
Session II

HOL = Functional programming + Logic
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Proof by Term Rewriting
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Term rewriting means . . .

Using equations l = r from left to right

as long as possible

Terminology: equation ; rewrite rule
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Example

Example:

Equation: 0 + n = n

Term: a + (0 + (b + c))

Result: a + (b + c)

Rewrite rules can be conditional: [[P1 . . . Pn]] =⇒ l = r

is used
I like l = r, but
I P1, . . . , Pn must be proved by rewriting first.
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Simplification in Isabelle

Goal: 1. [[ P1; . . . ; Pm ]] =⇒ C

apply(simp add: eq1 . . . eqn)

Simplify P1 . . . Pm and C using

I lemmas with attribute simp

I additional lemmas eq1 . . . eqn

I assumptions P1 . . . Pm

Variations:
I (simp . . . del: . . . ) removes simp-lemmas

I add and del are optional
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Termination

Simplification may not terminate.
Isabelle uses simp-rules (almost) blindly from left to right.

Example: f(x) = g(x), g(x) = f(x)

[[P1 . . . Pn]] =⇒ l = r

is suitable as a simp-rule only
if l is “bigger” than r and each Pi

n < m =⇒ (n < Suc m) = True YES
Suc n < m =⇒ (n < m) = True NO
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How to ignore assumptions

Assumptions sometimes cause problems, e.g.
nontermination. How to exclude them from simp:

apply(simp (no_asm_simp) . . . )
Simplify only conclusion

apply(simp (no_asm_use) . . . )
Simplify but do not use assumptions

apply(simp (no_asm) . . . )
Ignore assumptions completely
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Tracing

Set trace mode on/off in Proof General:

Isabelle/Isar → Settings → Trace simplifier

Output in separate buffer:

Proof-General → Buffers → Trace
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auto

I auto acts on all subgoals

I simp acts only on subgoal 1

I auto applies simp and more
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Demo: simp
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Type definitions in Isabelle/HOL

Keywords:

I typedecl: pure declaration (session 1)

I types: abbreviation
I datatype: recursive datatype
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types

types name = τ

Introduces an abbreviation name for type τ

Examples:

types
name = string
(’a,’b)foo = "’a list × ’b list"

Type abbreviations are expanded after parsing
Not present in internal representation and Isabelle output
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datatype

datatype ’a list = Nil | Cons ’a "’a list"

Properties:

I Types: Nil :: ’a list
Cons :: ’a ⇒ ’a list ⇒ ’a list

I Distinctness: Nil 6= Cons x xs
I Injectivity: (Cons x xs = Cons y ys) = (x = y ∧ xs = ys)
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case

Every datatype introduces a case construct, e.g.

(case xs of Nil ⇒ . . . | Cons y ys ⇒ ... y ... ys ...)

I one case per constructor

I no nested patterns (Cons x (Cons y zs))

I but nested cases

apply(case_tac xs) ⇒ one subgoal for each constructor

xs = Nil =⇒ . . .

xs = Cons a list =⇒ . . .
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Function definition schemas in Isabelle/HOL

I Non-recursive with constdefs (session 1)
No problem

I Primitive-recursive with primrec
Terminating by construction

I Well-founded recursion with recdef
User must (help to) prove termination
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primrec

consts app :: "’a list ⇒ ’a list ⇒ ’a list"
primrec
"app Nil ys = ys"
"app (Cons x xs) ys = Cons x (app xs ys)"

I Each recursive call structurally smaller than lhs.

I Equations used automatically in simplifier
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Structural induction

P xs holds for all lists xs if
I P Nil
I and for arbitrary x and xs, P xs implies P (Cons x xs)

Induction theorem list.induct:
[[P Nil;

∧
a list. P list =⇒ P (Cons a list)]]

=⇒ P list

I General proof method for induction: (induct x)
I x must be a free variable in the first subgoal.
I The type of x must be a datatype.

IJCAR 2004, Tutorial T4 – p.17



Structural induction

P xs holds for all lists xs if
I P Nil
I and for arbitrary x and xs, P xs implies P (Cons x xs)

Induction theorem list.induct:
[[P Nil;

∧
a list. P list =⇒ P (Cons a list)]]

=⇒ P list

I General proof method for induction: (induct x)
I x must be a free variable in the first subgoal.
I The type of x must be a datatype.

IJCAR 2004, Tutorial T4 – p.17



Structural induction

P xs holds for all lists xs if
I P Nil
I and for arbitrary x and xs, P xs implies P (Cons x xs)

Induction theorem list.induct:
[[P Nil;

∧
a list. P list =⇒ P (Cons a list)]]

=⇒ P list
I General proof method for induction: (induct x)

I x must be a free variable in the first subgoal.
I The type of x must be a datatype.

IJCAR 2004, Tutorial T4 – p.17



Induction heuristics

Theorems about recursive functions proved by induction

consts itrev :: ’a list ⇒ ’a list ⇒ ’a list
primrec

itrev [] ys = ys
itrev (x#xs) ys = itrev xs (x#ys)

lemma itrev xs [] = rev xs
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Demo: proof attempt
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Generalisation

Replace constants by variables

lemma itrev xs ys = rev xs @ ys

Quantify free variables by ∀
(except the induction variable)

lemma ∀ ys. itrev xs ys = rev xs @ ys
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recdef — examples

consts sep :: "’a × ’a list ⇒ ’a list"
recdef sep "measure (λ(a, xs). size xs)"

"sep (a, x # y # zs) = x # a # sep (a, y # zs)"
"sep (a, xs) = xs"

consts ack :: "nat × nat ⇒ nat"
recdef ack "measure (λm. m) <*lex*> measure (λn. n)"

"ack (0, n) = Suc n"
"ack (Suc m, 0) = ack (m, 1)"
"ack (Suc m, Suc n) = ack (m, ack (Suc m, n))"
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recdef

I The definiton:
I one parameter
I free pattern matching, order of rules important
I termination relation

(measure sufficient for most cases)

I Termination relation:
I must decrease for each recursive call
I must be well founded

I Generates own induction principle.

IJCAR 2004, Tutorial T4 – p.23



recdef

I The definiton:
I one parameter
I free pattern matching, order of rules important
I termination relation

(measure sufficient for most cases)

I Termination relation:
I must decrease for each recursive call
I must be well founded

I Generates own induction principle.

IJCAR 2004, Tutorial T4 – p.23



recdef

I The definiton:
I one parameter
I free pattern matching, order of rules important
I termination relation

(measure sufficient for most cases)

I Termination relation:
I must decrease for each recursive call
I must be well founded

I Generates own induction principle.

IJCAR 2004, Tutorial T4 – p.23



Demo: recdef and induction
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Sets

IJCAR 2004, Tutorial T4 – p.25



Notation

Type ’a set : sets over type ’a

I {}, {e1,. . . ,en}, {x. P x}
I e ∈ A, A ⊆ B
I A ∪ B, A ∩ B, A - B, - A
I

⋃
x∈A B x,

⋂
x∈A B x

I {i..j}

I insert :: ’a ⇒ ’a set ⇒ ’a set
I f ‘ A ≡ {y. ∃ x∈A. y = f x}
I . . .
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Inductively defined sets: even numbers

Informally:

I 0 is even
I If n is even, so is n + 2

I These are the only even numbers

In Isabelle/HOL:

consts Ev :: nat set — The set of all even numbers
inductive Ev
intros

0 ∈ Ev
n ∈ Ev =⇒ n + 2 ∈ Ev
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Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove

I P 0
I P n =⇒ P(n+2)

Rule Ev.induct:

[[ n ∈ Ev; P 0;
∧

n. P n =⇒ P(n+2) ]] =⇒ P n

An elimination rule

IJCAR 2004, Tutorial T4 – p.28



Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove

I P 0

I P n =⇒ P(n+2)

Rule Ev.induct:

[[ n ∈ Ev; P 0;
∧

n. P n =⇒ P(n+2) ]] =⇒ P n

An elimination rule

IJCAR 2004, Tutorial T4 – p.28



Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove

I P 0
I P n =⇒ P(n+2)

Rule Ev.induct:

[[ n ∈ Ev; P 0;
∧

n. P n =⇒ P(n+2) ]] =⇒ P n

An elimination rule

IJCAR 2004, Tutorial T4 – p.28



Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove

I P 0
I P n =⇒ P(n+2)

Rule Ev.induct:

[[ n ∈ Ev; P 0;
∧

n. P n =⇒ P(n+2) ]] =⇒ P n

An elimination rule

IJCAR 2004, Tutorial T4 – p.28



Rule induction for Ev

To prove

n ∈ Ev =⇒ P n

by rule induction on n ∈ Ev we must prove

I P 0
I P n =⇒ P(n+2)

Rule Ev.induct:

[[ n ∈ Ev; P 0;
∧

n. P n =⇒ P(n+2) ]] =⇒ P n

An elimination rule

IJCAR 2004, Tutorial T4 – p.28



Demo: inductively defined sets
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Isar

A Language for Structured
Proofs
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Apply scripts

I unreadable

I hard to maintain
I do not scale

No structure!
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A typical Isar proof

proof

assume formula0

have formula1 by simp
...
have formulan by blast
show formulan+1 by . . .

qed

proves formula0 =⇒ formulan+1
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Isar core syntax

proof = proof [method] statement∗ qed

| by method

method = (simp . . . ) | (blast . . . ) | (rule . . . ) | . . .

statement = fix variables (
∧

)
| assume proposition (=⇒)
| [from name+] (have | show) proposition proof
| next (separates subgoals)

proposition = [name:] formula
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Demo: propositional logic
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Elimination rules / forward reasoning

I Elim rules are triggered by facts fed into a proof:
from ~a have formula proof

I from ~a have formula proof (rule rule)

~a must prove the first n premises of rule

in the right order
the others are left as new subgoals

I proof alone abbreviates proof rule
I rule: tries elim rules first

(if there are incoming facts ~a!)
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Practical Session II

Theorem proving and
sanity; Oh, my! What a

delicate balance.

— Victor Carreno
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