
Session III

More about Isar

IJCAR 2004, Tutorial T4 – p.1

Overview

I Abbreviations
I Predicate Logic

I Accumulating facts

I Reasoning with chains of equations

I Locales: the module system

IJCAR 2004, Tutorial T4 – p.2

Abbreviations

this = the previous proposition proved or assumed
then = from this

with ~a = from ~a this

?thesis = the last enclosing show formula

IJCAR 2004, Tutorial T4 – p.3

Mixing proof styles

from . . .
have . . .

apply - make incoming facts assumptions
apply(. . .)
...
apply(. . .)
done

IJCAR 2004, Tutorial T4 – p.4

Demo: Abbreviations

IJCAR 2004, Tutorial T4 – p.5

Predicate Calculus

IJCAR 2004, Tutorial T4 – p.6

fix

Syntax:

fix variables

Introduces new arbitrary but fixed variables
(∼ parameters)

IJCAR 2004, Tutorial T4 – p.7

obtain

Syntax:

obtain variables where proposition proof

Introduces new variables together with property

IJCAR 2004, Tutorial T4 – p.8

Demo: predicate calculus

IJCAR 2004, Tutorial T4 – p.9

moreover/ultimately

have formula1 . . .

moreover

have formula2 . . .

moreover

...

moreover

have formulan . . .

ultimately

show . . .

— pipes facts formula1 . . . formulan into the proof

proof . . .
IJCAR 2004, Tutorial T4 – p.10

moreover/ultimately

have formula1 . . .
moreover

have formula2 . . .
moreover
...
moreover

have formulan . . .

ultimately

show . . .

— pipes facts formula1 . . . formulan into the proof

proof . . .
IJCAR 2004, Tutorial T4 – p.10

moreover/ultimately

have formula1 . . .
moreover

have formula2 . . .
moreover
...
moreover

have formulan . . .
ultimately

show . . .

— pipes facts formula1 . . . formulan into the proof

proof . . .
IJCAR 2004, Tutorial T4 – p.10

moreover/ultimately

have formula1 . . .
moreover

have formula2 . . .
moreover
...
moreover

have formulan . . .
ultimately

show . . .
— pipes facts formula1 . . . formulan into the proof
proof . . .

IJCAR 2004, Tutorial T4 – p.10

Demo: moreover/ultimately

IJCAR 2004, Tutorial T4 – p.11

General case distinctions

show formula

proof -
have P1 ∨ P2 ∨ P3 . . .

moreover

{ assume P1 . . . have ?thesis . . . }
moreover

{ assume P2 . . . have ?thesis . . . }
moreover

{ assume P3 . . . have ?thesis . . . }
ultimately show ?thesis by blast

qed

IJCAR 2004, Tutorial T4 – p.12

General case distinctions

show formula

proof -
have P1 ∨ P2 ∨ P3 . . .
moreover

{ assume P1 . . . have ?thesis . . . }

moreover

{ assume P2 . . . have ?thesis . . . }
moreover

{ assume P3 . . . have ?thesis . . . }
ultimately show ?thesis by blast

qed

IJCAR 2004, Tutorial T4 – p.12

General case distinctions

show formula

proof -
have P1 ∨ P2 ∨ P3 . . .
moreover

{ assume P1 . . . have ?thesis . . . }
moreover

{ assume P2 . . . have ?thesis . . . }

moreover

{ assume P3 . . . have ?thesis . . . }
ultimately show ?thesis by blast

qed

IJCAR 2004, Tutorial T4 – p.12

General case distinctions

show formula

proof -
have P1 ∨ P2 ∨ P3 . . .
moreover

{ assume P1 . . . have ?thesis . . . }
moreover

{ assume P2 . . . have ?thesis . . . }
moreover

{ assume P3 . . . have ?thesis . . . }

ultimately show ?thesis by blast
qed

IJCAR 2004, Tutorial T4 – p.12

General case distinctions

show formula

proof -
have P1 ∨ P2 ∨ P3 . . .
moreover

{ assume P1 . . . have ?thesis . . . }
moreover

{ assume P2 . . . have ?thesis . . . }
moreover

{ assume P3 . . . have ?thesis . . . }
ultimately show ?thesis by blast

qed

IJCAR 2004, Tutorial T4 – p.12

Chains of equations

I Keywords also and finally.

I . . . : predefined schematic term variable,
refers to the right hand side of the last expression.

I Uses transitivity rule.

IJCAR 2004, Tutorial T4 – p.13

Chains of equations

I Keywords also and finally.

I . . . : predefined schematic term variable,
refers to the right hand side of the last expression.

I Uses transitivity rule.

IJCAR 2004, Tutorial T4 – p.13

Chains of equations

I Keywords also and finally.

I . . . : predefined schematic term variable,
refers to the right hand side of the last expression.

I Uses transitivity rule.

IJCAR 2004, Tutorial T4 – p.13

also/finally

have "t0 = t1" . . .
also

t0 = t1

have " . . . = t2" . . .
also

t0 = t2

...

...

also

t0 = tn-1

have " . . . = tn" . . .

finally show . . .
— pipes fact t0 = tn into the proof
proof

...

IJCAR 2004, Tutorial T4 – p.14

also/finally

have "t0 = t1" . . .
also t0 = t1

have " . . . = t2" . . .
also

t0 = t2

...

...

also

t0 = tn-1

have " . . . = tn" . . .

finally show . . .
— pipes fact t0 = tn into the proof
proof

...

IJCAR 2004, Tutorial T4 – p.14

also/finally

have "t0 = t1" . . .
also t0 = t1

have " . . . = t2" . . .
also t0 = t2

...

...

also

t0 = tn-1

have " . . . = tn" . . .

finally show . . .
— pipes fact t0 = tn into the proof
proof

...

IJCAR 2004, Tutorial T4 – p.14

also/finally

have "t0 = t1" . . .
also t0 = t1

have " . . . = t2" . . .
also t0 = t2

...
...

also t0 = tn-1
have " . . . = tn" . . .

finally show . . .
— pipes fact t0 = tn into the proof
proof

...

IJCAR 2004, Tutorial T4 – p.14

also/finally

have "t0 = t1" . . .
also t0 = t1

have " . . . = t2" . . .
also t0 = t2

...
...

also t0 = tn-1
have " . . . = tn" . . .
finally show . . .
— pipes fact t0 = tn into the proof
proof

...
IJCAR 2004, Tutorial T4 – p.14

More about also

I Works for all combinations of =, ≤ and <.

I Uses rules declared as [trans].
I To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

IJCAR 2004, Tutorial T4 – p.15

More about also

I Works for all combinations of =, ≤ and <.
I Uses rules declared as [trans].

I To view all combinations in Proof General:
Isabelle/Isar → Show me → Transitivity rules

IJCAR 2004, Tutorial T4 – p.15

More about also

I Works for all combinations of =, ≤ and <.
I Uses rules declared as [trans].
I To view all combinations in Proof General:

Isabelle/Isar → Show me → Transitivity rules

IJCAR 2004, Tutorial T4 – p.15

Demo: also/finally

IJCAR 2004, Tutorial T4 – p.16

Locales

Isabelle’s Module System

IJCAR 2004, Tutorial T4 – p.17

Isar is based on contexts

theorem
∧

x. A =⇒ C
proof -

fix x
assume Ass: A
...

x and Ass are visible

from Ass show C . . .

inside this context

qed

theorem
∧

x. A =⇒ C
proof -

fix x
assume Ass: A
... x and Ass are visible
from Ass show C . . . inside this context

qed

IJCAR 2004, Tutorial T4 – p.18

Isar is based on contexts

theorem
∧

x. A =⇒ C
proof -

fix x
assume Ass: A
... x and Ass are visible
from Ass show C . . . inside this context

qed

IJCAR 2004, Tutorial T4 – p.18

Beyond Isar contexts

Locales are extended contexts

I Locales are named
I Fixed variables may have syntax

I It is possible to add and export theorems

I Locale expression: combine and modify locales

IJCAR 2004, Tutorial T4 – p.19

Beyond Isar contexts

Locales are extended contexts
I Locales are named

I Fixed variables may have syntax

I It is possible to add and export theorems

I Locale expression: combine and modify locales

IJCAR 2004, Tutorial T4 – p.19

Beyond Isar contexts

Locales are extended contexts
I Locales are named
I Fixed variables may have syntax

I It is possible to add and export theorems

I Locale expression: combine and modify locales

IJCAR 2004, Tutorial T4 – p.19

Beyond Isar contexts

Locales are extended contexts
I Locales are named
I Fixed variables may have syntax

I It is possible to add and export theorems

I Locale expression: combine and modify locales

IJCAR 2004, Tutorial T4 – p.19

Beyond Isar contexts

Locales are extended contexts
I Locales are named
I Fixed variables may have syntax

I It is possible to add and export theorems

I Locale expression: combine and modify locales

IJCAR 2004, Tutorial T4 – p.19

Context elements

Locales consist of context elements.

fixes Parameter, with syntax
assumes Assumption
defines Definition
notes Record a theorem

IJCAR 2004, Tutorial T4 – p.20

Context elements

Locales consist of context elements.

fixes Parameter, with syntax

assumes Assumption
defines Definition
notes Record a theorem

IJCAR 2004, Tutorial T4 – p.20

Context elements

Locales consist of context elements.

fixes Parameter, with syntax
assumes Assumption

defines Definition
notes Record a theorem

IJCAR 2004, Tutorial T4 – p.20

Context elements

Locales consist of context elements.

fixes Parameter, with syntax
assumes Assumption
defines Definition

notes Record a theorem

IJCAR 2004, Tutorial T4 – p.20

Context elements

Locales consist of context elements.

fixes Parameter, with syntax
assumes Assumption
defines Definition
notes Record a theorem

IJCAR 2004, Tutorial T4 – p.20

Declaring locales

locale loc =
loc1 +

Import

fixes . . .

Context elements

assumes . . .

Declares named locale loc.

IJCAR 2004, Tutorial T4 – p.21

Declaring locales

locale loc =
loc1 +

Import

fixes . . .

Context elements

assumes . . .

Declares named locale loc.

IJCAR 2004, Tutorial T4 – p.21

Declaring locales

locale loc =
loc1 + Import
fixes . . .

Context elements

assumes . . .

Declares named locale loc.

IJCAR 2004, Tutorial T4 – p.21

Declaring locales

locale loc =
loc1 +

Import

fixes . . . Context elements
assumes . . .

Declares named locale loc.

IJCAR 2004, Tutorial T4 – p.21

Declaring locales

Theorems may be stated relative to a named locale.

lemma (in loc) P [simp]: proposition
proof

I Adds theorem P to context loc.
I Theorem P is in the simpset in context loc.

I Exported theorem loc.P visible in the entire theory.

IJCAR 2004, Tutorial T4 – p.22

Declaring locales

Theorems may be stated relative to a named locale.

lemma (in loc) P [simp]: proposition
proof

I Adds theorem P to context loc.

I Theorem P is in the simpset in context loc.

I Exported theorem loc.P visible in the entire theory.

IJCAR 2004, Tutorial T4 – p.22

Declaring locales

Theorems may be stated relative to a named locale.

lemma (in loc) P [simp]: proposition
proof

I Adds theorem P to context loc.
I Theorem P is in the simpset in context loc.

I Exported theorem loc.P visible in the entire theory.

IJCAR 2004, Tutorial T4 – p.22

Declaring locales

Theorems may be stated relative to a named locale.

lemma (in loc) P [simp]: proposition
proof

I Adds theorem P to context loc.
I Theorem P is in the simpset in context loc.

I Exported theorem loc.P visible in the entire theory.

IJCAR 2004, Tutorial T4 – p.22

Demo: locales 1

IJCAR 2004, Tutorial T4 – p.23

Parameters must be consistent!

I Parameters in fixes are distinct.

I Free variables in assumes and defines occur in
preceding fixes.

I Defined parameters must neither occur in preceding
assumes nor defines.

IJCAR 2004, Tutorial T4 – p.24

Parameters must be consistent!

I Parameters in fixes are distinct.
I Free variables in assumes and defines occur in

preceding fixes.

I Defined parameters must neither occur in preceding
assumes nor defines.

IJCAR 2004, Tutorial T4 – p.24

Parameters must be consistent!

I Parameters in fixes are distinct.
I Free variables in assumes and defines occur in

preceding fixes.

I Defined parameters must neither occur in preceding
assumes nor defines.

IJCAR 2004, Tutorial T4 – p.24

Locale expressions

Locale name: n

Rename: e q1 . . . qn

Change names of parameters in e.
Merge: e1 + e2

Context elements of e1, then e2.

I Syntax is lost after rename (currently).

IJCAR 2004, Tutorial T4 – p.25

Locale expressions

Locale name: n
Rename: e q1 . . . qn

Change names of parameters in e.

Merge: e1 + e2

Context elements of e1, then e2.

I Syntax is lost after rename (currently).

IJCAR 2004, Tutorial T4 – p.25

Locale expressions

Locale name: n
Rename: e q1 . . . qn

Change names of parameters in e.
Merge: e1 + e2

Context elements of e1, then e2.

I Syntax is lost after rename (currently).

IJCAR 2004, Tutorial T4 – p.25

Locale expressions

Locale name: n
Rename: e q1 . . . qn

Change names of parameters in e.
Merge: e1 + e2

Context elements of e1, then e2.

I Syntax is lost after rename (currently).

IJCAR 2004, Tutorial T4 – p.25

Demo: locales 2

IJCAR 2004, Tutorial T4 – p.26

Normal form of locale expressions

Locale expressions are converted to flattened lists of
locale names.

I With full parameter lists

I Duplicates removed

Allows for multiple inheritance!

IJCAR 2004, Tutorial T4 – p.27

Normal form of locale expressions

Locale expressions are converted to flattened lists of
locale names.
I With full parameter lists

I Duplicates removed

Allows for multiple inheritance!

IJCAR 2004, Tutorial T4 – p.27

Normal form of locale expressions

Locale expressions are converted to flattened lists of
locale names.
I With full parameter lists

I Duplicates removed

Allows for multiple inheritance!

IJCAR 2004, Tutorial T4 – p.27

Normal form of locale expressions

Locale expressions are converted to flattened lists of
locale names.
I With full parameter lists

I Duplicates removed

Allows for multiple inheritance!

IJCAR 2004, Tutorial T4 – p.27

Instantiation

Move from abstract to concrete.

instantiate label : loc

I From chained fact loc t1 . . . tn instantiate locale loc.
I Imports all theorems of loc into current context.

I Instantiates the parameters with t 1 . . . tn.
I Interprets attributes of theorems.
I Prefixes theorem names with label

I Currently only works inside Isar contexts.

IJCAR 2004, Tutorial T4 – p.28

Instantiation

Move from abstract to concrete.

instantiate label : loc

I From chained fact loc t1 . . . tn instantiate locale loc.
I Imports all theorems of loc into current context.

I Instantiates the parameters with t 1 . . . tn.
I Interprets attributes of theorems.
I Prefixes theorem names with label

I Currently only works inside Isar contexts.

IJCAR 2004, Tutorial T4 – p.28

Instantiation

Move from abstract to concrete.

instantiate label : loc

I From chained fact loc t1 . . . tn instantiate locale loc.

I Imports all theorems of loc into current context.
I Instantiates the parameters with t 1 . . . tn.
I Interprets attributes of theorems.
I Prefixes theorem names with label

I Currently only works inside Isar contexts.

IJCAR 2004, Tutorial T4 – p.28

Instantiation

Move from abstract to concrete.

instantiate label : loc

I From chained fact loc t1 . . . tn instantiate locale loc.
I Imports all theorems of loc into current context.

I Instantiates the parameters with t 1 . . . tn.
I Interprets attributes of theorems.
I Prefixes theorem names with label

I Currently only works inside Isar contexts.

IJCAR 2004, Tutorial T4 – p.28

Instantiation

Move from abstract to concrete.

instantiate label : loc

I From chained fact loc t1 . . . tn instantiate locale loc.
I Imports all theorems of loc into current context.

I Instantiates the parameters with t 1 . . . tn.
I Interprets attributes of theorems.
I Prefixes theorem names with label

I Currently only works inside Isar contexts.

IJCAR 2004, Tutorial T4 – p.28

Instantiation

Move from abstract to concrete.

instantiate label : loc

I From chained fact loc t1 . . . tn instantiate locale loc.
I Imports all theorems of loc into current context.

I Instantiates the parameters with t 1 . . . tn.
I Interprets attributes of theorems.
I Prefixes theorem names with label

I Currently only works inside Isar contexts.

IJCAR 2004, Tutorial T4 – p.28

Demo: locales 3

IJCAR 2004, Tutorial T4 – p.29

Practical Session III

The sun spills darkness
A dog howls after midnight

Goals remain unsolved.

— Chris Owens

IJCAR 2004, Tutorial T4 – p.30

		extcolor {darkblue}{Overview}
		extcolor {darkblue}{Abbreviations}
		extcolor {darkblue}{Mixing proof styles}
		extcolor {darkblue}{{f}ix}
		extcolor {darkblue}{obtain}
		extcolor {darkblue}{moreover/ultimately}
		extcolor {darkblue}{General case distinctions}
		extcolor {darkblue}{Chains of equations}
		extcolor {darkblue}{also/finally}
		extcolor {darkblue}{More about also}
		extcolor {darkblue}{Isar is based on contexts}
		extcolor {darkblue}{Beyond Isar contexts}
		extcolor {darkblue}{Context elements}
		extcolor {darkblue}{Declaring locales}
		extcolor {darkblue}{Declaring locales}
		extcolor {darkblue}{Parameters must be consistent!}
		extcolor {darkblue}{Locale expressions}
		extcolor {darkblue}{Normal form of locale expressions}
		extcolor {darkblue}{Instantiation}

