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Uncertainty in Data

• Sensor networks
– Sensor readings are often imprecise due to 

sensors and periodic reporting mechanisms
• Mobile equipment

– A mobile object reports its position periodically, 
the exact location is often uncertain

• Social data collection
– Errors and estimations inherent in customer 

surveys and sampling
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Uncertainty in Data
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Models of Uncertain Data

• Uncertain Objects
– An object is uncertain in a few dynamic attributes
– Use a sample or a probability density function to capture 

the distribution
• Probabilistic database

– The values of each tuple are certain
– Each tuple carries an existing/membership probability
– Generation rules: constraints specifying exclusive tuples
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Uncertain Objects

Uncertain objects: NBA players
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Uncertainty of Mobile Objects
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Probabilistic Table

– The values of each tuple are certain
– Each tuple carries an existing/membership probability
– Generation rules: constraints specifying exclusive tuples

Speed of cars detected by radar
Time Radar Location Car make Plate No. Speed Confidence

130 0.4
0.7
0.3
0.4
0.6
1.0

120
80
90

110
105

t1 11:45 L1 Honda X-123
t2 11:50 L2 Toyota Y-245
t3 11:35 L3 Toyota Y-245
t4 12:10 L4 Mazda W-541
t5 12:25 L5 Mazda W-541
t6 12:15 L6 Nissan L-105
Generation rules: (t2⊕t3), (t4⊕t5)
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Uncertain object vs. Prob Table
• Uncertain objects with discrete instances can be 

represented using a probabilistic table
– One record per instance
– All instances of an object are constrained by one generation rule
– Uncertain objects with PDF cannot be represented using a finite 

probabilistic table

• A probabilistic table can be represented as a set of 
uncertain objects
– All tuples in a generation rule are modeled as an uncertain object
– Use NULL instances to make the sum of membership probabilities 

in one object to 1



J. Pei, M. Hua, Y. Tao, and X. Lin: Query Answering Techniques on Uncertain and Probabilistic Data 12

Prob Table vs. Uncertain object

A probabilistic tableA probabilistic table A set of uncertain objectsA set of uncertain objects
A tuple An instance

A generation rule An uncertain object

Speed80  90  100  110  120  130

Time

12:15

12:00

11:45

11:30

0.4
0.7

0.3

0.4

0.6

1.0
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Possible Worlds

• A possible world
– a possible snapshot that may be observed

• Uncertain object model
– A possible world  = a set of instances of uncertain 

objects 
– At most one instance per object in a possible world

• Probabilistic database model
– A possible world = a set of tuples
– At most one tuple per generation rule in a possible 

world
• A possible world carries an existence probability
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Possible Worlds of Probabilistic Data

t2 and t3 never appear in the same possible world!t2 and t3 never appear in the same possible world!
0.112=0.4×0.7×0.4×1.00.112=0.4×0.7×0.4×1.0

0.4 = 0.112 + 0.168 + 0.048 + 0.0720.4 = 0.112 + 0.168 + 0.048 + 0.072

A probabilistic table Possible worlds
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Another Example
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Data taxonomy
• Each uncertain object is represented by a pdf.

• Numeric
– Sensor values, locations of moving objects, etc. 

• Categorical
– RFID data, OCR-generated data, text labeling, etc. 
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Numeric pdf

• The location of a vehicle.

• Its pdf has value 0 anywhere 
outside its uncertainty region. 
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Range search 
• Given a rectangle r and a probability threshold t, find all the 

objects that appear in r with probability at least t.

• Appearance probability

∫ ∩ruro
xxpdfo

.
d)(.
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Filter-refinement processing
• Why?

– It can be expensive to compute exact
appearance probabilities.

?d)(.
.

txxpdfo
ruro

≥∫ ∩
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PCR (Tao et al., VLDB 05, TODS 07)
• Probabilistically constrained region (PCR)

– A rectangle
– Takes a parameter 0 < p < 0.5

pxxpdfo =∫ d)(.
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PCR (Tao et al., VLDB 05, TODS 07)

pxxpdfo =∫ d)(.

• Probabilistically constrained region (PCR)
– Takes a parameter 0 < p < 0.5
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PCR (Tao et al., VLDB 05, TODS 07)
• Probabilistically constrained region (PCR)

– Takes a parameter 0 < p < 0.5
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Reasoning with PCR 1
• o appears in r with probability at most 0.3.

– o can be pruned as long as the probability threshold t is 
larger than 0.3.
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Reasoning with PCR 2
• o appears in r with probability at most 0.7.

– o can be pruned as long as the probability threshold t is 
larger than 0.7.
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Reasoning with PCR 3
• o appears in r with probability at least 0.4.

– o can be validated as long as the probability threshold t
is at most 0.4.
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Reasoning with PCR 3
• o appears in r with probability at least 0.4.

3.0d)(. =∫ xxpdfo
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Reasoning with PCR 3
• o appears in r with probability at least 0.4.

3.0d)(. =∫ xxpdfo
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Reasoning with PCR 3

• o appears in r with probability at least 0.4.

4.03.03.01

d)(.

=−−≥
∫ xxpdfo
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U-tree (Tao et al., VLDB 05, TODS 07)
• More complex reasoning is possible with PCRs.

• PCRs computed at different probabilities are good for 
pruning/validating for queries with different probability 
thresholds.

• For each object, prepare its PCRs at several probabilities.

• Index all the PCRs in an R-tree manner.
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1D range search
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1D range search
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APLA (Ljosa et al. ICDE 07)
• Adaptive piecewise linear approximation (APLA)
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APLA (Ljosa et al. ICDE 07)
• Adaptive piecewise linear approximation (APLA)
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APLA (Ljosa et al. ICDE 07)
• Adaptive piecewise linear approximation (APLA)
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APLA (Ljosa et al. ICDE 07)
• Adaptive piecewise linear approximation (APLA)
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APLA-tree (Ljosa et al. ICDE 07)
• For each object, compute an APLA.

• Each APLA can be regarded as a time series. 

• An APLA-tree organizes these time series in a hierarchical 
manner.
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Other access methods
• Probability thresholding index (PTI)

– [Cheng et al. VLDB 04]
– One-dimensional U-tree

• Gauss-tree
– [Bohm et al. ICDE 06]
– Each object pdf is a Gaussian function described by 

(µ,σ), which is regarded as a 2D point.
– An R-tree on these 2D points.
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Categorical pdf
• Data at a vehicle repair center

– o1 = (brake, 0.8), (gas, 0.2)
– o2 = (engine, 0.5), (brake, 0.4), (gas 0.1)
– o3 = (gas, 0.7), (transmission, 0.2), (brake, 0.1)

• The domain of the uncertain attribute has 4 values: engine, 
brake, gas, transmission.

• In general, let the domain have m values: v1, v2, …, vm.
• An object’s pdf is an m-dimensional vector:

o = (o.pdf(v1), o.pdf(v2), …, o.pdf(vm)) 
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Similar query (Singh et al. ICDE 07)
• Given a query pdf q and a similarity threshold t, find all 

objects o such that 
q.pdf(v1) ⋅ o.pdf(v1) + … + q.pdf(vm) ⋅ o.pdf(vm) ≥ t.  

• o1 = (brake, 0.8), (gas, 0.2)
• o2 = (engine, 0.5), (brake, 0.4), (gas 0.1)
• o3 = (gas, 0.7), (transmission, 0.2), (brake, 0.1)

• q = (brake, 0.7), (gas, 0.3) and t = 0.5.  
• Answer: o1 with score 0.56 + 0.06 = 0.62.  
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R-tree (Singh et al. ICDE 07)
• An object’s pdf is an m-dimensional vector:

o = (o.pdf(v1), o.pdf(v2), …, o.pdf(vm))

• Build an m-dimensional R-tree on all objects.

• Each similarity query is a half-plane search in the m-
dimensional space:

q ⋅ o ≥ t
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Inverted index (Singh et al. ICDE 07)
• Data

– o1 = (brake, 0.8), (gas, 0.2)
– o2 = (engine, 0.5), (brake, 0.4), (gas 0.1)
– o3 = (gas, 0.7), (transmission, 0.2), (brake, 0.1)

• Inverted lists
– engine: (o2, 0.5)
– brake: (o1, 0.8), (o2, 0.4), (o3, 0.1)
– gas: (o3, 0.7), (o1, 0.2), (o2, 0.1)
– transmission: (o3, 0.2)
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Inverted index (Singh et al. ICDE 07)
• q = (brake, 0.7), (gas, 0.3) and t = 0.5

• Inverted lists
– engine: (o2, 0.5)
– brake: (o1, 0.8), (o2, 0.4), (o3, 0.1)
– gas: (o3, 0.7), (o1, 0.2), (o2, 0.1)
– transmission: (o3, 0.2)
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Inverted index (Singh et al. ICDE 07)
• q = (brake, 0.7), (gas, 0.3) and t = 0.5
• Inverted lists

– brake: (o1, 0.8)
– gas: (o3, 0.7)

• Partial scores
– o1 = 0.56
– o3 = 0.21
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Inverted index (Singh et al. ICDE 07)
• q = (brake, 0.7), (gas, 0.3) and t = 0.5
• Inverted lists

– brake: (o1, 0.8), (o2, 0.4),
– gas: (o3, 0.7), (o1, 0.2)

• Partial scores
– o1 = 0.62
– o3 = 0.21 (max possible score = 0.21 + 0.28 = 0.49)
– o2 = 0.28 (max possible score = 0.28 + 0.06 = 0.33)
– any other object’s max possible score = 0.33.

• The algorithm stops here. 
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Ranking Queries

• Find the top-2 sensors with highest temperature
– Certain data: answer = {R1, R2}
– Uncertain data

• R1 and R2 may not co-exist in a possible world 
• In different possible worlds, the answers are different
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Challenges

• What does a probabilistic ranking query mean?
– A ranking query on certain data returns the best k 

results in the ranking function
– Ranking queries on uncertain data may be formulated 

differently to address different application interests

• How can a ranking query be answered efficiently? 
– Answering ranking queries on probabilistic databases 

can be very costly when the number of possible worlds 
is huge
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Query Types

• How are tuples ranked?

Ranking based on objective functions 
and output probabilities: Global-Topk

Ranking based on 
objective functions:

U-Topk, U-kRanks, PT-k

Ranking based on 
output probabilities
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Ranking Based on Objective Functions

• A scoring function is given
– Rank the sensors in temperature descending order and 

select the top-2 results

• How should the top-2 ranking results be captured? 
143521 RRRRRR ppppp
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U-Topk Queries

• Find the most probable top-2 list in possible worlds
– 〈R1,R2〉: p=0.12
– 〈R1,R5〉: p=0.144
– 〈R1,R3〉: p=0.03
– 〈R1,R4〉: p=0.006
– 〈R2,R5〉: p=0.224
– 〈R2,R4〉: p=0.056
– 〈R5,R3〉: p=0.28
– 〈R3,R4〉: p=0.07
– 〈R5,R4〉: p=0.056
– 〈R4,R6〉: p=0.014

• Answer: 〈R5,R3〉
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U-kRanks Queries

• Find the tuple of the highest probability at each 
ranking position
– The 1st position

• R1: p=0.3
• R2: p=0.28
• R5: p=0.336
• R3: p=0.07
• R4: p=0.014

– The 2nd position
• R5: p=0.368

• Answer: 〈R5,R5〉
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PT-k Queries

• Find the tuples whose probabilities to be in the 
top-2 list are at least p (p=0.35)
– R1: p=0.3
– R2: p=0.4
– R3: p=0.38
– R4: p=0.202
– R5: p=0.704
– R6: p=0.014

• Answer: {R2,R3,R5}
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Query Answering Methods

• The dominant set property
– For any tuple t, whether t is in the answer set only 

depends on the tuples ranked higher than t
– The dominant set of t is the subset of tuples in T that are 

ranked higher than t
• E.g. the dominant set of R3 is SR3={R1,R2,R5}

• Framework of Query Answering Methods
– Retrieve tuples in the ranking order
– Evaluate each tuple based on its dominant set

Ranked tuples:
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Answering U-Topk Queries

• Scan tuples in the ranking order
– Extend top-k lists based on the scanned tuples
– Store all top-k lists in a priority queue on their probabilities
– Stop when a top-k list has a greater probability than that of 

any top-(k-1) lists
Ranked list: R1                             R2                  R5                                 R3         …….

〈R1〉 (0.3)

∅ (0.7)

〈R1,R2〉 (0.012)

〈R1〉 (0.018)

〈R2〉 (0.28)

∅ (0.42)
〈R5〉 (0.336)

∅ (0.084)

〈R5, R3〉 (0.28)

∅ (0.056)
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Answering U-kRanks and PT-k Queries

• Position probability Pr(ti,j)
– The probability that ti is ranked at the j-th position
– E.g. Pr(R3,2)=Pr(R3)×Pr(SR3,1)

• Generally:

Ranked tuples:

)1,Pr()Pr(),Pr( −×= jStjt
itii

R3 appears, and 1 tuple in SR3 appearsR3 is ranked 2nd, if
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Answering U-kRanks and PT-k Queries

• Subset probability Pr(Sti,j)
– The probability that j tuples appear in Sti

– E.g. SR3={R5} ∪ SR5

– Pr(SR3,2)=Pr(R5) ×Pr(SR5,1)+(1-Pr(R5)) ×Pr(SR5,2)

• Generally (Poisson Binomial Recurrence):
)1,Pr()Pr(

1
−×

−
jSt

iti=),Pr( jS
it

),Pr())Pr(1(
1

jSt
iti −

×−+

R5 appears, 1 tuple appears in SR5

R5 does not appear, 2 tuples appear in SR5
2 tuples appear in SR3, if 
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Summary of Query Answering Methods

• Optimal algorithms for U-Topk and U-kRanks
queries in terms of the number of accessed tuples
(Soliman et al. ICDE’07)

• Query answering algorithms for U-Topk and U-
kRanks queries based on Poisson binomial 
recurrence (Yi et al. ICDE’08)

• Spatial and probabilistic pruning techniques for U-
kRanks queries (Lian and Chen, EDBT’08)

• Efficient query answering algorithms and pruning 
techniques for PT-k queries (Hua et al. ICDE’08, 
SIGMOD’08)
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Ranking based on Output Probabilities

• Query Q: find the average temperature of all sensors
• Ranking: find the top-2 results with the highest probabilities 

of being the answers to Q (output probabilities)
– Answer: 14 (p=0.28), 16.67 (p=0.224)
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Query Answering

• Monte Carlo Simulation (1 step)
– Choose a possible world at random, and evaluate the 

query
– Record the answer to the query and its frequency

• E.g. If we run 100 steps of Monte Carlo simulation, 
and “14” is the answer in 30 steps
– The output probability of “14” can be approximated by 

30/100=0.3, with an error bound ε
– The output probability of “14” lies in the probability 

interval [0.3-ε, 0.3+ε]
– The more steps of Monte Carlo simulation we run, the 

smaller probability intervals we can get
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Query Answering (cont.)
• The simulation stops when the top-k output probabilities 

and their relative ranks are clear
– E.g. There are 5 possible results G1, G2, G3, G4 and G5. After a

few steps of Monte Carlo simulation, the output probability interval 
of each result is shown below

– G3’s output probability is in top-2. The other answer might be one 
of G1, G2, and G4 . But G5’s output probability cannot be in top-2

Figure borrowed from C. Re et al. Efficient top-k query evaluation on probabilistic data. In ICDE'07.
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Global-Topk

• Find the top-2 tuples whose probabilities to be in the 
top-2 list are the highest

• Ranking based on objective functions and output 
probabilities

• Example
– R1: p=0.3
– R2: p=0.4
– R3: p=0.38
– R4: p=0.202
– R5: p=0.704
– R6: p=0.014

• Answer={R5,R2}
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Answering Global-Topk Queries

• Position probability computation for k-Ranks and 
PT-k queries can be adopted to answer Global-
Topk queries

• Threshold Algorithm Optimization
– Consider score and probability as two special attributes
– Apply TA algorithm to Global-Topk computation
– The algorithm can stop as soon as possible

• A sampling-based method (Silberstein et al. 
ICDE’06)
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Properties of Ranking Queries

• Exact-k
– The cardinality of the answer set is exactly k (|T|>k)

• Faithfulness
– For any two tuples t1, t2 in T, if both the score and the 

probability of t1 are higher than those of t2, and t2 is in 
the answer set, then t1 should also be in the answer set

• Stability
– If t is an answer, then t will remain in the answer set if its 

score/probability is increased
– If t is not an answer, then t cannot be in the answer set 

if its score/probability is decreased
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U-Topk Queries: Exact-k

• U-Topk queries do not satisfy the exact-k property
• Example 

– The most probable top-2 list is 〈R1〉
– The number of tuples in the answer is smaller than 2

Tuple Score Probability
R1 20 0.9
R2 10 0.2

Possible World Probability Top-2 list
W1={R1,R2}

W2={R1}
W3={R2}
W4= ∅

〈R1,R2〉0.18
0.72
0.02

〈R1〉
〈R2〉

0.08  ∅

Possible worlds

An uncertain table
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U-Topk Queries: Faithfulness
• U-Topk queries do not satisfy the faithfulness property 
• Example: 

– The most probable top-2 list is 〈R1,R3〉
– The score and probability of R2 are larger than those of R3, but R2 

is not in the answer

Tuple Score Probability
R1
R2

R3 30 0.35
R4 20 0.25
R5 10 0.2

0.650
0.440

Possible World Probability Top-2 list
W1={R1,R3}
W2={R1,R4}
W3={R1,R5}

W4= {R1} 0.12 〈R1〉
W5={R2,R3} 0.14 〈R2,R3〉
W6={R2,R4} 0.1 〈R2,R4〉
W7={R2,R5} 0.08 〈R2,R5〉

W8={R2}

〈R1,R3〉0.21
0.15
0.12

〈R1,R4〉
〈R1,R5〉

0.08 〈R2〉

An uncertain table

Possible worlds

Rules: R1⊕R2, R3⊕R4⊕R5
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U-kRanks Queries: Exact-k

• U-kRanks queries do not satisfy the exact-k 
property

• Example:
– The 1st position

• R5: p=0.336
– The 2nd position

• R5: p=0.368
– Answer: 〈R5,R5〉

– The number of tuples in the answer set is smaller than 2
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U-kRanks Queries: Faithfulness
• U-kRanks queries do not satisfy the faithfulness property
• Example:

– The score and probability of R2 are higher than those of R3, but R2 
is not in the answer set

Tuple Score Probability
R1
R2

R3 30 0.35
R4 20 0.25
R5 10 0.2

0.650
0.440

Possible World Probability Rank 1 Rank 2
W1={R1,R3} R1

R1
R1
R1
R2
R2
R2
R2

W2={R1,R4}
R3
R4
R5
∅

R3
R4
R5

W3={R1,R5}
W4= {R1} 0.12

∅

W5={R2,R3} 0.14
W6={R2,R4} 0.1
W7={R2,R5} 0.08

W8={R2}

0.21
0.15
0.12

0.08

An uncertain table Possible worlds

Rules: R1⊕R2, R3⊕R4⊕R5
Answer: Rank 1: R1(p=0.6)

Rank 2: R3 (p=0.35)
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U-kRanks Queries: Stability
• U-kRanks queries do not satisfy the stability property
• Example:

– When the score of R2 is 40, R2 is in the answer set
– When the score of R2 is increased to 60, R2 is not in the answer

set anymore

Tuple Score Probability
R1
R2

R3 30 0.1

0.650
0.340

An uncertain table

Answer: Rank 1: R1(p=0.6)
Rank 2: R2 (p=0.18)

Tuple Score Probability
R2
R1

R3 30 0.1

0.360
0.650

An uncertain table

Increase score(R2)

Answer: Rank 1: R1(p=0.42)
Rank 2: R1 (p=0.18)
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PT-k Queries: Exact-k
• PT-k queries do not satisfy the exact-k property

• Example
– R1: p=0.3
– R2: p=0.4
– R3: p=0.38
– R4: p=0.202
– R5: p=0.704
– R6: p=0.014

• Answer: {R2,R3,R5} (k=2, p=0.35)
• The number of tuples in the answer set is greater than 2
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Comparison

Queries Exact k Faithfulness Stability
U-Topk × × √

U-kRanks × × ×
PT-k × √ √

Global-Topk √ √ √

A part of the table is borrowed from X. Zhang and J. Chomichi. On the Semantics and 
Evaluation of Top-k Queries in Probabilistic Databases. In ICDE Workshops 2008.
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Outline

• Introduction: motivations, applications and 
challenges

• Models and possible worlds
• Range search queries
• Ranking queries
• Advanced queries
• Summary: challenges and future directions
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Joining Uncertain Data

• The join operator is essential in relational 
databases of certain data

• How to join uncertain and probabilistic data?
– Attribute-uncertainty: probabilistic join queries
– Tuple-uncertainty: confidence-aware join 

queries
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Probabilistic Join Queries
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Comparing Uncertain Values

• By comparing uncertain values, we can obtain the 
probability where an equality/inequality (in some 
resolution) may hold 

∫
∞

∞−

−−+⋅== dxcxFbcxFbxfabaP c ))(.)(.()(.)(

∫
∞

∞−

−−+⋅=≠ dxcxFbcxFbxfabaP c ))(.)(.()(.)(
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Pruning Techniques

• Item-level pruning
– If Pr(ri, sj) < p (the probability threshold), then (ri, sj) can 

be pruned
– Method: obtaining the upper bound of Pr(ri, sj)

• Page-level pruning
– If each interval value on a page has a probability less 

than p to join the interval in the other table, the page 
can be pruned  

• Index-level pruning
– To reduce I/O cost, extend the idea of page-level 

pruning by organizing the pages in a tree structure
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Confidence-Aware Joins

• Each tuple carries a confidence
– Only the joining results with high confidence should be 

returned
• Four types of queries

– Threshold: return only result tuples with confidence 
passing a threshold

– Top-k: return k tuples with the highest confidence 
values

– Sorted: return result tuples sorted by confidence
– Sorted-threshold: return result tuples with confidence 

above a threshold, sorted by confidence



J. Pei, M. Hua, Y. Tao, and X. Lin: Query Answering Techniques on Uncertain and Probabilistic Data 78

Confidence-Descending Processing
Essential idea

Prune-able region Nested loop method

The idea can be extended to handle top-k, sorted, and 
sorted-threshold queries

Adaptive nested 
loop: exploring 
“longer” rectangles
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Skyline Queries
• Numeric space D = (D1, …, Dn), larger values are 

more preferable
• Two points, u dominates v (u ≻ v), if 

– ∀ Di (1 ≤ i ≤ n), u.Di ≥ v.Di
– ∃ Dj (1 ≤ j ≤ n), u.Dj > v.Dj

• Given a set of points S, 
skyline = {u | u∈S and u is not 
dominated by any other point}
– Example: C ≻ B, C ≻ D

skyline = {A, C, E}
• A well studied problem with 

many applications
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Skylines on Uncertain Data

• Conventional methods compute the skyline on
– Individual game records
– Aggregate: mean or median

• Limitations
– Aggregates may be misled by outliers
– Data distribution is not captured

• Probabilistic skylines
– An instance has a probability to represent the object
– An object has a probability to be in the skyline
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Example

Brand-Agg (20.39,  2.67,  10.37)
Ewing-Agg (19.48,   1.71,   9.91)
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A Probabilistic Skyline Model

• A set of object S = {A, B, C}, 
each instance takes a 
probability (0.5) to appear

• Probabilistic Dominance
– Pr(A ≻ C) = 3/4 
– Pr(B ≻ C) = 1/2
– Pr((A ≻ C) ∨ (B ≻ C)) = 1
– Pr(C is in the skyline) ≠ (1 - Pr(A ≻ C)) × (1 - Pr(B ≻ C))
– Probabilistic dominance           Probabilistic skyline
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Skyline Probabilities

• Possible world: W = {ai, bj, ck}   (i, j, k = 1 or 2)
– Pr(W) = 0.5 × 0.5 × 0.5 = 0.125, ∑W∈Ω Pr(W) = 1

• SKY({a1, b1, c1}) = {a1, b1}
– A and B are in SKY({a1, b1, c1})

• B is in the skyline of 
possible worlds {a1, b1, c1}, 
{a1, b1, c2}, {a1, b2, c1}, and 
{a1, b2, c2} 
– Pr(B) = 4 × 0.125 = 0.5

• Pr(A) = 1, Pr(C) = 0
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Problem Statement

• Skyline probability: 

• For object: 

• For instance:

•

• p-skyline = {U | Pr(U) ≥ p} for a given threshold p
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Probabilistic Skyline Computation

∑
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The Bottom-Up Method

• Key idea: sort the instances of an object according 
to the dominance relation such that their skyline 
probabilities are in descending order

• Two instances u1 and u2 ∈ U, if u1 ≻ u2, then Pr(u1) 
≥ Pr(u2)
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The Layer Structure

• layer-1: the skyline of all 
instances

• layer-k (k > 1): the skyline
of instances except those at 
layer-1, …, layer-(k-1)

• ∀ u at layer-k, ∃ u’ at layer-(k-1) such that u’ ≻ u 
and Pr(u’) ≥ Pr(u)

• max{Pr(u) | u is at layer-(k-1)} ≥ max{Pr(u) | u is at 
layer-k}

• Bounding
– max{Pr(u1), Pr(u2)} ≥ max{Pr(u3), Pr(u4)} ≥ Pr(u5)
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The Top-Down Method

• For instances u1 and u2 ∈ U, 
if u1 ≻ u2, then Pr(u1) ≥ Pr(u2)
– N is a subset of instances of U, 

∀ u ∈ N, Pr(Nmax) ≥ Pr(u) ≥ Pr(Nmin)
• Object U has k partitions N1, …, Nk,

• Build a partition tree for each object to organize 
partitions

∑∑
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Partition Tree
• Binary tree

• Growing one level of the tree in each iteration
– Choose one dimension in a round-robin fashion
– Each leaf node is partitioned into two children nodes, 

each of which has half of instances
• Bound Pr(Nmax) and Pr(Nmin) of a partition N
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Skyline and Dynamic Skyline
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Reverse Dynamic Skyline Queries

• Given a query point q, find the set of objects 
whose dynamic skyline contains q

• Monochromatic probabilistic reverse skyline 
queries: find the uncertain objects whose dynamic 
skylines contain a query object with a probability 
passing a threshold

• Bichromatic probabilistic reverse skyline queries: 
given two distinct uncertain objects A and B and a 
query point q, find points o in A such that the 
dynamic skyline of o in B contains q

• Details in [Lian and Chen, SIGMOD’08]
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OLAP Query What are the total 
repair cost for F150’s in 
the East?
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Three Options

• None: ignore all imprecise facts
– Answer: p1, p2

• Contains: include only those contained in 
the query region
– Answer: p1, p2, p9

• Overlaps: include all imprecise facts whose 
region overlaps the query region
– Answer: p1, p2, p9, p10
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Consistency among OLAP Queries
Q5 = Q3 + Q4 is expected!

Consistency 
does not hold for 
option contains, 
but holds for 
options none 
and overlaps!
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Faithfulness of OLAP Queries
p9 is expected in Q5!

Faithfulness 
does not hold for 
option none, but 
holds for options 
contains and 
overlaps!
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OLAP Requirements

• Consistency (summarizability): some natural 
relationships hold between answers to 
aggregation queries associated with 
different (connected) regions in a hierarchy

• Faithfulness: imprecise data should be 
considered properly in query answering
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Possible Worlds
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Allocation and Query Answering

• The allocation weights encode a set of 
possible worlds D1, …, Dm with associated 
weights w1, …, wm

• The answer to a query is a multiset {v1, …, 
vm}

• Problem: how to summarize {v1, …, vm} 
properly?
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Answer Variable

• Consider multiset {v1, …, vm} of possible 
answers to a query Q

• Define the answer variable Z associated 
with Q to be a random variable with 
probability density function 

Pr[Z=vi]=Σj s.t. vi=vj wj, 1 ≤ i, j ≤ m
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Answer Variable

• The answer to a query can be summarized 
as the first and the second moments 
(expected value and variance) of the answer 
variable Z

• Basic faithfulness is satisfied if answers to 
queries are computed using the expected 
value of the answer variable
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Query Answering

• Identify the set of candidate facts and compute the 
corresponding allocations to Q
– Identifying candidate facts: using a filter for the query 

region
– Computing the corresponding allocations: identifying 

groups of facts that share the same identifier in the ID 
column, then summing up the allocations within each 
group

• Identify the information necessary to compute the 
summarization while circumventing the 
enumeration of possible worlds
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Allocation Policies

• Dimension-independent allocation such as 
uniform allocation

• Measure-oblivious allocation such as count-
based allocation
– If Vancouver and Victoria have 100 and 50 

F150’s, respectively, and there are another 30 
in BC as imprecise records, then allocate 20 
and 10 to Vancouver and Victoria, respectively
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Outline

• Introduction: motivations, applications and 
challenges

• Models and possible worlds
• Range search queries
• Ranking queries
• Advanced queries
• Summary: challenges and future directions



J. Pei, M. Hua, Y. Tao, and X. Lin: Query Answering Techniques on Uncertain and Probabilistic Data 104

Uncertain and Probabilistic Data

• Uncertainty is inherent in many applications
– Sensor networks, mobile equipment, social data

• Modeling uncertain and probabilistic data
– Individual objects: probability distribution 

function (PDF) or a set of sampled instances
– Distribution/configuration of a set of objects: 

possible worlds
– Enumerating all possible worlds is exponential
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Query Answering on Uncertain Data

• Range queries
• Ranking queries
• Advanced queries

– Joins
– Skyline queries
– OLAP queries

• We apologize that many recent studies 
cannot be covered in this 2 hour talk
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Future Directions

• Uncertain and probabilistic data processing is a 
fast-growing track

• How to extend well accepted queries on certain 
data to undertain and probabilistic data
– K-nearest neighbor search, reverse nearest neighbor 

search, continuous nearest neighbor search, …
• Novel types of queries

– U-kRank queries, queries about probability information
• Efficient/fast/scalable query answering algorithms

– Extending heuristics on certain data to uncertain data
– Theoretical analysis
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