Session II

HOL = Functional programming + Logic

Proof by Term Rewriting

Term rewriting means ...

Using equations $l=r$ from left to right as long as possible

Term rewriting means ...

Using equations $l=r$ from left to right as long as possible

Terminology: equation \leadsto rewrite rule

Example

Example:

Equation: $0+n=n$

Term: $a+(0+(b+c))$

Example

Example:

Equation: $0+n=n$

Term: $a+(0+(b+c))$
Result: $a+(b+c)$

Example

Example:

Equation: $0+n=n$
Term: $a+(0+(b+c))$
Result: $a+(b+c)$
Rewrite rules can be conditional: $\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r$

Example

Example:

Equation: $0+n=n$
Term: $a+(0+(b+c))$
Result: $a+(b+c)$
Rewrite rules can be conditional: $\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r$ is used

- like $l=r$, but
- P_{1}, \ldots, P_{n} must be proved by rewriting first.

Simplification in Isabelle

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$ apply(simp add: $\left.e q_{1} \ldots e q_{n}\right)$

Simplification in Isabelle

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply(simp add: $\left.e q_{1} \ldots e q_{n}\right)$
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp

Simplification in Isabelle

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply(simp add: $\left.e q_{1} \ldots e q_{n}\right)$
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- additional lemmas eq$q_{1} \ldots e q_{n}$

Simplification in Isabelle

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply(simp add: $e q_{1} \ldots$ eq q_{n})
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- additional lemmas eq$q_{1} \ldots e q_{n}$
- assumptions $P_{1} \ldots P_{m}$

Simplification in Isabelle

Goal: 1. $\llbracket P_{1} ; \ldots ; P_{m} \rrbracket \Longrightarrow C$
apply(simp add: $e q_{1} \ldots$ eq q_{n})
Simplify $P_{1} \ldots P_{m}$ and C using

- lemmas with attribute simp
- additional lemmas eq$q_{1} \ldots e q_{n}$
- assumptions $P_{1} \ldots P_{m}$

Variations:

- (simp ... del: ...) removes simp-lemmas
- add and del are optional

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right. Example: $f(x)=g(x), g(x)=f(x)$

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right. Example: $f(x)=g(x), g(x)=f(x)$

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only if l is "bigger" than r and each P_{i}

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right. Example: $f(x)=g(x), g(x)=f(x)$

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only if l is "bigger" than r and each P_{i}

$$
\begin{aligned}
& n<m \Longrightarrow(n<\text { Suc } m)=\text { True } \\
& \text { Suc } n<m \Longrightarrow(n<m)=\text { True }
\end{aligned}
$$

Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right. Example: $f(x)=g(x), g(x)=f(x)$

$$
\llbracket P_{1} \ldots P_{n} \rrbracket \Longrightarrow l=r
$$

is suitable as a simp-rule only if l is "bigger" than r and each P_{i}

$$
\begin{aligned}
& n<m \Longrightarrow(n<\text { Suc } m)=\text { True YES } \\
& \text { Suc } n<m \Longrightarrow(n<m)=\text { True NO }
\end{aligned}
$$

How to ignore assumptions

Assumptions sometimes cause problems, e.g. nontermination. How to exclude them from simp:

```
apply(simp (no_asm_simp) ...)
    Simplify only conclusion
apply(simp (no_asm_use)...)
    Simplify but do not use assumptions
apply(simp (no_asm) ...)
    Ignore assumptions completely
```


Tracing

Set trace mode on/off in Proof General:
Isabelle/lsar \rightarrow Settings \rightarrow Trace simplifier
Output in separate buffer:
Proof-General \rightarrow Buffers \rightarrow Trace

auto

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more

Demo: simp

Type definitions in Isabelle/HOL

Keywords:

- typedecl: pure declaration (session 1)
- types: abbreviation
- datatype: recursive datatype

types

types name $=\tau$

Introduces an abbreviation name for type τ

Examples:

types
name = string
('a, 'b)foo = "'a list \times 'b list"

types

types name $=\tau$

Introduces an abbreviation name for type τ

Examples:

types
name = string
('a, 'b)foo = "'a list \times 'b list"
Type abbreviations are expanded after parsing
Not present in internal representation and Isabelle output

datatype

datatype 'a list = Nil / Cons 'a "'a list"

datatype

datatype 'a list = Nil / Cons 'a "'a list"
Properties:

- Types: Nil :: 'a list

Cons :: 'a \Rightarrow 'a list \Rightarrow 'a list

- Distinctness: Nil \neq Cons x xs
- Injectivity: (Cons $x x s=$ Cons y ys) $)(x=y \wedge x s=y s)$

case

Every datatype introduces a case construct, e.g.

$$
\text { (case xs of Nil } \Rightarrow \ldots \text { | Cons y ys } \Rightarrow \ldots \text { y ... ys ...) }
$$

- one case per constructor
- no nested patterns (Cons x (Cons y zs))
- but nested cases

case

Every datatype introduces a case construct, e.g.

(case xs of Nil $\Rightarrow \ldots$ | Cons y ys \Rightarrow... y ... ys ...)

- one case per constructor
- no nested patterns (Cons x (Cons y zs))
- but nested cases
apply (case_tac $x s$) \Rightarrow one subgoal for each constructor $x s=$ Nil $\Longrightarrow \ldots$
$x s=$ Cons a list $\Longrightarrow \ldots$

Function definition schemas in Isabelle/HOL

- Non-recursive with constdefs (session 1) No problem
- Primitive-recursive with primrec Terminating by construction
- Well-founded recursion with recdef User must (help to) prove termination

primrec

consts app :: "'a list \Rightarrow 'a list \Rightarrow 'a list" primrec
"app Nil $\quad y s=y s "$
"app (Cons x xs) ys = Cons x (app xs ys)"

primrec

consts app :: "'a list \Rightarrow 'a list \Rightarrow 'a list" primrec
"app Nil ys = ys"
"app (Cons x xs) ys = Cons x (app xs ys)"

- Each recursive call structurally smaller than Ihs.

primrec

consts app :: "'a list \Rightarrow 'a list \Rightarrow 'a list" primrec
"app Nil ys = ys"
"app (Cons x xs) ys = Cons x (app xs ys)"

- Each recursive call structurally smaller than Ihs.
- Equations used automatically in simplifier

Structural induction

$P x s$ holds for all lists $x s$ if

- P Nil
- and for arbitrary x and $x s, P$ ss implies P (Cons $x x s$)

Structural induction

$P x s$ holds for all lists $x s$ if

- P Nil
- and for arbitrary x and $x s, P$ ss implies P (Cons $x x s$)

Induction theorem list.induct:
$\llbracket P$ Nil; \bigwedge a list. P list $\Longrightarrow P($ Cons a list $) \rrbracket$
$\Longrightarrow P$ list

Structural induction

$P x s$ holds for all lists $x s$ if

- P Nil
- and for arbitrary x and $x s, P$ ss implies P (Cons $x x s$)

Induction theorem list.induct:
$\llbracket P$ Nil; \bigwedge a list. P list $\Longrightarrow P($ Cons a list $) \rrbracket$
$\Longrightarrow P$ list

- General proof method for induction: (induct x)
- x must be a free variable in the first subgoal.
- The type of x must be a datatype.

Induction heuristics

Theorems about recursive functions proved by induction
consts itrev :: 'a list \Rightarrow 'a list \Rightarrow 'a list primrec
itrev [] $y s=y s$
itrev (x\#xs) ys = itrev xs (x\#ys)
lemma itrev xs [] = rev xs

Demo: proof attempt

Generalisation

Replace constants by variables

lemma itrev xs ys=rev xs @ys

Generalisation

Replace constants by variables

lemma itrev xs ys=rev xs @ys

Quantify free variables by \forall (except the induction variable)

lemma $\forall y s . i t r e v x s y s=r e v x s @ y s$

Function definition schemas in Isabelle/HOL

- Non-recursive with constdefs (session 1) No problem
- Primitive-recursive with primrec Terminating by construction
- Well-founded recursion with recdef User must (help to) prove termination

recdef - examples

consts sep :: "'a \times 'a list \Rightarrow 'a list"
recdef sep "measure ($\lambda(a, x s)$. size xs)"
"sep (a, x \# y \# zs) $=x$ \# a \# sep (a, y \# zs)"
"sep $(a, x s)=x s "$

recdef - examples

consts sep :: "'a \times 'a list \Rightarrow 'a list" recdef sep "measure ($\lambda(a, x s)$. size $x s$)"
"sep (a, x \# y \# zs) $=x$ \# a \# sep (a, y \# zs)" "sep $(a, x s)=x s "$
consts ack :: "nat \times nat \Rightarrow nat"
recdef ack "measure (λm. m) <*lex*> measure ($\lambda n . n$)"
"ack (0, n) = Suc n"
"ack (Suc m, 0) = ack ($m, 1$)"
"ack (Suc m, Suc n) = ack (m, ack (Suc m, n))"

recdef

The definiton:

- one parameter
- free pattern matching, order of rules important
- termination relation
(measure sufficient for most cases)

recdef

- The definiton:
- one parameter
- free pattern matching, order of rules important
- termination relation (measure sufficient for most cases)
- Termination relation:
- must decrease for each recursive call
- must be well founded

recdef

- The definiton:
- one parameter
- free pattern matching, order of rules important
- termination relation (measure sufficient for most cases)
- Termination relation:
- must decrease for each recursive call
- must be well founded
- Generates own induction principle.

Demo: recdef and induction

Sets

Notation

Type 'a set: sets over type 'a

- $\left\},\left\{e_{1}, \ldots, e_{n}\right\},\{x . P x\}\right.$
- $e \in A, \quad A \subseteq B$
- $A \cup B, \quad A \cap B, \quad A-B, \quad-A$
- $\bigcup_{\mathrm{x} \in \mathrm{A}} B x, \quad \bigcap_{\mathrm{x} \in \mathrm{A}} B x$
- $\{i . . j\}$
- insert $:$: 'a \Rightarrow 'a set \Rightarrow 'a set
- $f^{\prime} A \equiv\{y . \exists x \in A . y=f x\}$

Inductively defined sets: even numbers

Informally:

- 0 is even
- If n is even, so is $n+2$
- These are the only even numbers

Inductively defined sets: even numbers

Informally:

- 0 is even
- If n is even, so is $n+2$
- These are the only even numbers

In Isabelle/HOL:
consts Ev :: nat set - The set of all even numbers inductive Ev
intros

$$
\begin{aligned}
& 0 \in E v \\
& n \in E v \Longrightarrow n+2 \in E v
\end{aligned}
$$

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

- $P 0$

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

- $P 0$
- $P n \Longrightarrow P(n+2)$

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

- $P 0$
- $P n \Longrightarrow P(n+2)$

Rule Ev.induct:
$\llbracket n \in E v ; P 0 ; \wedge n . P n \Longrightarrow P(n+2) \rrbracket \Longrightarrow P n$

Rule induction for Ev

To prove

$$
n \in E v \Longrightarrow P n
$$

by rule induction on $n \in E v$ we must prove

- $P 0$
- $P n \Longrightarrow P(n+2)$

Rule Ev.induct:
$\llbracket n \in E v ; P 0 ; \wedge n . P n \Longrightarrow P(n+2) \rrbracket \Longrightarrow P n$
An elimination rule

Demo: inductively defined sets

Isar

A Language for Structured Proofs

Apply scripts

- unreadable

Apply scripts

- unreadable
- hard to maintain

Apply scripts

- unreadable
- hard to maintain
- do not scale

Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!

A typical Isar proof

proof
assume formula a_{0}
have formula $_{1}$ by simp
:
have formulan by blast
show formula a_{n+1} by ...
qed

A typical Isar proof

proof
assume formula a_{0}
have formula a_{1} by simp
:
have formulan by blast
show formula a_{n+1} by ...
qed
proves formula $_{0} \Longrightarrow$ formula $_{n+1}$

Isar core syntax

proof $=$ proof [method] statement ${ }^{*}$ qed by method

Isar core syntax

proof $=$ proof [method] statement* ${ }^{*}$ qed by method
method $=($ simp $\ldots) \mid($ blast $\ldots) \mid($ rule $\ldots) \mid \ldots$

Isar core syntax

proof $=$ proof [method] statement* ${ }^{*}$ qed by method
method $=($ simp $\ldots) \mid($ blast $\ldots) \mid($ rule $\ldots) \mid \ldots$
statement $=$ fix variables
assume proposition
(\wedge)
(\Longrightarrow)
[from name ${ }^{+}$] (have | show) proposition proof next (separates subgoals)

Isar core syntax

proof $=$ proof [method] statement* qed | by method
method $=($ simp $\ldots) \mid($ blast $\ldots) \mid($ rule $\ldots) \mid \ldots$
statement $=$ fix variables
assume proposition
[from name ${ }^{+}$] (have | show) proposition proof next
proposition = [name:] formula

Demo: propositional logic

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- from \vec{a} have formula proof (rule rule)
\vec{a} must prove the first n premises of rule in the right order
the others are left as new subgoals

Elimination rules / forward reasoning

- Elim rules are triggered by facts fed into a proof: from \vec{a} have formula proof
- from \vec{a} have formula proof (rule rule)
\vec{a} must prove the first n premises of rule in the right order
the others are left as new subgoals
- proof alone abbreviates proof rule
- rule: tries elim rules first (if there are incoming facts \vec{a} !)

Practical Session II

Theorem proving and sanity; Oh, my! What a delicate balance.
-Victor Carreno

