dopes.

Line 186 sets the string count in the result word. Note that, while the result word is maintainedsienther’s
context, it will eventually be returned to theceivervia the context switch in thdeliver code. The number of
direct string words and indirect strings copiech@t returned to the caller. The caller already has this information

CHAPTER 5. IPC PATH 73

in its message header.

The rest of the code (Lines 189-205) is cleanup.

Implementation criticism: The byte-wise copy algorithm is highly inefficient. Word-wise copying shoul
used as much as possible, and the loop should be unrolled.

d be

Chapter 6

Other System Calls

No other L4 system call comes close to IPC in terms of complexity, although some display a fair degree of
messiness. They are discussed in this chapter one after the other.

6.1 id _nearest

6.1.1 Introduction

Theid _nearest system call serves two purposes. With a zero argument it returns the caller’s thread ID (alias
myself). Otherwise the argument is the TID of an intended destination threaddametarest returns the

ID of the nearestthread, which would actually receive a message sent to from the caller (source) to the argument
(destination) thread. This allows the caller to determine if redirection (via the clans-and-chiefs mechanism, see
Section 2.1.2age8) takes place. It also allows the determination of the actual sender, if a message has been
received withdeception

The algorithm is based on the fact that tasks form a tree structure, and the task ID contains the nesting depth as
well as the task number of the chief. If the two tasks in question are at the same depth, then comparing their
chief numbers indicates whether they are in sheneclan or not. If they are, thaearestlD is the same as the
destination ID.

If source and destination are not in the same clan, then either one is inside the other’s hierarchy or not. If the
source is deeper down than the destination, the destination is certainoitdideand thenearesttask is the
source’s chief.

If the destination is deeper in the hierarchy than the source, the destination can either be (directly or indirectly)
inside the source’s clan, or can be outside. This can be determined by following the chain of chiefs from the
destination until the (direct or indirect) chief is at the same depth as the source. The two latter tasks may then
share a chief, which means that the destinatians&lethe source’s clan, and threearesttask is the one in the
destination’s hierarchy whose chief is the source. Otherwise the destinatiotside and thenearesttask is the

same as the source’s.

The system call consists of two sections of code: the main syscall entryqy@icalls.S:k _id _nearest
handles thenyself case and invokesyscalls.S:nchief to determine the redirection target. Tinehief
routine also contains internal entry points used by the IPC code.

Register usage for thid _nearest code is summarised iMable 6.1 Registera0 contains the user-supplied
argument value, whilé8 has been loaded with the pointer to the caller's TCB by the general exception handler.

76 6.1id _nearest

register type conf usage
IDN LINC INC

a0 I - - y destination TID

a7 - - I n source aghief inTID

t0 T T T n temporary

t1 T T T n temporary

t2 T I I n source TID

t8 I - - S source TCB pointer (+TCBO)
t9 T - - s destination TCB

vO 0] o @] n direction

vl 0] I/O I/10 y destination/nearest TID

Table 6.1: Register usageith _nearest andnchief code. The columnN, LINC, INCrefer to usage for the

id _nearest ,long _ipc _nchief andipc _nchief |, respectively; “-" indicates that the register is not used.
The conf column indicates conflicts with IPC code: “y” = conflict, “n” = no conflict, “s” = same use. Registers
al-a6,t3 ,s0-s8 are not used, and should be left alone to avoid conflicts with IPC code.

As in all system callskO still contains the base address of the kernel miscellaneous data.

6.1.2 id _nearest

bne a0, zero, 1f
Id vl, T_MYSELF-TCBO(t8)
syscall_ret
1 jal nchief
syscall_ret

A WNPEO

Listing 6.1:id _nearest

Theid _nearest code is shown irListing 6.1 It checks the argument and, if zero, returns the caller’s TID
throughvl (Lines 0-2). Otherwise thechief function is invoked to determine the real destination (Lines 3—4).
A function call is required here aghief is also invoked by IPC code.

Note that themyself variant of the system call executes only two instructions (with all load and branch delay
slots filled). It does not cause TLB misses (the caller's kernel stack has already been touched in the general
exception handler, sagsting 4.3 page28). Hence it is two cycles short of a true “null system call”, which makes

it an obvious operation to benchmark.

Implementation criticism: The myself operation leaves0 undefined, which is supposed to return the
direction(inner, outeror sam@. However, instead of wasting a cycle, the reference mariikal 9] should be
amended to specify0 as undefined in this case.

6.1.3 nchief

The nchief function is shown inListing 6.2 The labelslong _ipc _nchief andipc _nchief are entry
points used by the IPC code (seieting 5.7andListing 5.13. This function implements the algorithm sketched
in Section 6.1.1

The function starts off (Lines 0-3) by loading with the pointer to the caller's TCB2 with the caller’s TID,
t9 with the destination’s TCB pointer, and. with the destination’s real TID (as supposed to the caller-supplied
one, where theest andchief fields cannot be trusted). Line 3 may fault the destination’s TCB into existence.

CHAPTER 6. OTHER SYSTEM CALLS

77

© 0O ~NO OO~ WNREO

NNRPRREPRRRRRR
B O©OoO~NOUNWNERO

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

tcbtop(t8)

Id t2, T_MYSELF-TCBO(t8)

tid2tcb(a0, t9)

Id vl, T_MYSELF(t9)
long_ipc_nchief:

xor t0, vi, t2

dsli to, t0, 4

dsrl t0, t0, 53

beq t0, zero, same_clan

dsli t0, v1, 32

xor to, t0, t2

dsli to, t0, 4

dsrl to, t0, 53

beq t0, zero, outer_clan

dsli a7, t2, 32
1 xor to, vi, a7

dsli to, t0, 4

dsrl to, t0, 53

beq t0, zero, inner_clan

xor t0, vi, t2

dsli t0, t0, 4

dsrl t0, t0, 53

beq t0, zero, inner_clan
ipc_nchief:

dsrl t0, v1, 60

dsrl t1, t2, 60

dsubu t1, tO, t1

blez t1, outer_clan

dli t1, TID_TASK_MASK

dsrl t0, v1, 32

and to, t1, tO

tid2tcb(t0, t1)

b 1b

Id vl, T_MYSELF(t1)
outer_clan:

dli tl, TID_TASK_MASK

dsrl t0, t2, 32

and to, t1, t0

tid2tcb(t0, t1)

dli v0, L4 NC_OUTER_CLAN

ir ra

Id vl, T_MYSELF(t1)
inner_clan;

ir ra

l v0, L4 NC_INNER_CLAN

45 same_clan:

46
a7

jr
li

ra
v0, L4_NC_SAME_CLAN

Listing 6.2: nchief

78 6.1id _nearest

Implementation criticism: Line 0 is redundant as this operation has already been done by the general exception
handler. Line 1 could be done cheaper by using the value loadedliny Line 1 ofListing 6.1

Line 4 is the entry point used by the IPC code when deception is attempstidg 5.13. It verifies that the deceit
is legal (“direction preserving”) by comparing the directiamnr vs. outer) of the deceiving send operation with
that of the operation that would actually be performed. The entry point exfiz¢ttd andvl to be set up
appropriately.

Lines 5-8 compare thehief fields in the source and destination TID. If they match, the directimmeis
returned (Lines 45—47). Note that in this casetiearestthread is the intended destination, which is already in
the result registevl.

Lines 9-13 compare the source TIXhief field with the destination TID'sask field. If they match, the
directionoutermust be returned (Lines 34—41).

Implementation criticism: This case is handled sub-optimally. The code followingdbeer _clan label
(Line 34) constructs the chief TID, which is unnecessary in this case, as the destia#ierchief and can b
returned as thaearesthread. Given that sending to one’s chief occurs frequently this would be worthwihile to
optimise.

The following code checks whether the destination is within the source’s clan. Registeset up to contain the
source’s task number in tlehief position, to match against the destination’s chief in the following loop.

Lines 15-18 match the source’s task number againsthied field in the destination. If successful, the source
is the destination’s chief, and the latteinsidethe source’s clan. Lines 42—44 return the corresponding direction
throughv0, v1 is already set up properly with the destination TIDnasrest

Lines 19-22 test whether source or destination have the same chief. This test is irrelevant during the first iteration
of the loop, as it has already been performed at Lines 5-8. However, during further iterations of the loop this test
will catch the case where the destination’s (indirect) chief is in the same clan as the source, without being inside
the source’s clan. Unlike Lines 5-8, this is not a case of direc#oneg but of directioninner. Thenearesthread

in this case is the destination’s (indirect) chief which is in the same clan as the source.

Lines 24-27 compare the nesting depths of source and destination by subtracting the valupesif tfields in

the TIDs. If the destination’s depth is less than the source’s, the diremtitam must be returned, which is done

by branching to Line 34. Otherwise, Lines 28-33 construct the destination’s chief TID by shiftirfitfe

field into the task number location in the TID, and obtaining the corresponding task ID from its TCB. The result
replaces the destination ID irl . Line 32 branches back to the beginning of the loop.

Theoutercase is handled at Lines 34—41. The sender’s chief’s TCB is located and the TID loadetesréss
ID to be returned to the calle®uteris returned as thdirectionvalue.

Line 23 is the entry point which is used by the short IPC cddstifig 5.7). Note that it is inside the loop, just

before the destination is replaced by its chief. The location of the entry pdifteisall cases have been handled

where the destination is the samenesarest In the context of the IPC code this means that all cases where no
redirection is required are taken care off, and the reminder of the code establishes the actual redirection target.
The cases of no redirection have been checked by the IPC code beforehand, to keep the fastest IPC path as short
as possible.

Bug/Restriction 10: Exiting id _nearest may cause fatal TLB miss..
The implementation ofd _nearest andnchief violates the rule that the TCB must be touched prigr to
executing thesyscall _ret code (isting 4.4) to return to the user. The last VM references prior tojthe
instructions of Lines 40, 43 and 46 o€hief are, in general, to the TCB of theearestthread. Hence a TL
miss is possible isyscall _ret , with disastrous (and difficult-to-reproduce) results. A safe way to fix this
bug is by inserting an instruction such as

sw zero, -8(sp)
between Lines 3 and 4 afisting 6.1

|99)

CHAPTER 6. OTHER SYSTEM CALLS 79

6.2 Ithread _ex _regs

6.2.1 Introduction

Thelthread _ex_regs() system call serves to inquire and modify a local thread’s program counter, stack
pointer, pager and excepter. It creates the target thread and its TCB as necessary. Register usage throughout the
code is summarised ifable 6.2 Registers marked as input (I) or input/output (1/0) are defined at the time the code

is invoked by the general exception handler. Regiseis also defined (with the base addreskearfnel _vars)

at invocation, all others are uninitialised.

register type usage

a0 I lthread number of target thread
al I/O target old/new IP
a2 I/O target old/new SP

a3 I/O target old/new excepter
a4 I/O target old/new pager
ab T kernel base
sO T caller TIDj/target state
sl T target TID
s2 T target TCB base
s3 T buddy TCB basg
s4 T target new IP (copy odl)
s5 T target new SP (copy Gf2)
s6 T target new excepter (copy aB)
s7 T target new pager (copy @#)
s8 T buddy TIDf/thread context change indicator
vO T various temporary
t0 43 T various temporary
t8 I caller TCB pointer (+TCBO)

Table 6.2: Register usage ithread _ex _regs . Entries marked are used during TCB initialisation only.
Registersa6, a7, vl andt9 are not used.

6.2.2 Prologue

The beginning of théthread _ex_regs code is shown irListing 6.3 Lines 0—3 copy the new thread attribute
values fromal—a4 to s4-s7, so the former can be overwritten with the original values. Lines 4-9 construct the
target TID from the caller’'s TID and the local thread number arguma®}.(Line 10 computes the target TCB
base address.

Lines 11-13 check theoarse stateof the TCB. If a valid TCB is found (course state not equal to “invalid”)
execution continues at Line 62. Note that accessing the TCB will cause a page fault if the TCB (and its buddy)
has not been accessed before. That fault is handled by mapping the invalid TCB, see Lines %1st5&)0f.9

6.2.3 Thread creation

If the target TCB is found to be invalid, a proper TCB must be allocated and initialised, as shavgtirig 6.4
Line 14 calls the functiolkmem:tcb _frame _alloc() . This callskmem:k frame _alloc() to allocate a
new frame in the kernel heap and returns its physical addred.ihines 15-20 invokem:vm_tcb _insert

80 6.2lthread _ex _regs

0 move s4, al

1 move s5, a2

2 move s6, a3

3 move s7, a4

4 Id sO, T_MYSELF-TCBO(t8)
5 andi a0, a0, 0177

6 dsll a0, a0, 10

7 dli sl, 7(0177 << 10)

8 and sl, s0, sl

9 or sl, s1, a0

10 tid2tcb(sl, s2)

11 Iw tl, T_COARSE_STATE(s2)
12 andi t0, t1, CS_INVALID_TCB
13 beq t0, zero, 1f

Listing 6.3: Prologue okthread _ex _regs .

passing it the present task’s page table, the TCB base address and its physical address. The function inserts the
TCB mapping into the page table.

Each page in the TCB array holds two TCBs. Lines 21-27 determine the TID and TCB base address for the
destination thread’s buddy. Lines 28-29 determine the stack bases for both threads.

Lines 30-61 initialise the two new TCBs. An exception stack frame containing invalid IP and SP values and an
initial status byte is set up in Lines 30-37. Tih# _tcb macro is used (Lines 38-39) to initialise most fields of

the TCB (with null values). Théine statesre set to “inactive” (Lines 41-43) and the TIDs are initialised (Lines
44-45). The page table pointers, pager TIDs, excepter TIDs and ASIDs are initialised with the caller’s values
(Lines 46-57). Finally, the two new TCBs are inserted intogtesent listoehind the caller (Lines 58-61).

When Line 62 [listing 6.5 is reached we have a valid TCB. Lines 62—64 check whether the thread has already
been activated, if yes, execution continues at Line 71. Otherwise the TCB has just been allocated, or has been al-
located earlier as the buddy of another thread but not yet activated. This is indicated by the fine state of “inactive”.

In this case the thread’s scheduling parameters are initialisetinthsliceandremaining timeslicare both set to

the caller’s timeslice value (Lines 65-67) and thr@rity andcurrent priority are both set to the caller’s priority
(Lines 68-70). This completes the initialisation of the TCB. (The MCP is not initialised as this is a task attribute
and is therefore only used for local thread zero.) All the thread now needs to be able to run is an instruction pointer
and a stack pointer value, both of which are arguments to this system call.

Bug/Restriction 11: ex _regs incorrectly initialises pager and excepter.
The thread’s pager and excepter are initialised from the thread which caused the TCB to be initialised (which

could be the one which started the target thread’s buddy), not necessarily the one which actually activated the
thread.

CHAPTER 6. OTHER SYSTEM CALLS

14 jal tcb_frame_alloc

15 tcbtop(s3)

16 Id a0, T_GPT_POINTER-TCBO(s3)
17 dli t0, “(L4_PAGESIZE-1)

18 and al, s2, t0

19 move a2, vo

20 jal vm_tcb_insert

21 andi t0, s2, TCB_SIZE

22 bne t0, zero, 2f

23 daddiu s3, s2, TCB_SIZE

24 daddiu s8, s1, 1 << 10

25 b 3f

26 2: daddiu s3, s2, -TCB_SIZE

27 daddiu s8, sl1, -(1 << 10)

28 3: daddiu t3, s2, TCB_SIZE

29 daddiu t2, s3, TCB_SIZE

30 dli to, -1

31 sd t0, -8(t3)

32 sd t0, -8(t2)

33 sd t0, -16(t3)

34 sd t0, -16(t2)

35 li t1, INITIAL_THREAD_ST

36 sb t1, -24(t3)

37 sb t1, -24(t2)

38 init_tch(s2)

39 init_tch(s3)

40 tcbtop(t8)

41 li t0, FS_INACTIVE

42 sw t0, T_FINE_STATE(s2)

43 sw t0, T_FINE_STATE(s3)

44 sd sl, T_MYSELF(s2)

45 sd s8, T_MYSELF(s3)

46 Id t0, T_GPT_POINTER-TCBO(t8)
47 sd t0, T_GPT_POINTER(s2)
48 sd t0, T_GPT_POINTER(s3)
49 Id t0, T_PAGER_TID-TCBO(t8)
50 sd t0, T_PAGER_TID(s2)

51 sd t0, T_PAGER_TID(s3)

52 Id t0, T_EXCPT_TID-TCBO(t8)
53 sd t0, T_EXCPT_TID(s2)

54 sd t0, T_EXCPT_TID(s3)

55 Id t0, T_ASID-TCBO(t8)

56 sd t0, T_ASID(s2)

57 sd t0, T_ASID(s3)

58 Id t3, T_PRESENT_NEXT-TCBO(t8)
59 sd t3, T_PRESENT_NEXT(s3)
60 sd s3, T_PRESENT_NEXT(s2)
61 sd s2, T_PRESENT_NEXT-TCBO(t8)

Listing 6.4: Allocation and initialisation of new TCBs.

82

6.2lthread

_ex regs

62
63
64
65
66
67
68
69
70

Iw
andi
beq
Ihu
sh
sh
Ibu
sb
sb

t0, T_FINE_STATE(s2)

t0, t0, FS_INACTIVE

t0, zero, 1f

t0, T_TIMESLICE-TCBO(t8)
t0, T_REM_TIMESLICE(s2)
t0, T_TIMESLICE(s2)

t0, T_TSP-TCBO(t8)

t0, T_CTSP(s2)

t0, T_TSP(s2)

Listing 6.5: Initialisation of new thread’s scheduling parameters.

CHAPTER 6. OTHER SYSTEM CALLS 83

6.2.4 Exchanging register values

71 1: daddiu t3, s2, TCB_SIZE

72 dli t0, -1

73 move s8, zero

74 beq s7, t0, 1f

75 Id a4, T_PAGER_TID(s2)
76 sd s7, T_PAGER_TID(s2)
77 1. beq s6, t0, 1f

78 Id a3, T_EXCPT_TID(s2)
79 sd s6, T_EXCPT_TID(s2)
80 1: beq sb, t0, 1f

81 Id a2, -8(t3)

82 sd s5, -8(t3)

83 move s8, t0

84 1. beq s4, t0, 4f

85 Id al, -16(t3)

86 sd s4, -16(t3)

87 move s8, t0

Listing 6.6: Exchanging thread attribute values.

When Line 71 [isting 6.6 is reached we are ready to do the proper exchange of the thread attributes specified
as parameters to the system call. Lines 71-73 s¢Bups a pointer to the target thread’s kernel sta@k with

the value of -1, indicating amvalid address, and8 to zero, to indicate that the thread’s context has not been
changed yet.

Line 75 loads the present pager value iath, the register used to return this value to the caller, and Lines 74
and 76 set the thread’s pager to the one specified in the system call, if the latter is not invalid. Note that Line 75
is executed in Line 74’s branch delay slot, and thus comes logically before Lines 74. Lines 77-79 perform the
same operation with the excepter, Lines 80—82 with the stack pointer and Lines 84—86 with the instruction pointer.
Lines 83 and 87 sai8 to indicate that the SP or IP were changed.

6.2.5 Cleanup: Terminating pending or running IPCs

88 4: Id t0, T_SNDQ_START(s2)
89 lui a5, KERNEL_BASE

90 beq t0, zero, 3f

91 rem_sendq(t0, s2, t1)

92 dli v0, L4 _IPC_SECANCELED
93 make_busy(t0, vO0)

94 ins_busy_list(t0, a5, t2)

95 b 4b

Listing 6.7: Cancelling pending IPCs.

Lines 88—-95 check whether there are any send operations pending to the target thread. Line 91 removes such a
sender from the doubly-linked pending queue. This is done usingethesendq macro, which is straightfor-

ward and does not need further examination. fitake_busy macro (isting 7.1) is used to make the formerly
pending thread runnable, forcing its IPC completion codSECANCELLERo indicate that the send operation

84 6.2lthread _ex _regs

96 3: lui a5, KERNEL_BASE

97 Iw sO, T_FINE_STATE(s2)

98 andi tl, sO, FS_LOCKS

99 beq t1, zero, 4f

100 Id tl, T_COMM_PARTNER(s2)
101 Iw t2, T_FINE_STATE(t1)

102 andi al, t2, FS_POLL

103 beq al, zero, 5f

104 Id t3, T_COMM_PARTNER(t1)
105 rem_sendq(tl, t3, a2)

106 5: li a2, L4 IPC_REABORTED
107 make_busy(tl, a2)

108 ins_busy_list(tl, a5, t0)

109 sw zero, T_STACKED_FINE_STATE(t1)
110 li a2, L4 IPC_SEABORTED
111 make_busy(s2, a2)

112 ins_busy_list(s2, a5, t0)

113 b 1f

114 4. andi tl, sO, FS_LOCKR

115 beq tl, zero, 4f

Listing 6.8: Target thread state wa®CKS

failed (Lines 92-93). Thins _busy list macro (isting 7.3 is used in Line 94 to insert the thread into the
appropriate scheduling queue and give it a time slice.

When reaching Line 96_(sting 6.8 we know that no sends are pending to the target. What remains to be done is
to examine the target thread’s state (Lines 96-97) for any pending or on-going IPC, which needs to be terminated.

Lines 98-113 deal with the stat®CKS which means that the target is in the middle of a send operation. The
partner state must HEOCKR(pre-empted during long IPC) or blocked on a receive page fault. Lines 100-103
examine the state of the thread’s communication partner (i.e., the thread the target thread is presently sending a
message to). If it i®OLL the partner is presently blocked on an IPC to its pager. Lines 104-105 cancel this page
fault IPC by removing the partner from its pager’s send queue.

Independent of what the partner’s state was, it is now made runnable, and its completion code set to indicate that
the receive part of the IPC was aborted (Lines 106—-108). Line 109 resets the tistaakéd _fine _state

This gets set when a nested IPC call is performed, such as on a page fault during long IB€tifsgd.10. As

theex _regs operation aborts the original IPC, any nested IPC is implicitly terminated too. Resetting the stacked
state is essential as some code (such as thasimg 6.9 uses that thread attribute to check for a nested IPC.

The target thread is then made runnable with a completion code indicating an aborted send operation (Lines
110-113).

Bug/Restriction 12: ex _regs return values trashed if terminating IPC.
Line 102 trashesl, which contains the old instruction pointer that is to be returned to the caller. Lines 105,

106, 110 and 111 trasdil, returning the old stack pointer. Other code up to Line 162 does the same. Registers
a6 anda7 could safely be used.

Lines 114-129 deal with the situation of the target thread state h&d@KR(preempted long IPC receive); the
partner must then be in stat®©CKSor again blocked on a receive page fault. The code is completely analogous
to what has just been discussed, except that the completion codes are reversed.

CHAPTER 6. OTHER SYSTEM CALLS 85

129 b 1f

130 4: Iw t0, T_STACKED_FINE_STATE(s2)
131 andi t1, t0, FS_LOCKS

132 beq t1, zero, 4f

133 Id tl, T_STACKED_COMM_PRTNR(s2)
134 Iw t2, T_FINE_STATE(t1)

135 l a2, L4 IPC_REABORTED

136 make_busy(tl, a2)

137 ins_busy_list(tl, a5, t0)

138 sw zero, T_STACKED_FINE_STATE(t1)
139 andi t0, sO, FS_POLL

140 beq zero, t0, 5f

141 Id t1, T_COMM_PARTNER(s2)

142 rem_sendq(s2, t1, t2)

143 5: li a2, L4 IPC_SEABORTED

144 make_busy(s2, a2)

145 ins_busy_list(s2, a5, t0)

146 b 1f

147 4: andi tl, t0, FS_LOCKR

148 beq t1, zero, 4f

Listing 6.9: Target thread'stackedstate wad OCKS

Alternatively, the target thread may itself be blocked on a page fault during long IPC. This means that the thread is
in the middle of a nested IPC and the state of the primary IPC is saved in the TCBtéieketd _fine _state
If this state isLOCKS the (stacked) partner’s would once morelligCKRor POLL

The handling of this case is shown in Lines 130-146t{ng 6.9. Lines 130—132 determine that the target state is
indeedLOCKS Lines 133-138 make the stacked partner busy with a completion caRIEABORTEDNndicating
that its receive operation was terminated half way through.

Lines 139-142 check whether the target’s own staBQ&L, which indicates it is waiting to send to its pager. If
so, the target from the current partner’s send queue (Lines 143-146). Remember that the case where the present
IPC in progress has been handled above. Hence the present partner’s state remains unaffected.

Lines 143-145 make the target busy with a completion codeE¥BORTEDindicating that its send operation
was terminated half way through.

Bug/Restriction 13: Stacked state not reset if in recursive IPC.
The target’s stacked state should be reset to zero. This omission can lead to misbehaviour ekfuage
operations on the same target.

Note that the above code is very similar to Lines 97-113. The main difference is that here the polling target is
being unblocked, while above it is the partner’s partner.

Lines 147-162 treat the equivalent case of the target’s stacked statd KHIR

At this point any pending sends have been cancelled and any on-going IPC has been aborted. We now need to
check whether the target thread is blocked on a send or receive operation (which hasn’'t commenced yet).

Line 163 test for thaVAIT state, indicating that the target is blocked on a receive operation. If so, it is simply
unblocked with a completion code indicating a cancelled receive (Lines 164-167). Line 169 testsHithe

state, indicating that the target is blocked on a send. If so, it is removed from the recipient’s send-queue (Lines
170-172) and is unblocked with a completion code indicating a cancelled send (Lines 173-175).

Line 177 tests for thtNACTIVE state, meaning that the thread has never been activated before. Line 179 checks

86 6.2lthread _ex _regs

the value ofs8 for an indication of the thread’'s SP or IP having been set by the call (c.f. Lines 83 and 87), in
which case the thread is to be activated. This is done in Lines 180-182.

Implementation criticism: Explicitly setting the completion code (which becomes the target'’s inifialalue)
to zero in Line 180 is presumably to prevent a covert channel. However, the same could be achieved by using
s8, which is known to contain a value of -1, in the macro invocation of Line 181, saving Line 180 (and one

cycle).

Implementation criticism: The source contains a commétitread was waiting” between Lines 178 and 179.
This is obviously a cut-and-paste error. The comment should be removed.

The final test in Line 184 is for thBUSYstate, indicating the target thread was ready to run. Nothing more needs

to be done for this case. Any other state represents a kernel bug and leads to a kernel panic (Lines 185-187). Note
that the only legal state not explicitly testedD¥ ING. This state can only occur while a task is being deleted
(seeListing 6.17, and nolthread _ex _regs call is possible in that case due to the non-preemptability of task
deletion (which should be fixed!)

162 b 1f

163 4: andi t0, sO, FS_WAIT

164 beq zero, t0, 2f

165 dli a0, L4 IPC_RECANCELED
166 make_busy(s2, a0)

167 ins_busy_list(s2, a5, t0)

168 b 1f

169 2: andi t0, sO, FS_POLL

170 beq zero, t0, 2f

171 Id tl, T_COMM_PARTNER(s2)
172 rem_sendq(s2, t1, t2)

173 dli a0, L4_IPC_SECANCELED
174 make_busy(s2, a0)

175 ins_busy_list(s2, a5, t0)

176 b 1f

177 2: andi t0, sO, FS_INACTIVE

178 beq zero, t0, 2f

179 beq s8, zero, 1f

180 move a0, zero

181 make_busy(s2, a0)

182 ins_busy_list(s2, a5, t0)

183 b 1f

184 2: andi t0, sO, FS_BUSY

185 bne zero, t0, 1f

186 dla a0, msg_tcb_state

187 i panic

188 1: syscall_ret

Listing 6.10: Target thread was blocked or ready.

Implementation criticism: None of the code of Lines 88—-187 should be executed if the thread’s IP apd SP

were not changed (in contrast to only checking at Line 170). This would enable a non-destructive check of a
state’s state. Note that this is not a bug, as the implemented behaviour is required by the then L4 specification
(which has since changed).

6.3 task _new

The implementation ofask _new consists of the largest single piece of assembly language code in the kernel
(600 lines of sparsely commented source code, expanding into more than 700 instructions). It is (for historical
reasons) calledreate _thread

Most of this code is only moderately time-critical (evidenced e.g. by many redundant recalculations of caller’s
the TCB address), and should really be written in C. Rather than going through it line-by-line, we list it “as-is”,
including most of the original comments, and only give a rough description. The attentive reader will be able to

follow it easily L. Table 6.3lists register allocations used in the code.

register type usage
a0 /T initial IP for |y of new task/temporary
al /T pager of |, of new task/caller TID
a2 | initial SP value for §, of new task
a3 I task ID
a4 I MCP/new chief of task
ab | excepter of § of new task
a6 T temporary
sO T copy of initiala0 value
sl T temporary/TCB pointer for new task
s2 T copy of initiala4 value
s3 T various temporary
s4 T copy of initialal value
s5 T copy of initiala2 value
s6 T copy of initiala3 value/target TCB adr
s7 T new TID/temporary
s8 T temporary TCP pointer
to T chief pointer/various temporary

t1 43 T various temporary
t8 I caller TCB pointer (+TCBO)
t9 T destination TCB pointer (+TCBO)
v0 T/O various temporary/new task 1D
vl T temporary
ap T copy of initiala5 value

Table 6.3: Register usagetask _create . Registera7, vl are not

The prologue code is shown lristing 6.11 As the comment indicates, the registers containing the system call
argumentsd0—a5) are copied to “callee-saved” register so they will not get lost during later invocations of C
code. Line 7 shows a macro used for tracing kernel code (for kernel debugging).

0 /* put args in save registers so we can call C */
1 move sO, a0

2 move s4, al /* al has pager id */

3 move s5, a2

4 move s6, a3

5 move s2, a4

6 move gp, a5

7 trace(crth)

Listing 6.11:task _new (create _thread) partO.

88 6.3task _new

8 /* first check validity of task */

9 tid2ttable(s6, t0)

10 Iw t1, (t0)

11 l t2, TT_INACTIVE_MASK

12 and t2, t2, t1

13 beq zero, t2, active_task

14

15 the_after_life:

16 /* we have invalid task, check chief okay */
17 li t2, TT_CHIEF_MASK

18 and t3, t2, t1

19 tcbtop(a0)

20 Id al, T_MYSELF-TCBO(a0)

21 beq t3, zero, 1f

22 xor az, t1, al

23 and a2, a2, t2

24 beq a2, zero, 1f

25 /* chief mismatch -> permision denied */
26 move v0, zero

27 b ct_ret

28

29 1: /* chief okay, check pager */

30 bne s4, zero, 1f

31 /* pager invalid, change chief and return */
32 l a3, TID_TASK_MASK

33 and a6, s2, a3 /* a6 has new chief */
34 li a4, "TT_CHIEF_MASK

35 and a5, t1, a4

36 or a5, ab, a6

37 sw a5, (t0) /* new chief stored in task table */
38 dsli v0, a6, 32

39 and vl, s6, a3

40 or v0, vO, vl

41 b ct_ret

Listing 6.12:task _new (create _thread) part 1.

Part 1 is shown irListing 6.12 First we determine whether the target task is preseiveor not. Lines 9-13

do this using the kerneltask ID table(TID table, se€section 3.2.4page2?2). Thetid2ttable macro extracts

the task number from the caller-specified TID and returns the address of the corresponding entry in the TID table.
If the task is found active, we continue at lalaetive _task (Line 182,Listing 6.17 to Kill the task first. If
successful, execution will return to lalibe _after _life here, which deals with inactive tasks.

Lines 17-27 perform the permission check: A task can only be deactivated by its chief, unless the task has never
been assigned a chief (indicated by an inactive task with a zero chief), in which case anyone can claim it. If
the permission check fails, a zero task ID is returned to indicate failure. ¢Thest label only contains the
syscallretacro, see Line 180.)

Lines 30—41 handle the case where a zero pager TID was supplied (by the callg¢rihich means that the task

is left inactive. This operation has the side effect of donating the task to a new chief, specifiedViGBiaew
chief argument (originally ire4). The new chief is recorded in the TID table and the new task ID is constructed
and returned to the user.

Lines 43-48 increment the task version number. The kernel panics if the version number overflowsalithe

CHAPTER 6. OTHER SYSTEM CALLS 89

42 1: /* pager valid, inc version number*/

43 addiu t2, t1, 1

44 andi t3, t2, TT_OVRFLW_MASK

45 beq zero, t3, 1f

46 /* ran out of versions */

47 dla a0, nov_msg

48 i panic

49

50 1: /* mask out invalid bit in t table */

51 li tl, Ox7fffffff

52 and t2, t2, t1

53 sw t2, (t0)

54

55 andi t1, t2, 01777

56 srl to, t2, 10

57 andi t0, t0, 017

58 sll t0, t0, 28

59 or t2, t1, t0 /* new version number in right place */
60 /* combine with task id */

61 dli t0, TID_TASK_MASK

62 and s7, t0, s6

63 or s7, s7, t2 /* s7 has new thread id */
64

65 and s6, al, t0 /* combine with chief */
66 dsli s6, s6, 32

67 or s7, s7, s6

68

69 dsrl s6, al, 60 /* set depth FIXME: > 15 */
70 daddiu s6, s6, 1

71 andi t2, s6, 020

72 beq t2, zero, 1f

73 dla a0, dp_msg

74 j panic

75

76 1. dsll s6, s6, 60

77 or s7, s7, s6

78 /* s7 has new thread id (inc chief and depth) */

Listing 6.13:task _new (create _thread) part 2.

bit in the TID array is turned off (Lines 51-53). The new version humber is extracted from the TID array entry
(and split into the two parts as required by the somewhat bizarre L4/MIPS TID format and inserted into the new
task ID (Lines 55-63). The caller’'s task number is inserted as the chief (Lines 65-67) and the caller's nesting
depth is incremented and inserted to leave the completed new T8D.irAgain, the kernel panics if the depth
overflows. Note that theitefield is undefined in the present L4 specification.

Bug/Restriction 14: Kernel panics on task version or nesting depth overflow.
The kernel should not panic in this case, but return a zero task ID to the user.

a0 6.3task _new

79 tid2tcb(s7, s6) /* s6 has new tcb vaddress */

80 jal tcb_frame_alloc /* alloc a new frame for tcb */

81 tcbtop(t9)

82 ld a0, T_GPT_POINTER-TCBO(t9)

83 move al, s6

84 move a2, vo

85 jal vm_tcb_insert

86

87 daddiu s1, s6, TCB_SIZE /* s1 now contains top of new stack */
88 move s8, sl [* base of second TCB in pair */
89 daddiu t2, s8, TCB_SIZE

90

91 /* now build a stack to switch to */

92 dli to, -1

93 sd s5, -8(sl) [* new thread sp */

94 sd t0, -8(t2)

95 sd s0, -16(sl) /* new thread start address */
96 sd t0, -16(t2)

97 li t1, INITIAL_THREAD_ST

98 sb t1, -24(s1)

99 sb t1, -24(t2)

100 daddiu s1,s1,-24

101

102 /* initialise most tcb vars */

103 init_tcb(s6)

104 init_tch(s8)

105

106 sd s7, T_MYSELF(s6)

107 daddiu t0, s7, 1 << 10

108 sd t0, T_MYSELF(s8)

109

110 /* a4 contains syscall mcp, al will contain creator mcp */
111 tcbtop(t9)

112 Ibu al, T_MCP-TCBO(t9)

113 sub t2, al, s2

114 blez t2, 1f [* if (creator.mcp > call.mcp) */
115 move t2, s2 I* new.mcp = call.mcp */
116 b 2f

117 1: move t2, al [* else new.mcp = creator.mcp */
118 2: sb t2, T_MCP(s6)

Listing 6.14:task _new (create _thread) part 3.

A new TCB frame is allocated and mapped for the destination task (Lines 79-85). Registensit?2 are set

up as the stack pointers for the two TCBs (of the new tagkéld |) in Lines 87—-89. An exception frame (see
Figure 4.) is set up in the two TCBs, with the caller-supplied IP and SP fanld invalid values foril (Lines
92-99), |’s stack pointer is set up isl, and the generic TCB variables (and TIDs) and are initialised (Lines
103-108). The new task’'s MCP is set up as the lesser of caller's MCP and caller-supplied value.

CHAPTER 6. OTHER SYSTEM CALLS 91

119 Ibu t2, T_TSP-TCBO(t9)

120 sb t2, T_CTSP(s6) [* dest.ctsp = src.tsp */
121 sb t2, T_TSP(s6) /* dest.tsp = src.tsp */
122 lhu t2, T_TIMESLICE-TCBO(t9)

123 sh t2, T_TIMESLICE(s6) /* timeslice = creator's */
124 sh t2, T_REM_TIMESLICE(s6) /* rem_timeslice = timeslice */
125

126 /* init the gpt */

127 move a0, s6

128 jal vm_new_as

129 Id v0, T_GPT_POINTER(s6)

130 sd v0, T_GPT_POINTER(s8)

131 sd s4, T_PAGER_TID(s6)

132 sd s4, T_PAGER_TID(s8)

133 sd gp, T_EXCPT_TID(s6)

134 sd gp, T_EXCPT_TID(s8)

135

136 /* allocate an asid */

137 move a0, s7

138 jal asid_alloc /* ASID alloc uses t0, vO, AT, ra */
139 sd v0, T_ASID(s6)

140 sd v0, T_ASID(s8)

141

142 /* add new thread to run queue */

143 sd sl, T_STACK_POINTER(s6)

144 lui a2, KERNEL_BASE

145 ins_busy_list(s6, a2, t0)

146

147 /* init new present list for this task */

148 tcbtop(t9)

149 daddiu s3, t9, -TCBO

150 sd s8, T_PRESENT_NEXT(s6)

151 sd zero, T_PRESENT_NEXT(s8)

152 /* add new task as child of this task,

153 and move current child to sister of new task */
154 tcbtop(t0)

155 Id t0, T_MYSELF-TCBO(t0)

156 dli tl, TID_TASK_MASK

157 and to, tO0, tl1

158 tid2tcb(to, t1)

159 Id t0, T_CHILD_TASK(t1)

160 sd t0, T_SISTER_TASK(s6)

161 sd s6, T_CHILD_TASK(t1)

Listing 6.15:task _new (create _thread) part4.

The scheduling parameters (priority, current priority, time slice and remaining time slice) are initialised from the
caller's TCB (Lines 119-124), while the pager and excepter of the destinatipaisd |, are set to the caller-
supplied values (Lines 131-134). A new page table is set up and recorded in both thread’s TCBs (Lines 127-130).
The functionvm.new_as, which is implemented in assembler, in spite of using the C calling convention, is
explained laterl(isting 6.23.

An ASID is allocated for the new task and recorded in both thread’s TCBs (Lines 137-140). Thiedidked

92 6.3task _new

into the busy list (Lines 143-145). The present list is initialised with the two initial TCBs (Lines 150-151) and
the new task is linked into the child task list of the caller (Lines 154—161). Note that this list is only maintained
once per task, so the code must first find the TCB of the calling tagk’s |

162 /* set running state */

163 li t2, FS_BUSY

164 sw t2, T_FINE_STATE(s6)
165 li t2, FS_INACTIVE

166 sw t2, T_FINE_STATE(s8)
167

168 /* stack state for parent return */
169 daddiu sp, sp, -16

170 dla t0, parent_thread_restart
171 sd s7, 8(sp)

172 sd t0, (sp)

173

174 /* make sure parent is in busy list */
175 ins_busy_list(s3, a2, t0)

176

177 tcbtop(t9)

178 thread_switch_fast(t9, s6, a2)

179 trace(ecrt)

180 ct_ret:

181 1: syscall_ret

Listing 6.16:task _new (create _thread) part5.

The new threads’ fine state is set as appropriate (Lines 164-166). The new task is now ready to run, and is
about to be dispatched. In order to set up the context switch, a restart record, consisting of a restart address
and the return value (new task ID) is pushed onto the caller’s kernel stack (Lines 169-172). The restart routine

parent _thread _restart will simply pop the restart value off the stack and return.

Theins _busy _list macro is used to insert the caller into the busy list (Line 175). Remember, due to lazy
scheduling during IPC it is possible that the caller is executing on a donated time slice not actually in the busy list.
A fast context switch is performed by thieread _switch _fast macro (which leaves registers unchanged) is
performed to the new task’s nd thesyscall _ret macro returns to the new task, which is now alive.

CHAPTER 6. OTHER SYSTEM CALLS 93

182 active_task:

183 /* test if chief */

184 dli t3, TID_TASK_MASK

185 and t1, s6, t3

186 tid2tcb(t1,s1)

187 Id tl, T_MYSELF(s1)

188 tcbtop(a0)

189 Id al, T_MYSELF-TCBO(a0)
190 dsrl t2, t1, 32

191 xor 2, t2, al

192 and t2, t2, t3

193 beq t2, zero, 1f

194 /* not chief, return */

195 move v0, zero

196 b ct_ret

197

198 1. /* chief okay, check if task_new already running */
199 Iw t1, T_FINE_STATE(s1)
200 andi t2, t1, FS_DYING

201 beq t2, zero, 1f

202 /* task already dying */

203 move v0, zero

204 b ct_ret

205

206 1: /* okay lets kill the task */

207 /* mark as dying */

208 li t0, "(FS_BUSY | FS_WAKEUP)
209 and t1, t1, tO

210 ori t1, t1, FS_DYING

211 sw t1, T_FINE_STATE(s1)
212 sd zero, T_MYSELF(s1)

Listing 6.17:task _new (create _thread) part 6.

Part 6 heads the code dealing with killing an existing task. Lines 184—-196 verify that the caller is the chief of
the destination task and thus has the right to kill it. If not, the call returns with a zero TID value. The same
happens if the task is already marked as being killed (Lines 199-204). This could be the result of two user threads
concurrently attempting to kill the task (or its parent).

Now we have established that we can go ahead and kill the task. First its TCB is niarklRi& to prevent
a concurrentask _new call from interfering (although that cannot happen with the present non-preemptable
implementation).

94 6.3task _new

213 /* now null FINE_STATE and MYSELF of threads in task
214 to prevent struggling while killing */

215 Id t1, T_PRESENT NEXT(s1)

216 beq t1, zero, 1f

217 li t2, "(FS_BUSY | FS_WAKEUP)

218 2: Iw t0, T_FINE_STATE(t1)

219 and to, t0, t2

220 ori t0, t0, FS_DYING

221 sw t0, T_FINE_STATE(t1)

222 sd zero, T_MYSELF(t1)

223 Id tl, T_PRESENT_NEXT(t1)

224 bne t1, zero, 2b

225 /* now task and thread are unrunnable and invalid */
226 /* remove non-busy tcb’'s from busy list and

227 non-wake tcbs from wake lists */

228 1: jal process_lists

229

230 /* BEGIN BIG THREAD CLEANUP LOOP */

231 move a0, s1

232 2: Iw t1, T_FINE_STATE(a0) /* remove if polling */
233 andi t1, t1, FS_POLL

234 beq tl, zero, 1f

235 Id t0, T_COMM_PARTNER(a0)

236 /* we are polling */

237 rem_sendq(a0, tO, t1)

238

239 1: /* now break off threads pending for this thread */
240 Id t0, T_SNDQ_START(a0)

241 beq t0, zero, 1f

242 rem_sendq(t0, a0, t1) /* pending thread */

243 [* restart them if they are not dying as well */
244 Iw t3, T_FINE_STATE(tO)

245 andi t3, t3, FS_DYING

246 bne t3, zero, 1b

247 dla t1, pending_recv_killed

248 Id t2, T_STACK_POINTER(t0)

249 sd t1, (t2)

250 li t2, FS_BUSY

251 sw t2, T_FINE_STATE(tO)

252 lui t3, KERNEL_BASE

253 ins_busy_list(t0, t3, t2)

254 b 1b [* do any remaining in queue */

Listing 6.18:task _new (create _thread) part?7.

The destination’s threads are now made non-runnable by setting their SRYéNG. The present list is used to
find all allocated TCBs. The C functigprocess _lists is then called to remove any of these threads (and
possible other blocked ones which were not removed due to lazy scheduling) from the busy lists and wait queues.

Line 232 is the beginning of a large loop, extending up to Line 433, which cleans up the destination’s threads
by traversing the present list. Lines 233-237 check whether the thread is iPSatdNG, in which case it

is removed from the send queue of the intended receiver. Next, any threads blocked on a send to the target
thread are removed and their IPC cancelled by processing the target’'s send queue (Lines 240-242). The threads

CHAPTER 6. OTHER SYSTEM CALLS 95

are then made runnable (unless markedNG) by fixing up their state, replacing their restart procedure by
pending _recv killed ,and insertingthem into the busy list (Lines 244—253). That restart procedure (defined
in exc.S) returns with a status afon-existent destination thread

255 1: /* check if LOCK (in fine state) */

256 Iw t0, T_FINE_STATE(a0)

257 andi t1, t0, FS_LOCKS

258 beq tl, zero, 4f

259

260 Id tl, T_COMM_PARTNER(a0)

261 Iw t2, T_FINE_STATE(t1)

262 andi al, t2, FS_POLL

263 beq al, zero, 5f /* check if parther POLL (rcv pf) */
264

265 Id t3, T_COMM_PARTNER(t1)

266 rem_sendq(tl, t3, a2)

267

268 /* assume partner is LOCKR and make busy if not dying */
269 5: andi al, t2, FS_DYING

270 bne al, zero, 1f

271 li a2, L4 IPC_REABORTED

272 make_busy(tl, a2)

273 lui t3, KERNEL_BASE

274 ins_busy_list(tl, t3, t2)

275 sw zero, T_STACKED_FINE_STATE(t1)
276 b 1f

299 4: /* test stacked state */

300 Iw t0, T_STACKED_FINE_STATE(a0)
301 andi t1, t0, FS_LOCKS

315 4: andi t1, t0, FS_LOCKR

316 beq t1, zero, 1f

317

318 Id tl, T_STACKED_COMM_PRTNR(a0)
319 Iw t2, T_FINE_STATE(t1)

320 andi al, t2, FS_DYING

321 bne al, zero, 1f

322 l a2, L4_IPC_SEABORTED

323 make_busy(tl, a2)

324 lui t3, KERNEL_BASE

325 ins_busy_list(t1, t3, t2)

326 sw zero, T_STACKED_FINE_STATE(t1)
327

328 1: Id a0, T_PRESENT_NEXT(a0)

329 bne a0, zero, 2b

330 /* END BIG THREAD CLEANUP LOOP */

Listing 6.19:task _new (create _thread) part 8.

Next the target thread’s state is checked for the vAIOEKS, which indicates that it is preempted during long
IPC. Processing of this condition (Lines 256—276) is almost identical to the corresponding IPC abort processing
during thelthread _ex_regs system call (setisting 6.8. The only differences are an additional check for

96 6.3task _new

DYINGin the partner's state. As ilthread _ex _regs the corresponding processing is then performed for the
target thread stateOCKR(not shown).

The case of the thread being blocked on a page fault during long IPC, indicatestégkadstate ofLOCKSor
LOCKRthe latter case is shown in Lines 315-326. Again, the handling is equivalent tolthatad _ex _regs
(Listing 6.9, except that the case needs to be considered when the taRéiNs, and that fixing up the target
state is not necessary. Lines 328, 329 terminate the loop over the destination task’s threads.

331 /* now clean up task specific stuff */

332

333 /* unmap gpt */

334 move a0, sl

335 dli al, 63 << 2

336 dli a2, -1

337 jal vm_fpage_unmap

338

339 move a0, sl

340 jal vm_delete_as

341

342 /* flush asid from tlb (remove window mappings) */
343 Id a0, T_ASID(s1)

344 bltz ao, 7f

345 jal tlb_flush_asid

346

347 /* don't need to flush the STLB as

348 - user pages are removed via the fpage_unmap
349 - window pages are never placed in the STLB
350

351 Id a0, T_ASID(s1)

352 jal asid_free

Listing 6.20:task _new (create _thread) part9.

Listing 6.20shows the cleanup of the task resources. Lines 334-337 call the C funntifpage _unmap to
unmap (actually, flush) the whole address space. As this function is essentially the samfpagehainmap
system call, it is not discussed here. Seetion 6.6or details.

The functionvm.delete _as is then called to deallocate the page table. This is because unmapping only inval-
idates page table (and TLB) entries, without removing the entries from the page table, to speed up re-insertion.
Nexttlb _flush _asid is called, which probes all TLB entries and invalidates them if they match the specified
ASID (the destination task’s). This is necessarywésdow mappingsused in the temporary mapping area in

long IPC, are not entered into a page table, and are therefore not removed by the previous functions. Finally, the
destination’s ASID is inserted into the free ASID list.

CHAPTER 6. OTHER SYSTEM CALLS 97

353 /* remove from current process hierarchy */
354 7: tcbtop(t0)

355 Id tl, T_SISTER_TASK(sl)

356 sd tl, T_CHILD_TASK-TCBO(t0)

357 /**

358 * loop through children nailing them

359 */

360 #define start sl

361 #define x s7

362 move X, start

363 1: bne X, start, 2f

364 Id t0, T_CHILD_TASK(x)
365 beq t0, zero, 3f

366

367 2: Id t0, T_CHILD_TASK(x)
368 beq t0, zero, 4f

369 move X, t0

370 b 2b

371

372 4: Id t0, T_MYSELF(x)

373 dsrl t0, t0, 32

374 dli tl, TID_TASK_MASK
375 and t0, tO, t1

376 tid2tcb(t0, s8) /* s8 now has parent */
377 Id t1, T_SISTER_TASK(x)
378 sd tl, T_CHILD_TASK(s8)

Listing 6.21:task _new (create _thread) part 10.

Now the children of the destination task must be killed and cleaned up. Since it is necessary to clean up all
TCBs belonging to those tasks, and since the task hierarchy is represented by the TCéhfigldstask and

sister _task , the cleanup must start at the leafes of the task tree. The algorithm is for depth-first processing
the task hierarchy is given as C code in comments, it is here extracted for clarity:

X = start; /I Line 362
while (x != start || x->child != 0) { Il Lines 363--365
while (x->child = 0) { /I Lines 367--368

X = x->child; /I Line 369

} Il Line 370
x->parent->child = x->sister; /I Lines 372--378
cleanup(x); /I Lines 331--430

X = X->parent; /I Line 432

} Il Line 433

Note that the TCB contains no explicit parent pointer, so the chief field in the task ID is used to retrieve the parent
in Lines 372-378.

98 6.3task _new

414 7. /* set new chief to initial killer in process hierarchy */
415 tid2ttable(s3, t0)

416 Iw t1, (t0)

417 tcbtop(a0)

418 Id al, T_MYSELF-TCBO(a0)

419 li t2, "TT_CHIEF_MASK

420 and t1, t2, t1

421 li t2, TT_INACTIVE_MASK

422 or t1, t2, tl

423 li t2, TID_TASK_MASK

424 and al, al, t2

425 or t1, ai, t1

426 sw t1, (t0)

427

428 Id a0, T_GPT_POINTER-TCBO(a0)
429 move al, x

430 jal vm_tcb_unmap

431

432 move X, S8

433 b 1b

434 3: /* END WHILE */

435 /***/
436

437 tcbtop(t0)

438 Id a0, T_GPT_POINTER-TCBO(t0)
439 move al, si

440 jal vm_tcb_unmap

441 tid2ttable(s6, t0)

442 Iw t1, (t0)

443 li t2, TT_INACTIVE_MASK

444 or t1, t2, t1

445 sw t1, (t0)

446 j the_after_life

Listing 6.22:task _new (create _thread) final part.

Most of the cleanup code is identical to the cleanup of the original target task’s threads. It is simplified by the fact
that, after killing the parent, none of the threads can be in communication with a thread surviving the slaughter, a
consequence of the clans and chiefs mechanism. Also, the child address spaces do not need to be unmapped, as
they can only have received any mapping they have via their parent (directly or indirectly) — also a consequence

of clans and chiefs. This task cleanup code is not shown.

The remaining cleanup is shown linsting 6.22 Lines 415-426 update the task’s TID table entry, showing the
caller as the new chief, and setting the i-bit to show that the task is inactive.

Finally, vm.tcb _unmap is called to finish up cleaning up all remaining task memdaXME: Need to have a
good look at what this code really does, and what vm.delete _as does.

Outside the loop the cleanup of the target task is completed by calfimtch _unmap and by marking its
TID table entry as inactive (Lines 437-445). Execution then continues with the task creation part (label
the _after _life , Listing 6.12).

Do vm.new_as.

CHAPTER 6. OTHER SYSTEM CALLS 99

Listing 6.23:vm.new_as.

Discussion

task _new() , specifically deleting a task, is the most expensive operation in L4, as can be appreciated from the
above discussion. The potentially costliest part, however, hasn’t even been discussed yet, it is the unmapping of
the address space, which will be discusse&dttion 6.6 The total time taken for task deletion is essentially
unbounded due to the potentially very complex patterns of address-space mappings. A real-time system built on
top of L4 would need to understand this, and use tasks and mappings wisely.

Implementation criticism: All the task _new code is run with interrupts disabled and is thus non preemptable.
While this is ok for pure task creation, it is unacceptable for task deletion. This should be obvious from the
discussion of the above code, even without a detailed look at the (potentially very time-consuming) unmapping
code. This clearly needs fixing. At the very least, preemption points should be introduced into the unmap code,
although that is probably not enough to make real-time guarantees.

Preemption in task deletion will require reconsideration ofltheead _ex_regs code, sed.isting 6.2.50n
pageso6.

CHAPTER 6. OTHER SYSTEM CALLS 101

6.4 thread _schedule

Listing 6.24:thread _schedule

6.5 thread _switch

Thethread _switch system call performs an explicit time-slice donation to a designated target thread. With a
null argument it performs gield operation, i.e., the remainder of the present time slice is forfeit and the scheduler
is invoked to pick a new thread to run.

register type usage
a0 I target TID
t0 —t3 T various temporary
t8 I caller TCB pointer (+TCBO)

Table 6.4: Register usagetinread _switch . No other registers are used (other than sp).

This is, by far, the simplest system call. Its register usage is showaile 6.4 the code is shown ihisting 6.25

0 daddiu t1, t8, -TCBO

1 daddiu sp, sp , -8

2 dla t0, k_thread_switch_restart
3 sd t0, (sp)

4 lui t2, KERNEL_BASE

5 ins_busy_list(t1,t2,t3)

6 beq a0, zero, 1f

7 tid2tcb(a0, al)

8 Iw t0, T_FINE_STATE(al)
9 andi t0, t0, FS_BUSY

10 beq t0, zero, 1f

11 thread_switch_fast(t8, al, t2)

12 Id ra,(sp)

13 ir ra

14 1: to_next_thread(t2)

Listing 6.25:thread _switch

Line 0 adjusts the TCB pointer to point to the beginning of the target TCB, as requirgt hyusy _list
Lines 1-3 push the restart address on the stack. Lines 4 and 5 iimokéusy _list to ensure that the caller
is in the busy list (it might have been executing on a donated time slice since being unblocked).

Lines 6-13 perform the switch to the designated target thread (if any). Lines 8-10 verify that the destination
is ready. If so, dast thread switct{seeSection 5.2.2is performed to the target. Remember that this leaves all
registers as they are. The destination’s restart routine, which is invoked at Lines 12—13, is responsible for restoring
the destination’s context and returning to the user.

In the case of a yield operation (user-supplied destination TID is invalid, or the destination not ready to run),
Line 14 invokes the scheduler via ttee _next _thread macro (isting 5.9.

102 6.6fpage _unmap

The restart code for the donating thread is correspondingly trivial: It pops its own address off the stack and invokes
syscall _ret . No user-level register context needs to be restored.

Implementation criticism: It could be argued that not restoring (or clearing) registers opens a covert channel.
This would be trivial to close, of course, at the expense of a few cycles.

6.6 fpage _unmap

Chapter 7

Other Stuff (Provisional)

7.1 Scheduling

Discuss wakeup queue structure.

Blah blah blah...

7.1.1 make_busy

The macranake_busy is used to restart a thread blocked on an IPC which is being terminated due to the partner
being killed (or exreg-ed). It is only used within theask _new andlthread _ex_regs system calls and is

inevitably followed by an invocation of thes _busy _list macro.

The code is shown ihisting 7.1 Thetcb parameter is a (R/O) register pointing to the target thread’s TCB. The
return _code parameter is an input register which contains the error code which is to be returned from the IPC

system call which the target is presently performing.

0 daddiu AT, tch, TCB_SIZE + ST _EX VO
1 sd return_code, (AT)
2 daddiu AT, tcb, TCB_SIZE - ST_EX_SIZE -8
3 sd AT, T_STACK_POINTER(tcb)
4 dla return_code, preempt_ret
5 sd return_code, (AT)
6 li AT, FS_BUSY
7 swW AT, T_FINE_STATE(tcb)
Listing 7.1: The code generated by the macro invocatiafke_busy(tcb, return _code) .

Lines 0 and 1 overwrite the stacked value/@fwith the specified return code. This will forother _excpt
to return to the user with the specified return code.

_ret

104 7.1 Scheduling

Bug/Restriction 15: Terminating nested IPC trashes/0.
This way of forcing the system call to return an error code is incorrect. If the operation terminated is a page-fault
or exception IPC (which is performed by the kernel, transparently to the usé&geséen 4.2 ¥all user-visible
registers must be conserved, includw®@. The present implementation overwrites the user threa@l'svith
the IPC error code.

The return code should go into the page-fault/exception IPC stack frame rather then original kernel stack frame.
One way to do this is not to staal), but to store it in a fixed location in the TCB. Only on a nested |IPC
(Listing 4.9 would the previously saved value be stacked. Trteke_busy macro would then overwrite the
v0 value saved at the fixed TCB location, which would have the desired effect for user-initiated IPCs while
conserving the user state for kernel-initiated IPCs.

Lines 2 and 3 unwinds the stack to the original exception stack (discarding any frames belonging to nested IPCs).
The restart address is setgeempt _ret (Lines 4, 5), and finally the thread is markBdSY(Lines 6, 7).

0 daddiu sp, sp, 8
1 i other_excpt_ret

Listing 7.2: Thepreempt _ret routine.

Thepreempt _ret routine is trivial: It pops the restart address off the stack and jumps to the general exception
return codeother _excpt _ret (Listing 7.2).

Implementation criticism: Rather than performing another jump, and polluting the instruction cache, Line 0O
of Listing 7.2should be prepended to the codenttier _excpt _ret .

7.1.2 ins _busy _list

Theins _busy _list macro is invoked to insert a thread into the busy list at the correct priority. This is generally
necessary when a thread has been created or has become unblocked (usually via amekelibiisy). It is

also required during message delivery (kexing 5.2, or during preemption, when a thread may be running on

a donated time slice (lazy scheduling). The macro also is invoked if a thread’s scheduling parameters change, as
happens during thread _schedule system call $ection 6.4.

The code is shown inisting 7.3 Thetcb parameter is a (R/O) register pointing to the (beginning of the)
target thread’s TCB. Thkern _base input register points to the kernel miscellaneous data, whilé&timg _reg
parameter designates a scratch register.

Lines 0-1 test thbusy _link to see whether the thread is already in the busy list (although not necessarily at the
correct priority). If so execution continues at Line 16.

Otherwise, the thread’s timeslice value is obtained from the TCB (Line 2). Ifitis zero, the thread is not schedulable
(Line 3). Lines 4-8 use the thread’s priority val(&;B.tsp , to locate the appropriate ready queue, and make

it point at the target TCB. Each of the per-priority queues is circular. Hence, if the queue was previously empty,
the TCB is linked to itself (Lines 9—11). Otherwise the target TCB is linked into the existing list, behind the TCB
previously pointed to by the busy-list pointer, which is then redirected to point to the target TCB (Lines 13-15).
This inserts the TCB at the tail of the list (remember that the busy list array points to the tails of the lists).

The “remaining time slice” and “current priority” values of the target thread are then reset to the thread'’s “normal”
time slice length and priority; they might have changed if the thread was preempted while executing on a donated
time slice. This ensures that the thread gets a new time slice next time it is scheduled.

CHAPTER 7. OTHER STUFF (PROVISIONAL) 105

0 Id AT, T_BUSY_LINK(tcb)
1 bne AT, zero, 254f
2 lhu AT, T_TIMESLICE(tcb)
3 beq AT, zero, 255f
4 lbu temp_reg, T_TSP(tcb)
5 sl temp_reg, 3
6 daddu temp_reg, temp_reg, kern_base
7 Id AT, K_PRIO_BUSY_LIST(temp_reg)
8 sd tcb, K_PRIO_BUSY_LIST(temp_req)
9 bne AT, zero, 253f
10 sd tcb, T_BUSY_LINK(tcb)
11 b 254f
12 nop
13 253: Id temp_reg, T_BUSY_LINK(AT)
14 sd temp_reg, T_BUSY_LINK(tcb)
15 sd tcb, T_BUSY_LINK(AT)
16 254: lhu temp_reg, T_TIMESLICE(tcb)
17 sh temp_reg, T_REM_TIMESLICE(tcb)
18 Ibu temp_reg, T_TSP(tcb)
19 sb temp_reg, T_CTSP(tcb)
20 255:
Listing 7.3: The code generated by the macro invocdtien_busy _list(tch, kern _base, temp _reg) .

7.1.3 get _next _thread
The scheduler is thget _next _thread routine, which selects the next runnable thread, based on priority and
the round-robin policy. It is shown ihisting 7.4

The code first checks whether there is a thread which was preempted by an interrupt, if so, this one is chosen
(Lines 3—7). Otherwise it examines the busy list in decreasing priority order, skipping empty lists. ABJJ®8W-

entries at the head of the list are removed from the list (Lines 13-18). A whole list may become empty this way,
in which case it is marked as such by inserting a null pointer (Lines 19-23). Finally, the threadhaatiof the

first non-empty list is returned as the next one to run. Note that this is the successor of the one pointed to by the
busy-list array (which points to the tail). It becomes the new tail (Line 26).

The existence of the idle thread guarantees that there is always a runnable thread to choose.

7.2 Interrupts
7.3 Initialisation

7.4 Sigma Zero

106

7.4 Sigma Zero

© oo ~NO O~ wW NEFE O

NNNNRONNNNNRRREBRRRRRR
NO U R WNRFPLOO®O®NO®OUNWNERO

28 }

tcb_t *get_next_thread(kernel_vars *k) {

tch_t *t1,*t2;
short int i;

if (k->int_list '= END_LIST) {
t2 = k->int_list;
k->int_list = t2->int_link;
return t2;
}
fori = MAX_PRIORITY; i >= 0; i-) {
tl = k->prio_busy_list[i];
if 11 == 0)
continue;
t2 = t1->busy_link;
while((t2 = (tcb_t *)0) &&
((t2->fine_state & FS_BUSY) == 0)) {
t1->busy_link = t2->busy_link;
t2->busy_link = 0;
t2 = t1->busy_link;
}
if (12 == 0)
{
k->prio_busy_list[i] = O;
continue;

}

break;

}
k->prio_busy_list[i] = t2;
return t2;

Listing 7.4: The scheduler functiayet _next

_thread

Bibliography

[AHO8]

[EHL99]

[Elp99a]

[EIp99b]

[Heio3]
[HEV+98]

[HHL+97]

[KH92]

[L4M99]

[LE95]

[Lie93]

[Lie95]

[Lie96a]

[Lie96b]

Alan Au and Gernot Heiset.4 User Manual School of Computer Science and Engineering, Univer-
sity of NSW, Sydney 2052, Australia, January 1998. UNSW-CSE-TR-9801. Latest version available
from http://www.cse.unsw.edu.au/"disy/L4/ .5

Kevin Elphinstone, Gernot Heiser, and Jochen LiedtikeReference Manual — MIPS R4x00, Version
1.11, Kernel Version 7.9School of Computer Science and Engineering, University of NSW, Sydney
2052, Australia, May 1999. Available frommitp://www.cse.unsw.edu.au/"disy/L4/

3,5,60,68 76

Kevin Elphinstone. Scheduling stuff. Working paper. Saw Mill Linux Project, IBM TJ Watson
Research Lab, October 19985

Kevin ElphinstoneVirtual Memory in a 64-bit MicrokernelPhD thesis, School of Computer Science
and Engineering, University of NSW, Sydney 2052, Australia, March 1999. Availablefitgm
[Iwww.cse.unsw.edu.au/"disy/papers/ . 23,45

Joseph HeinrichMIPS R4000 User’'s ManuaPrentice Hall, 1993.10

Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen Liedtke. The Mungi
single-address-space operating systeBoftware: Practice and Experienc@8(9):901-928, July
1998. 1

Hermann Hrtig, Michael Hohmuth, Jochen Liedtke, Sebastiand®Bbtlerg, and Jean Wolter. The per-
formance ofu-kernel-based systems. Rroceedings of the 16th ACM Symposium on OS Principles
(SOSP)pages 6677, St. Malo, France, October 1997. ACM.

Gerry Kane and Joe HeinricMIPS RISC ArchitecturePrentice Hall, 1992.1

L4/MIPS source code, kernel version 79. Available fraitp://www.cse.unsw.edu.au/
“disy/L4/ , February 1999.1

Jochen Liedtke and Kevin Elphinstone. Guarded page tables on MIPS R4600 or an exercise in
architecture-dependent micro optimization. Technical Report UNSW-CSE-TR-9503, School of Com-
puter Science and Engineering, University of NSW, Sydney 2052, Australia, November 2995.

Jochen Liedtke. Improving IPC by kernel design Pimceedings of the 14th ACM Symposium on OS
Principles (SOSR)ages 175-88, Asheville, NC, USA, December 199353

Jochen Liedtke. Onu-kernel construction. IProceedings of the 15th ACM Symposium on OS
Principles (SOSR)pages 237-250, Copper Mountain, CO, USA, December 1995.

Jochen Liedtke. L4 Reference Manual — 486/Pentium/PentiumPro, Version Z2MD, Schlof3
Birlighofen, Germany, September 1996. Working Paper 1021/

Jochen Liedtke. Towards real microkerne@@ommunications of the ACN89(9):70-77, September
1996. 5

http://www.cse.unsw.edu.au/~disy/L4/
http://www.cse.unsw.edu.au/~disy/L4/
http://www.cse.unsw.edu.au/~disy/papers/
http://www.cse.unsw.edu.au/~disy/papers/
http://www.cse.unsw.edu.au/~disy/L4/
http://www.cse.unsw.edu.au/~disy/L4/

108 BIBLIOGRAPHY

[Lio77] John Lions. A commentary on the UNIX operating system. Technical report, Department of Computer
Science, The University of New South Wales, Sydney, Australia, November 1877.

[Lio96] John Lions.Lions’ Commentary on UNIX 6th Edition with Source Coéeer-to-Peer Communica-
tions, P.O. Box 640218, San Jose, CA 95164-0218, USA, 1996.

[R4695] Integrated Device TechnologylDT79R4600 and IDT79R4700 RISC Processor Hardware User’s
Manual April 1995. 1

Index

address spacé, 13, 39, 41, 42, 66, 67, 69, 71
ASID, 12, 12, 19, 20, 22-24, 27, 39, 52, 67
asid _get ,52

BUSY, 21, 94, 95
busy list,20, 51, 53, 94
busylink, 20, 94

capability,6

chief,6, 8,9, 49,57, 63, 75

clan,8, 21, 49, 63, 65, 75

coarse state/9

commpartner , 21,57, 66

context switch,/, 31, 41, 42, 47, 51, 52, 53, 55, 59,
62,63 72

coprocessosee als@xception, coprocessdr}, 30,
35,45

register,12, 15, 17, 24, 27, 28, 30, 39, 40, 44,

45

CPO0,11, 15, 17, 24, 27, 28, 30, 39, 44

create _thread ,seetask _new

deceiving IPCseelPC, deceiving

deliver ,47,50,57, 63, 65, 72

direct string seestring, direct

do_long _ipc , 39, 65, 66-73

donation seetask donation, time-slice donation
DYING, 21

exc _ades, 35

exc _bp, 35

exc _cpu, 30, 35,44

exc _dbe, 35

exc fpe , 35

exc _ibe , 35

exc _mod, 32, 36, 38

exc _ov, 35

exc ri ,35

exc _tibl , 32, 36, 38, 49

exc _tlbs , 32, 36, 38

exc _user , 45

exceptery, 21, 44, 45

exception
addressingl3

cache]1l5

coprocessor unusablgQ, 35, 44

general28, 32, 35,42, 47

TLB miss, 12, 15, 24, 33, 38, 41
exception handleseeexcepter

fail _tlb _rfl _ent, 27 31
flexpage seefpage
floating point,seeFPU
fpage,8, 47, 68
receive,66
fpage _unmap, 8, 92
FPU,11, 20, 21, 30, 35, 44-46
control registerd5

gen _exc, 28, 34,47

get _next _thread , 59,95
gpt _insert , 34
granting,8

id _nearest , 9,58, 75-78

idle thread29, 49, 95

indirect string seestring, indirect

init _tcb , 80

initial server,9

ins _busy _list ,51,84,91,94

ins _wakeup, 51

inter-process communicatioseelPC

interrupt,9, 15, 19, 22, 59, 63
association9, 21, 60
disable,11, 29, 30, 33,53, 62, 70
enable33, 62, 70, 72
handler9, 60

ints _off ,70

ints _on, 70

invalid thread seeTCB, invalid

invalid _dest , 49

IPC,6, 7, 20, 29, 32, 33, 36, 38, 41, 42, 47-73, 75
deceiving 9, 49, 56, 57, 62-64, 66, 75, 78
direction preservingd, 64, 65, 78
nested37, 84, 85
pending,83
redirection 9, 49, 57

ipc _fault _ret ,37, 38 44

110

INDEX

ipc _long , 49, 50, 56, 63, 64
ipc _long _deliver ,57, 63, 65
ipc _nchief ,58, 76

k_frame _alloc ,79

k_ipc , 29, 34,37, 42, 47,56, 57, 59, 63, 65

kernel _vars , 19, 22, 24, 26, 28, 31, 34, 52, 60,
79

lazy schedulingseescheduling, lazy
local threadseethread

LOCKR?21, 84, 85

LOCKS 21, 37,41, 42, 84,85

long _ipc _nchief , 64,76
Ithread,seethread

lthread _ex_regs , 7,34, 79-86, 93

make_busy , 83, 93-94

mapping 6, 7-9, 33, 36, 49, 63, 66
maximum controlled priorityseeMCP
MCP, 6, 21

myself, 75

nchief , 58, 64, 76-78
nearest9, 75

other _excpt , 31, 39
other _excpt _ret , 31, 33, 38, 40, 46, 93, 94

page fault,6, 8, 21, 27, 30, 31-35, 38, 39, 41, 49,
51, 67
kernel,32, 36, 64
page fault handleseepager
pagers, 9, 21, 27, 32, 33, 37, 39, 41, 43
pending , 49, 56, 57, 63, 65
pending _receive _only ,59, 62
pending _restart 50,57, 63, 65
POLLING, 21, 84
preempt _ret ,94
preemptery
preemptiony, 19, 21, 67, 94
ASID, 19, 52
point, 33, 70
present list20, 80
priority, see alsdMICP, 6, 7, 19-21, 33, 57, 60, 80
current,7, 80
inheritance21
protection,6

ready queueseebusy list

receive fpaged

receive _only ,48 51,59, 62
redirection seelPC redirection
registersee alsa@oprocessor register

HI/LO, 10,11, 31
register messagé,
rem_sendq , 83
restart,33, 37, 42, 51, 52, 57, 59, 63, 65, 94
run queueseebusy list

scheduler95
schedulingy, 19, 53, 59, 63
lazy,51, 63, 94
send queug0, 51, 57, 59, 62
send _only _short , 38,42, 48,50, 55, 65
send _only _short _restart ,55
sender _restart _receiving 51,59
sigma 0,seeog
00, 9,19, 22,29
spinnerseeidle thread
stacked _commprtnr , 37,85
stacked _fine _state ,37,85
state
coarse20
fine, 21, 47, 66, 80, 84
string
direct,8, 47,68, 70
indirect,8, 47, 70
synchronisationg, 7
syscall _ret , 30,31, 42, 46, 49,51, 52,62, 91

task,6, 7-9, 20, 22, 25, 45, 47, 49, 52, 58, 65, 66
active,6
donation,6
ID table,22, 88
inactive,6, 22, 88
version number22
task _new, 6,9, 21, 87-88, 93
TCB, 19, 20, 29, 30, 32, 34, 36, 39, 45, 47, 49, 51,
57, 60, 62, 64, 65, 67, 70-72
invalid, 34, 49, 58, 79
tcb _frame _alloc , 79
tch t, 20
tcbtop , 57
temporary mapping area3, 21, 36, 38, 39, 42, 66,
68, 71
thread,6, 9, 19, 27, 29, 31, 32, 34, 35, 37, 39, 41,
44, 45,51-53, 62, 66, 67
ID, 6, 9, 34, 39, 45, 49, 51, 56, 57, 59, 60, 64,
65, 75
lg, 6,9
state seestate fine
thread 1D,20, 62
thread _schedule , 7,91, 94
thread _switch ,7,91
thread _switch _fast , 41,52 52, 59
TID, seethread ID

INDEX

111

TID table,seetask ID table

tid2tcb , 49, 58, 64

tid2ttable , 88

time slice,7, 19, 55, 60, 63, 80
donation,7, 7, 21, 51, 53, 91, 94
remaining,80

timeout,7, 19, 33, 37, 38, 41, 43, 44, 49, 51, 53, 57,

59, 60, 63, 65

tlb2 _miss , 25, 39

tlb2 _sync _shared , 35

to _chief 49,57

to _next _thread ,51,59 62 91

virtual sender9, 34, 48, 56, 62, 64, 65
vmlookup _pte , 39

vm.map, 68

vm.itcb _insert 34,79

WAITING, 21

WAKEUPRP21
wdw.map.addr , 39, 67
wfor , 47

window fault,67

window _fault , 37,43, 67
window _fault _ret ,41

xtlb _refill , 24
xtlb _refill fail 27

yield, 7,91

	List of Code Listings
	List of Figures
	List of Tables
	List of Bugs and Restrictions
	Introduction
	Intended Audience
	Why MIPS?
	Conventions
	Structure

	Background
	L4 Overview
	L4 philosophy
	L4 abstractions

	Relevant Features of the MIPS R4x00 Processor
	Target systems
	R4x00 general features
	Memory management unit
	Address space layout
	Exception processing

	L4/MIPS Organisation and Data Structures
	L4/MIPS Source Structure
	Kernel Data Structures
	Kernel memory allocation
	Miscellaneous kernel data: kernel_vars
	TCBs
	Other kernel data structures

	Exception Processing
	TLB Miss Handling
	Fast miss handler
	STLB miss handler

	General Exception Handling
	General exception handler
	Return from exception
	Exception dispatcher other_excpt
	TLB exceptions
	Exceptions passed to the user
	TLB misses during long IPC
	Coprocessor unusable exception

	IPC Path
	Introduction
	Short IPC
	Send & receive: k_ipc
	Fast context switch: thread_switch_fast
	Discussion

	Other Short IPC Send Code
	Non-blocking send: send_only_short
	Blocking send: pending
	Short IPC send: odds & ends
	Discussion

	Short IPC Receive
	receive_only
	pending_receive_only
	Discussion

	Long IPC
	Clans & Chiefs and Deception: ipc_long
	Performing long IPC operations: do_long_ipc

	Other System Calls
	id_nearest
	Introduction
	id_nearest
	nchief

	lthread_ex_regs
	Introduction
	Prologue
	Thread creation
	Exchanging register values
	Cleanup: Terminating pending or running IPCs

	task_new
	thread_schedule
	thread_switch
	fpage_unmap

	Other Stuff (Provisional)
	Scheduling
	make_busy
	ins_busy_list
	get_next_thread

	Interrupts
	Initialisation
	Sigma Zero

	Bibliography
	Index

