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Outline

• Uncertainty and uncertain data, where and why?
• Models for uncertain and probabilistic data
• (coffee break)
• OLAP on uncertain and probabilistic data
• Mining uncertain and probabilistic data
• Tools: querying uncertain and probabilistic data

– Indexing uncertain and probabilistic data
– Ranking queries and spatial queries 

• Summary and discussion
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Uncertainty Is (Almost) Everywhere

• Uncertainty is often caused by our limited 
perception and understanding of reality
– Limited observation equipment
– Limited resource to collect, store, transform, 

analyze, and understand data
• Uncertainty can be inherent in nature

– How much do you like/dislike McCain and 
Obama?
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Data Collection Using Sensors

• Sensors are often used to collect data
– Thermal, electromagnetic, mechanical, chemical, optical 

radiation, acoustic, …
– Applications: environment surveillance, security, 

manufacture systems, …
• Ideal sensors

– Ideal sensors are designed to be linear: the output 
signal of a sensor is linearly proportional to the value of 
the measured property

– Sensitivity: the ratio between output signal and 
measured property
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Measurement Errors – Certain

• Sensitivity error: the sensitivity differs from 
the value specified

• Offset (bias): the output of a sensor at zero 
input

• Nonlinearity: the sensitivity is not constant 
over the range of the sensor
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Uncertain (Dynamic) Errors
• Dynamic error: deviation caused by a rapid change of the 

measured property over time
• Drift: the output signal changes slowly independent of the 

measured property
– Long term drift: a slow degradation of sensor properties over a long 

period
• Noise: random deviation of the signal varying in time
• A sensor may to some extent be sensitive to properties 

(e.g., temperature) other than the one being measured
• Dynamic error due to sampling frequency of digital sensors
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Uncertainty in Survey Data

• Social security number: 185 or 785
– Exclusiveness: SSN should be unique

• Is Smith married?
– Single or married,

but not both

Antova et al. ICDE’07
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Uncertainty due to Data Granularity

• Which state is p9 in?
• What is the total repair cost for F150’s in the 

East?

Burdick et al. VLDB’05
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Uncertainty in Data Integration

• Schema 1: (pname, email-addr, permanent-
addr, current-addr)

• Schema 2: (name, email, mailing-addr, 
home-addr, office-addr)

• How to map the two schemas?

Dong et al. VLDB’07
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Ambiguous Entities

• Entity identification is a
challenging task
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Disguised Missing Data
Information about "State" is 
missing
"Alabama" is used as the 
disguise

Hua and Pei KDD’07
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Disguised Missing Data

• Disguised missing data is the missing data 
entries that are not explicitly represented as 
such, but instead appear as potentially valid 
data values

• Disguised missing data also introduces 
uncertainty
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Why Uncertain Data Is Still Useful?

• For a temperature sensor, suppose the 
difference between the real temperature and 
the sensed temperature follows normal 
distribution

• The real temperature can be modeled by a 
probability density function

• What is the real temperature? Uncertain
• What is the probability that the real 

temperature is over 50C? Certain!
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Uncertainty and Confidence

• Uncertain data can provide probabilistic 
answers to aggregate questions
– How can we estimate the percentage of married 

voters supporting Obama from survey data?
– What is the total repair cost for F150’s in the 

East? 
• An answer derived from uncertain data may 

often be a function on probability or 
confidence
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Reducing Uncertainty

• Removing uncertain entries
– Removing uncertain attribute values
– Removing uncertain records
– Cons: reducing available data

• Generalization
– Remove attribute city if some entries on the attribute is 

uncertain
– Can accurately answer questions at level city or above
– Still cannot answer questions at level city or below
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Being Certain or Uncertain?

• Answering questions on uncertain data in 
general can be more complicated
– Probability is a new (and often difficult) 

dimension
• Simplifying uncertain data to certain data 

may not use the full potential of data
– Many details may be lost

• Probabilistic answers on uncertain data are 
often interesting and useful
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Uncertain Data Analysis Framework

Analytic and data mining tasks

Mining uncertain/probabilistic data

Probability/confidence-aware queries

Query answering on uncertain/probabilistic data

Uncertain and probabilistic data

Sensor
network

Survey
form …

Uncertainty assessment and estimation

Data sources
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Uncertain Data Acquisition

• Statistics-based, model-driven approaches 
are often used

• Misrepresentations of data in sensor 
networks
– Impossible to collect all relevant data –

potentially infinite
– Samples are non-uniform in time and space due 

to non-uniform placement of sensors in space, 
faulty sensors, high packet loss rates, …



J. Pei, M. Hua, Y. Tao, and X. Lin: Mining Uncertain and Probabilistic Data 19

A Model-driven Approach
• Treat each sensor as a 

variable
– Hidden variables (e.g., 

whether a sensor faulty) 
can be added

• Learn a model (a 
multivariate probability 
density function)
– A machine learning/data 

mining problem
• Given a query, compute 

a query plan optimal in 
communication cost to 
achieve the specified 
confidence

Deshpande et al. VLDB’04
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Outline

• Uncertainty and uncertain data, where and why?
• Models for uncertain and probabilistic data
• (coffee break)
• OLAP on uncertain and probabilistic data
• Mining uncertain and probabilistic data
• Tools: querying uncertain and probabilistic data

– Indexing uncertain and probabilistic data
– Ranking queries and spatial queries 

• Summary and discussion
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Levels of Uncertainty

• Uncertainty can exist in object/tuple level 
and attribute level

• Object/tuple level uncertainty
– An object/tuple takes a probability to appear 

(existing probability)
• Attribute level uncertainty

– An attribute of an object/tuple takes a few 
possible values
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Probabilistic Database Model
Speed of cars detected by radar

• The values of each tuple are certain
• Each tuple carries an existing/membership probability
• Generation rules: constraints specifying exclusive tuples

Time Radar Location Car make Plate No. Speed Confidence
130 0.4

0.7
0.3
0.4
0.6
1.0

120
80
90
110
105

t1 11:45 L1 Honda X-123
t2 11:50 L2 Toyota Y-245
t3 11:35 L3 Toyota Y-245
t4 12:10 L4 Mazda W-541
t5 12:25 L5 Mazda W-541
t6 12:15 L6 Nissan L-105

Generation rules: (t2⊕t3), (t4⊕t5)
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Survey Data Example

TID Name SSN Confidence
t1
t2
t3

Smith 185

t4

Smith 785
40%
60%
50%Brown 185
50%Brown 186

Generation rules:
t1 ⊕ t2,
t3 ⊕ t4,
t1 ⊕ t3Antova et al. ICDE’07
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Uncertain Objects

Uncertain objects: NBA players

• An object is uncertain in a few attributes
• Use a sample or a probability density function to 

capture the distribution on uncertain attributes
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Uncertainty of Mobile Objects
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Survey Data Example

Object 1: Smith
Smith.SSN=785, 60%

Smith.SSN=185, 40%

Antova et al. ICDE’07
Constraints: 

“Smith.SSN=185” ⊕ “Brown.SSN=185”

Brown.SSN=185, 50%

Brown.SSN=186, 50%

Object 2: Brown



J. Pei, M. Hua, Y. Tao, and X. Lin: Mining Uncertain and Probabilistic Data 27

Prob Table vs. Uncertain Objects
• A probabilistic table can be represented as a set of 

uncertain objects
– All tuples in a generation rule are modeled as an uncertain object
– Use NULL instances to make the sum of membership probabilities 

in one object to 1
• Uncertain objects with discrete instances can be 

represented using a probabilistic table
– One record per instance
– All instances of an object are constrained by one generation rule
– Uncertain objects with continuous probability density functions 

cannot be represented using a finite probabilistic table
• More complicated constraints may not be captured in the 

transformation
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Prob Table vs. Uncertain Objects

A probabilistic tableA probabilistic table A set of uncertain objectsA set of uncertain objects
A tuple An instance

A generation rule An uncertain object

Speed80  90  100  110  120  130

Time

12:15

12:00

11:45

11:30

0.4
0.7

0.3

0.4

0.6

1.0
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Possible Worlds

• A possible world
– a possible snapshot that may be observed

• Probabilistic database model
– A possible world = a set of tuples
– At most one tuple per generation rule in a possible 

world
• Uncertain object model

– A possible world = a set of instances of uncertain 
objects 

– At most one instance per object in a possible world
• A possible world carries an existence probability



J. Pei, M. Hua, Y. Tao, and X. Lin: Mining Uncertain and Probabilistic Data 30

An Example of Possible Worlds

t2 and t3 never appear in the same possible world!

0.112=0.4×0.7×0.4×1.0

A probabilistic table Possible worlds

0.4 = 0.112 + 0.168 + 0.048 + 0.072
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Possible Worlds and Rules

A new rule

• Possible worlds are governed by rules



J. Pei, M. Hua, Y. Tao, and X. Lin: Mining Uncertain and Probabilistic Data 32

Correlation and Dependencies

• An example of correlated tuples

• Factored representations

TID Confidence
t1 0.4
t2 0.42
t3 0.468

A probabilistic table Dependencies among tuples

t1

t2

t3

t1 f1

0 0.6
1 0.4

t1 t2 f12

0
0
1 0 0.1
1

0 0.9
1 0.1

1 0.9

t2 t3 f23

0
0
1 0 0.3
1

0 0.7
1 0.3

1 0.7

)33,22()22,11()11(
)33,22,11Pr(

23121 xtxtfxtxtfxtf
xtxtxt

======
===
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Possible Worlds

t1 t2
0 0 0 0.378
0 0 1 0.162
0 1 0 0.018
0 1 1 0.042

0
0
1
1

1
1
1 0 0.108
1

t3 Pr(t1,t2,t3)

0 0.028
1 0.012

1 0.252

World Probability
PW1=∅ 0.378

PW2={t3} 0.162
PW3={t2} 0.018

PW4={t2,t3} 0.042
PW5={t1}

PW6={t1,t3}
PW7={t1,t2} 0.108

PW8={t1,t2,t3}

0.028
0.012

0.252

• Compute the joint probability of possible world 
assignments (Details in [Sen and Deshpande, ICDE’07])

Joint probability of (t1,t2,t3) Possible worlds
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Conceptual Query Answering

Probabilistic database Result
probabilistic database

Query Q

SummarizeExpand

Possible worldsPossible worlds

Query Q

Adapted from Singh et al. ICDE’08
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Attribute Level Uncertainty

• An aerial photograph of a battlefield

11

22

33

44

A friendly tank a A friendly transport b

An enemy tank c

Unknown vehicle d

Antova et al. ICDE’08
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Attribute Level Uncertainty

• A relation R(ID, Type, Faction) with uncertain 
attributes
– ID = { 1, 2, 3, 4 }
– Type = { Tank, Transport }
– Faction = { Friend, Enemy }

• Uncertainty in data
– Vehicle 1 is a friendly tank a
– Vehicle 2 and 3 are either 

• a friendly transport b, or
• an enemy tank c

– Vehicle 4 is unknown vehicle d

Vehicle ID Type Faction
a 1 Tank Friend
b ? Transport Friend
c ? Tank Enemy
d 4 ? ?
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Representing Uncertainty
• ID of vehicle b and c

– “b’s ID is 2 and c’s ID is 3”, or “b’s ID is 3 and c’s ID is 2”?
– Random variable x={1,2}

• Type of Vehicle d
– “Tank” or “Transport”? 
– Random variable y={1,2}

• Faction of Vehicle d
– “Friend” or “Enemy”?
– Random variable z={1,2}

Vehicle ID Type Faction
a 1 Tank Friend
b ? Transport Friend
c ? Tank Enemy
d 4 ? ?
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U-Relation

• Vertical Representation
– Use a U-relation to represent each attribute of relation R

D Vehicle ID
a 1
b 2
c 3
b 3

x=2
c 2
d 4

x=1  

U-relation for “ID” U-relation for “Type” U-relation for “Faction”

Tanka
Transportb

Tankc

Transportdy=2
Tankdy=1

TypeVehicleD
Frienda
Friendb
Enemyc

Enemydz=2
Frienddz=1

FactionVehicleD
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Possible Worlds of U-Relations

World
x y z

b.ID & c.ID (x) d.Type (y)
b.ID=2, c.ID=3 Tank

Tank
Transport
Transport

Tank
Tank

Transport
Transport

b.ID=2, c.ID=3
b.ID=2, c.ID=3
b.ID=2, c.ID=3
b.ID=3, c.ID=2
b.ID=3, c.ID=2
b.ID=3, c.ID=2
b.ID=3, c.ID=2

1
1
1
1
2
2

d.Faction(z)

2
2

11
1
2
2
1
1

Friend

2

Enemy

2

2
1
2
1
2

Friend
Enemy

1
2

Friend
Enemy
Friend
Enemy

Possible worlds
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Transformation of U-Relation
• U-Relations can be transformed to a probabilistic table

Vehicle ID Type Faction
a 1 Tank Friend
b ? Transport Friend
c ? Tank Enemy
d 4 ? ?

TID Vehicle ID Type Faction Conf.
t1
t2
t3
t4
t5
t6
t7

a 1 Tank

t8
t9

b 2 Transport
1Friend

Friend
c 3 Tank Enemy 0.3
b 3 Tank Enemy 0.7

d 4 Tank Friend 0.25
d 4 Tank Enemy 0.25
d 4 Transport Friend 0.25

c 2 Transport Friend

0.3

0.7

Enemy 0.25d 4 Transport

b.ID=2, c.ID=3 (30%)
b.ID=3, c.ID=2 (70%)
d.Type=Tank(50%),Transport(50%)
d.Faction=Friend (50%), Enemy(50%)

Generation rules: t2→t3, t4→t5,  t2⊕t4, t3⊕t5
t6⊕t7⊕t8⊕t9
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Continuous Uncertain Model 

• An attribute may take a continuous PDF as the 
value

• A table T=(ΣT, ∆T)
– ΣT: a relational schema
– ∆T: dependency information including pdfs or joint pdfs
– For each dependent group of uncertain attributes, store 

history Λ. When a new tuple is added, check whether 
the dependency remains

Car-id Location
C1 Gaussian(mean 18, variance 6)
C2 Uniform(center (32, 26), radius 7)
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More on Possible Worlds

• The possible world model can be enriched by 
various kinds of (arbitrarily complicated) 
constraints
– Example: if instances A.a and B.b appear, instances C.c

or D.d must appear
• Completeness and closure

– A model M is closed under an operation Op if applying 
Op on any uncertain relation in M results in an uncertain 
relation that can be represented in M 

– M is complete if M is closed for all relational operations
– Completeness closure, but not the other way

• More details in [Sarma et al. ICDE’06] 
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Summary
• Object/tuple level and attribute level uncertainty
• Possible worlds model
• Expressiveness

– Should be closed under the application operations
– Completeness is even better

• Succinctness: representing a large number of 
worlds using fairly little space

• Evaluation efficiency: complexity in useful queries
– Often a tradeoff between succinctness and efficiency

• Ease of use: can be put on top of an RDBMS
• [Antova et al. ICDE’08]
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Outline

• Uncertainty and uncertain data, where and why?
• Models for uncertain and probabilistic data
• (coffee break)
• OLAP on uncertain and probabilistic data
• Mining uncertain and probabilistic data
• Tools: querying uncertain and probabilistic data

– Indexing uncertain and probabilistic data
– Ranking queries and spatial queries 

• Summary and discussion
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OLAP Query What are the total 
repair cost for F150’s in 
the East?
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Three Options

• None: ignore all imprecise facts
– Answer: p1, p2

• Contains: include only those contained in 
the query region
– Answer: p1, p2, p9

• Overlaps: include all imprecise facts whose 
region overlaps the query region
– Answer: p1, p2, p9, p10
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Consistency among OLAP Queries
Q5 = Q3 + Q4 is expected!

Consistency 
does not hold for 
option contains, 
but holds for 
options none 
and overlaps!
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Faithfulness of OLAP Queries
p9 is expected in Q5!

Faithfulness 
does not hold for 
option none, but 
holds for options 
contains and 
overlaps!
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OLAP Requirements

• Consistency (summarizability): some natural 
relationships hold between answers to 
aggregation queries associated with 
different (connected) regions in a hierarchy

• Faithfulness: imprecise data should be 
considered properly in query answering
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Possible Worlds
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Allocation and Query Answering

• The allocation weights encode a set of 
possible worlds D1, …, Dm with associated 
weights w1, …, wm

• The answer to a query is a multiset {v1, …, 
vm}

• Problem: how to summarize {v1, …, vm} 
properly?
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Answer Variable

• Consider multiset {v1, …, vm} of possible 
answers to a query Q

• Define the answer variable Z associated 
with Q to be a random variable with 
probability density function 

Pr[Z=vi]=Σj s.t. vi=vj wj, 1 ≤ i, j ≤ m



J. Pei, M. Hua, Y. Tao, and X. Lin: Mining Uncertain and Probabilistic Data 53

Answer Variable

• The answer to a query can be summarized 
as the first and the second moments 
(expected value and variance) of the answer 
variable Z

• Basic faithfulness is satisfied if answers to 
queries are computed using the expected 
value of the answer variable



J. Pei, M. Hua, Y. Tao, and X. Lin: Mining Uncertain and Probabilistic Data 54

Query Answering

• Identify the set of candidate facts and compute the 
corresponding allocations to Q
– Identifying candidate facts: using a filter for the query 

region
– Computing the corresponding allocations: identifying 

groups of facts that share the same identifier in the ID 
column, then summing up the allocations within each 
group

• Identify the information necessary to compute the 
summarization while circumventing the 
enumeration of possible worlds
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Allocation Policies

• Dimension-independent allocation such as 
uniform allocation

• Measure-oblivious allocation such as count-
based allocation
– If Vancouver and Victoria have 100 and 50 

F150’s, respectively, and there are another 30 
in BC as imprecise records, then allocate 20 
and 10 to Vancouver and Victoria, respectively
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Probabilistic Transactions

• A transaction t contains a number items where 
each item x is associated with a positive 
probability Pt(x)
– Assuming items in a transaction are independent
– Itemset xyz has probability Pt(x)Pt(y)Pt(z) to happen in t

• In a probabilistic transaction database D of d 
transactions, an itemset X is frequent if its 
expected support is at least ρd, where ρ is a user-
specified support threshold
– [Chui et al., PAKDD’07]
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Possible Worlds of Transactions

• Enumerating all possible worlds to compute 
the expected supports is computationally 
infeasible for large transaction databases

Chui et al., PAKDD’07
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Independent Transactions

• If transactions are independent, expected 
support can be calculated efficiently 
transaction by transaction

• Anti-monotonicity still holds: if X is 
infrequent, then every super set of X cannot 
be frequent

• U-Apriori: extending Apriori straightforwardly

∑∏
= ∈

=
d

j Xx
te xPXS

j
1
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Insignificant Support Contributions

• If a, b, c have existence probabilities 5%, 
0.5%, and 0.1%, respectively in a 
transaction t, t contributes only 0.00000025 
to the support of abc
– In certain transactions, every transaction 

contributes 1 to the support of an itemset
• Counting many insignificant support 

contributions is costly 
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The Data Trimming Framework

• Obtain DT by removing the items with existential 
probabilities smaller than a trimming threshold ρt
– ρt can be either global to all items or local to each item
– Estimate the error e(X) in support counting introduced 

by reducing D to DT

• Mine DT using U-Apriori
– If X is frequent in DT, X must be frequent in D
– If X is infrequent in DT, X may or may not be infrequent 

in D
• If supDT(X) + e(X) < ρd, then X can be pruned

– Check supports for only those itemsets that cannot be 
pruned
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Decremental Pruning
• Estimate upper bounds of candidate itemsets’ expected 

supports progressively when transactions are processed
• If a candidate’s upper bound falls below the support 

threshold, the candidate can be pruned immediately
• For X’ ⊂ X, k ≥ 0, sup(X) ≤ s(X, X’, k), where

• Using singleton itemsets or prefix-sharing itemsets to 
comput s(X, X’, k) efficiently
– Details in [Chui and Kao, PAKDD’08]
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Is Expectation Good Enough?

• In D1, if the support threshold is 0.5, then a is 
frequent, however, a has only 50% chance to have 
support 0.5

• In D2, if the support threshold is 0.5, then a is 
infrequent.  However, a has a probability of 0.9 to 
be frequent

TID Items
t1 (a: 0.5)
t2 (b:0.6)

D1
TID Items
t1 (a: 0.9), (b: 0.1)
t2 (c:1)

D2
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Probabilistic Heavy Hitters

• An item is a (ρ, τ)-probabilistic heavy hitter if

– τ is the probability/confidence threshold
• Dynamic programming using Poisson Binomial 

Recurrence
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ρ
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Classification on Uncertain Data

• Many studies exist in machine learning 
(particularly statistical learning)
– Examples: [M. Mohri. Learning from Uncertain 

Data. COLT'03] and [S. Jain et al. Absolute 
Versus Probabilistic Classification in a Logical 
Setting. ALT'05]

• New problem: how does uncertain data 
affect classification?
– How can we apply the existing classification 

with minor revision on uncertain data?
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1NN Classification on Certain Data

• Point x will be classified using point y since 
dist(x, y) < dist(x, z)

z
x

y
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1NN on Uncertain Data
• Object x may have a good chance to be classified using z

– Instances of x have a high probability to lie in the error boundary of 
z

• When classification on uncertain data, it is important to use 
the relative errors of different data points over the different 
dimensions in order to improve the accuracy

x

y

z

Aggarwal ICDE’07
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Density Estimation with Errors

• Kernel estimation
– General form

– Gaussian kernel with width h 
• Error at point     can be modeled by function 
• Error-based kernel
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Error-Based Micro-Clustering

• Applying density estimation with errors on a large 
database may be costly

• Use micro-clusters to approximate
– A BIRCH-like method [Zhang et al., SIGMOD’96]
– Use the framework in [Aggarwal et al., VLDB’03], but 

maintain only q randomly chosen centroids
– When assigning a point into a micro-cluster, use error-

adjusted distance 

• Micro-clusters can be used to generate 
classification rules
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Fuzzy Clustering

• Each data point is certain
• Clusters are fuzzy (uncertain to some extent)

– No sharp boundary between clusters, often 
perform better in some applications

– Each point is assigned to a cluster with a 
probability (membership degree)

• Hoppner et al. Fuzzy cluster analysis. Wiley, 
1999
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Clustering Multi-represented Objects

• An object may have multiple representations
– Molecules are characterized by an amino acid 

sequence, a secondary structure and a 3D 
representation 

• Clustering multi-represented objects needs 
to consider all representations in question
– Combine distance/neighborhoods in all 

representations into one global 
distance/neighborhood 
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Clustering Uncertain Objects
• Objects are fuzzy/uncertain, clusters can be certain or 

fuzzy
– A fuzzy object can be represented by a probability density function 

or a set of instances 
– All instances of an object are in the same space, different objects 

may have a different number of instances 

• In clustering, the distribution of the distance between two 
objects and the probability that an object is a cluster center 
should be considered

∫ ==≤≤
b

a

dxxoodistboodista ])',(Pr[])',(Pr[

Kriegel and Pfeifle, KDD’05, ICDM’05
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K-means on Uncertain Data

• Run k-means, use expectation of distance to 
assign objects/probabilistic points to clusters

• Computation can be sped up by using 
bounding rectangles or other polygon to 
bound PDF regions and approximate 
distance calculation
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Example

• Oi cannot be 
assigned to p3

Ngai et al., ICDM’06
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(α, β)-bicriteria Approximation

• Optimal k-center, k-means, and k-median are NP-
hard even for certain data

• A (α, β)-bicriteria approximation to k-clustering 
finds a clustering of size βk whose cost is at most 
α times the cost of the optimal k-clustering

• Assigned clustering: an object is assigned to a 
cluster

• Unassigned clustering: only cluster centers are 
computed – different instances of an object may 
be assigned to different clusters
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Theoretical Results
Cormode and McGregor, PODS’08

Objective Metric Assignment α β

1 + ε O(ε-1 log2n)
12 + ε 2

1.582 + ε O(ε-1 log2n)
18.99 + ε 2

Unassigned
K-means Euclidean

Assigned
1 + ε 1

Any 3 + ε
Euclidean 1 + ε

Any 7 + ε
Euclidean 3 + ε

Assigned
1

Unassigned
K-median

K-center
Discrete PDF

Any Unassigned

K-center
Point probability

Any Unassigned
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K-center (1 + ε) Approximation

• For each point x, assign a weight 
wx = – ln (1 – px)

• Greedily select a set of centers
– Suppose c1, …, ci are the current centers
– A point x is assigned to a current cluster if it is 

within distance r to the center
– Among the remaining points, find a new center 

ci+1 such that the total weight of points that can 
be assigned to ci+1 is maximized 
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Fuzzy Clustering of Uncertain Data

• Data points are probabilistic
• Clusters are fuzzy – each probabilistic point 

has a membership degree (between 0 and 1) 
to be assigned to a cluster

• Expectation maximization (EM) based on 
clustering of uncertain data [Dempster et al., 
J. of the Royal Stat. Society, 1977]
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Outliers in Uncertain Data

• Which one is more an outlier, x or y?

x

y
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Outlier Detection on Uncertain Data

• The η-probability of a data point is the probability 
that it lies in a region with data density at least η

• (δ, η)-outlier: the η-probability of a point is some 
subspace is less than δ

• Enumerate all non-empty subspaces in a bottom-
up breadth-first search, for each subspace, check 
whether there is any (δ, η)-outlier
– Use sampling and micro-clusters to estimate density 

distribution
– Details in [Aggarwal and Yu, SDM’08]
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Outline

• Uncertainty and uncertain data, where and why?
• Models for uncertain and probabilistic data
• (coffee break)
• OLAP on uncertain and probabilistic data
• Mining uncertain and probabilistic data
• Tools: querying uncertain and probabilistic data

– Indexing uncertain and probabilistic data
– Ranking queries and spatial queries

• Summary and discussion
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Conceptual Query Answering

Probabilistic database Result
probabilistic database

Query Q

SummarizeExpand

Possible worldsPossible worlds

Query Q

Adapted from Singh et al. ICDE’08



J. Pei, M. Hua, Y. Tao, and X. Lin: Mining Uncertain and Probabilistic Data 83

U-Tree: Motivation

• Probabilistic range queries
– Given query region q and probability threshold τ, return 

all the objects whose probability of being in q is higher 
than τ

– Appearance probability
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BB

AA

DD
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U-Tree: Idea

11--2p2p

LL1+1+

pp

LL11--

pp

• Partition the object into three parts in one dimension 
(horizontally)

LL2+2+

LL22--

11--2p2p

pp

pp

Uncertain object O

• Partition the object into three parts in the other dimension 
(vertically)
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U-Tree: Pruning

LL2+2+

LL22--

LL11-- LL1+1+

Range query q,
Prob. threshold

τ=0.8

p=0.2p=0.2

Uncertain object O

• Pr(O is in q)<τ, because q is disjoint with the right part of 
L1+, whose probability is p=0.2

• Thus, O can be pruned
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U-Tree: Validation

LL11-- LL1+1+

LL2+2+

LL22--

Range query q,
Prob. threshold

τ=0.2

Uncertain object O
• Pr(O is in q)>τ, since q fully covers the part of O on the 

right side of L1+, whose probability is p=0.2
• Thus, O can be validated

p=0.2p=0.2 p=0.2p=0.2

MBR
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U-Tree: What to Store?
• Probabilistic constraint region (PCR)
• Select 0<p1<...<pm<0.5, and compute PCR(p1),...,PCR(pm)

LL11-- LL1+1+

LL2+2+

LL22--

pp ppPCR(p)

pp

pp

PCR(0.25)PCR(0.25)

PCR(0.4)PCR(0.4)

PCR(0.1)PCR(0.1)

Information stored in a U-treeUncertain object O
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U-Tree

Root

Leaf Leaf Leaf LeafLeaf Leaf

Leaf entry
Object O

• Disk address of O
• MBR of O
• A set of PCR’s of O

Leaf entryLeaf entry
Object O

• Disk address of O
• MBR of O
• A set of PCR’s of O

Intermediate entry
A set of objects O1,..,Ok

• Pointer to its child nodes
• MBR of the PCR’s of O1,...,Ok

Intermediate entryIntermediate entry
A set of objects O1,..,Ok

• Pointer to its child nodes
• MBR of the PCR’s of O1,...,Ok

• Structure

• Query evaluation
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Probabilistic Categorical Data

• Uncertain attribute “Problem” : derived from a text classifier
• Probabilistic threshold queries: 

– Find the tuples whose problem is “Brake” with 
probability 0.3 and “Tires” with probability 0.7

– q={(Brake,0.3),(Tire,0.7)}
– Pr(t1.Problem=q)=0.3×0.5+0.5×0.7=0.5

t1
t2
t3
t4
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Probabilistic Inverted Index

t1
t2
t3
t4

Brake

Tire

Trans

Suspension

Exhaust

(t3, 0.6) (t1,0.5)

(t1, 0.5)
A list of 

domain element (t5, 1) (t2,0.2)

(t2, 0.8)

(t4, 0.4)

In probability descending order
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Query Answering
• On Attribute A, a query q={(d3,0.4),(d6,0.1),(d8,0.2)}, τ=0.3

– Pr(q=t.A)= p’3×0.4+p’6×0.1+p’8×0.2

• Column pruning
– If for each di∈t.A, Pr(di)<τ,

then t can be pruned

• Row pruning
– If t only contains d6 and d8 whose probability is smaller 

than τ, then the t can be pruned

tt

tt

tt
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Ranking Queries

• Find the top-2 sensors with highest temperature
– Certain data: answer = {R1, R2}
– Uncertain data

• R1 and R2 may not co-exist in a possible world 
• In different possible worlds, the answers are different
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Challenges

• What does a probabilistic ranking query mean?
– A ranking query on certain data returns the best k 

results in the ranking function
– Ranking queries on uncertain data may be formulated 

differently to address different application interests

• How can a ranking query be answered efficiently? 
– Answering ranking queries on probabilistic databases 

can be very costly when the number of possible worlds 
is huge
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Query Types

• How are tuples ranked?

Ranking based on objective functions 
and output probabilities: Global-Topk

Ranking based on 
objective functions:

U-Topk, U-kRanks, PT-k

Ranking based on 
output probabilities
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Ranking Based on Objective Functions

• A scoring function is given
– Rank the sensors in temperature descending order and 

select the top-2 results

• How should the top-2 ranking results be captured? 
143521 RRRRRR ppppp
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U-Topk Queries

• Find the most probable top-2 list in possible worlds
– 〈R1,R2〉: p=0.12
– 〈R1,R5〉: p=0.144
– 〈R1,R3〉: p=0.03
– 〈R1,R4〉: p=0.006
– 〈R2,R5〉: p=0.224
– 〈R2,R4〉: p=0.056
– 〈R5,R3〉: p=0.28
– 〈R3,R4〉: p=0.07
– 〈R5,R4〉: p=0.056
– 〈R4,R6〉: p=0.014

• Answer: 〈R5,R3〉
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U-kRanks Queries

• Find the tuple of the highest probability at each 
ranking position
– The 1st position

• R1: p=0.3
• R2: p=0.28
• R5: p=0.336
• R3: p=0.07
• R4: p=0.014

– The 2nd position
• R5: p=0.368

• Answer: 〈R5,R5〉
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PT-k Queries

• Find the tuples whose probabilities to be in the 
top-2 list are at least p (p=0.35)
– R1: p=0.3
– R2: p=0.4
– R3: p=0.38
– R4: p=0.202
– R5: p=0.704
– R6: p=0.014

• Answer: {R2,R3,R5}
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Global-Topk

• Find the top-2 tuples whose probabilities to be in the 
top-2 list are the highest

• Ranking based on objective functions and output 
probabilities

• Example
– R1: p=0.3
– R2: p=0.4
– R3: p=0.38
– R4: p=0.202
– R5: p=0.704
– R6: p=0.014

• Answer={R5,R2}
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Query Answering Methods

• The dominant set property
– For any tuple t, whether t is in the answer set only 

depends on the tuples ranked higher than t
– The dominant set of t is the subset of tuples in T that are 

ranked higher than t
• E.g. the dominant set of R3 is SR3={R1,R2,R5}

• Framework of Query Answering Methods
– Retrieve tuples in the ranking order
– Evaluate each tuple based on its dominant set

Ranked tuples:
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Answering PT-k Queries

• Position probability Pr(ti,j)
– The probability that ti is ranked at the j-th position
– E.g. Pr(R3,2)=Pr(R3)×Pr(SR3,1)

• Generally:

Ranked tuples:

)1,Pr()Pr(),Pr( −×= jStjt
itii

R3 appears, and 1 tuple in SR3 appearsR3 is ranked 2nd, if
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Answering PT-k Queries

• Subset probability Pr(Sti,j)
– The probability that j tuples appear in Sti

– E.g. SR3={R5} ∪ SR5

– Pr(SR3,2)=Pr(R5) ×Pr(SR5,1)+(1-Pr(R5)) ×Pr(SR5,2)

• Generally (Poisson Binomial Recurrence):
)1,Pr()Pr(

1
−×

−
jSt

iti=),Pr( jS
it

),Pr())Pr(1(
1

jSt
iti −

×−+

R5 appears, 1 tuple appears in SR5

R5 does not appear, 2 tuples appear in SR5
2 tuples appear in SR3, if 
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Summary of Query Answering Methods

• Optimal algorithms for U-Topk and U-kRanks queries in 
terms of the number of accessed tuples (Soliman et al. 
ICDE’07)

• Query answering algorithms for U-Topk and U-kRanks
queries based on Poisson binomial recurrence (Yi et al. 
ICDE’08)

• Spatial and probabilistic pruning techniques for U-kRanks
queries (Lian and Chen, EDBT’08)

• Efficient query answering algorithms and pruning 
techniques for PT-k queries (Hua et al. ICDE’08, 
SIGMOD’08)

• A sampling-based method (Silberstein et al. ICDE’06)
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Ranking Based on Output Probabilities

• Query Q: find the average temperature of all sensors
• Ranking: find the top-2 results with the highest probabilities 

of being the answers to Q (output probabilities)
– Answer: 14 (p=0.28), 16.67 (p=0.224)



J. Pei, M. Hua, Y. Tao, and X. Lin: Mining Uncertain and Probabilistic Data 105

Query Answering

• Monte Carlo Simulation (1 step)
– Choose a possible world at random, and evaluate the 

query
– Record the answer to the query and its frequency

• For example, if we run 100 steps of Monte Carlo 
simulation, and “14” is the answer in 30 steps
– The output probability of “14” can be approximated by 

30/100=0.3, with an error bound ε
– The output probability of “14” lies in the probability 

interval [0.3-ε, 0.3+ε]
– The more steps of Monte Carlo simulation we run, the 

smaller probability intervals we can get
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Query Answering (cont.)
• The simulation stops when the top-k output probabilities 

and their relative ranks are clear
– E.g. There are 5 possible results G1, G2, G3, G4 and G5. After a

few steps of Monte Carlo simulation, the output probability interval 
of each result is shown below

– G3’s output probability is in top-2. The other answer might be one 
of G1, G2, and G4 . But G5’s output probability cannot be in top-2

Re et al. ICDE'07
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More on Monte Carlo Simulation
• Separate data schema and uncertain variables

– Data schema is certain
– Use random variables supported by variable generation 

(VG) functions to simulate uncertainty
• A naïve implementation: run Monte Carlo simulation until 

the result is stable
• Efficient Implementation

– Run N times of Monte Carlo simulation once in batch
– Delay random attribute materialization as long as possible
– Reproduce values for random attributes when necessary

• Details in [Jampani et al., SIGMOD’08]
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Probabilistic Skyline

• Probabilistic skylines
– An instance has a probability to represent the object
– An object has a probability to be in the skyline

Skyline on certain objects A set of uncertain objects
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Skyline Probabilities

SKY({a1,b1,c1})={a1,b1}

A possible world {a1,b1,c1}A set of uncertain objects

• Skyline probability
– B is in the skyline of possible worlds w1={a1,b1,c1}, w2={a1,b1,c2}, 

w3={a1,b2,c1}, and w4={a1,b2,c2} 
– Thus, Pr(B) = Pr(w1)+Pr(w2)+Pr(W3)+Pr(W4) = 4 × 0.125 = 0.5

• p-skyline = { U | Pr(U) ≥ p } for a given threshold p
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Probabilistic Skyline Computation
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Bottom-up Method
• Key Idea

– Two instances u1 and u2∈U, if u1 dominants u2, then 
Pr(u1)≥Pr(u2)

• The layered structure
– Sort the instances of an 

object according to the 
dominance relation

• Bounding
– max{Pr(u1),Pr(u2)} ≥ max{Pr(u3), Pr(u4)} ≥ Pr(u5)
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Top-down Method
• Bounding

– Using the lower corner and upper 
corner to bound the skyline probability 

– Pr(Nmin)≤Pr(u)≤Pr(Nmax)

• Iterative partitioning: binary tree
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Outline

• Uncertainty and uncertain data, where and why?
• Models for uncertain and probabilistic data
• (coffee break)
• OLAP on uncertain and probabilistic data
• Mining uncertain and probabilistic data
• Tools: querying uncertain and probabilistic data

– Indexing uncertain and probabilistic data
– Ranking queries and spatial queries 

• Summary and discussion
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Summary
• Uncertain data becomes more and more important and 

prevalent
– Critical applications: sensor networks, location-based services, web 

applications, user preferences, health-informatics, …
• Modeling uncertain data

– Model uncertainty at various levels
– Model correlation among data entries

• OLAP on uncertain data
• Mining uncertain data
• Tools: querying uncertain data

– Simple queries, ranking queries, spatial queries
– Using indexes to speed up query answering
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Can Uncertainty Be Beneficial?

• In all the cases discussed so far, uncertainty 
leads to more complicated processing 

• Uncertainty and privacy preservation
– Privacy preservation – preventing individuals 

from being re-identified, while keeping the 
aggregate data useful

– Major approaches: perturbation and 
generalization – making data uncertain!

• [Aggarwal, ICDE’08]



Thank You

Future is uncertain because it will 
be what we make it. 

– Immanuel Wallerstein
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