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ABSTRACT
Mining user preferences plays a critical role in many impor-
tant applications such as customer relationship management
(CRM), product and service recommendation, and market-
ing campaigns. In this paper, we identify an interesting and
practical problem of mining user preferences: in a multidi-
mensional space where the user preferences on some cate-
gorical attributes are unknown, from some superior and in-
ferior examples provided by a user, can we learn about the
user’s preferences on those categorical attributes? We model
the problem systematically and show that mining user pref-
erences from superior and inferior examples is challenging.
Although the problem has great potential in practice, to the
best of our knowledge, it has not been explored systemat-
ically before. As the first attempt to tackle the problem,
we propose a greedy method and show that our method is
practical using real data sets and synthetic data sets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Algorithms, Experimentation

Keywords
Preferences, superior examples, inferior examples, skyline

1. INTRODUCTION
Mining user preferences plays a critical role in many im-

portant applications, such as customer relationship man-
agement (CRM), product and service recommendation, and
marketing campaigns. Although many existing studies have
explored how to use preferences to improve service quality
such as obtaining better query answering with user prefer-
ences [14, 15, 3], effectively capturing user preferences still
largely remains a challenging problem.
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In this paper, we identify an interesting and practical
problem: mining user preferences from superior and inferior
examples. To motivate the problem, consider an application
scenario where a realtor learns a customer’s preference and
makes recommendations.

A customer’s preference on realties depends on many fac-
tors, such as price, location, style, lot size, number of bed-
rooms, age of the realty, developer, etc. Some attributes,
such as price, are numeric and come with a well accepted
preference (e.g., the cheaper in price, the better). On some
categorical attributes such as location, style, and developer,
the preferences often vary from customer to customer. More-
over, a customer’s preferences on those categorical attributes
are often oblivious or may not be obtained by a realtor in a
complete and explicit way.

In order to recommend realties effectively, it is important
that a realtor can capture customers’ preferences well. A
typical scenario is that a realtor gives a list of realties as
examples. Then, a customer often picks a small subset as
superior examples which the customer wants to see. For each
superior example o, according to the customer’s preferences,
there does not exist another realty o′ which is as good as o
in every aspect, and is better than o in at least one aspect.
This condition is necessary for a superior example since,
otherwise, the user should see o′ instead of o.

The superior examples differ from each other in some as-
pects, which reflect the tradeoffs that the customer would
like to consider. For example, a customer may pick two su-
perior examples: one with a higher price in an area by the
beach, and the other with a lower price in an area without
a beach. The two superior examples indicate that the cus-
tomer is willing to consider the tradeoff between price and
the beach.

At the same time, the customer also often picks a small
subset as inferior examples which the customer definitely
does not want to see. For each inferior example o, according
to the customer’s preferences, there exists at least one realty
o′ which is as good as o in every aspect, and is better than o
in at least one aspect. In other words, the customer regards
o′ a better choice than o.

What can the realtor learn about the customer’s prefer-
ences from those superior and inferior examples? While
many realtors learn customers’ preferences in the above sce-
narios using their professional experience, in this paper, we
model the problem as mining user preferences from superior
and inferior examples, and develop a data mining solution
so that the learning procedure can be automated.

One may wonder whether obtaining superior and inferior



examples from a user is feasible in real applications, since a
user may not want to give examples by checking thousands of
realties currently available in the market. We advocate that
a practical solution to the user preference mining problem
is the core of the interactive learning and recommendation
procedure which can be heavily employed in e-business and
many other applications.

For example, instead of asking a user to pick examples
from thousands of realties in the market, a realtor can give
a short-list of tens of realties. A user can indicate some su-
perior and inferior examples in the short list. Using the pref-
erences learnt from this short-list and the superior/inferior
examples, a realtor can filter out those realties in the market
definitely uninteresting to the user, and recommend those in
the market definitely preferred by the user. Among the rest
that whether the customer prefers or not is unknown, an-
other short-list can be made and provided to the customer
so that more superior and inferior examples can be obtained.
By the interactive and iterative learning procedure, the cus-
tomer can be provided more and more accurate recommen-
dations as the preferences are learnt progressively.

Automation of the user preference mining procedure can
easily find significant applications in many domains. For
example, a realtor web site can be built based on the in-
teractive and iterative user preference learning and realty
recommendation procedure described above. Such recom-
mendation services are highly feasible and useful in many
web-based business applications.

Although of great potential, to the best of our knowledge,
the problem of mining user preferences from superior and in-
ferior examples has not been explored before. In this paper,
we tackle the problem and make several contributions. First,
we identify and model the problem systematically. Second,
our theoretical problem analysis indicates that mining pref-
erences from superior and inferior examples is challenging.
Therefore, we need to develop heuristic methods that are ef-
fective in practice. Third, we develop a greedy method and
show the effectiveness and the efficiency of the method using
both real data sets and synthetic data sets. Last, we discuss
possible extensions of our method and several interesting
and promising directions for future work.

The rest of the paper is organized as follows. In Sec-
tion 2, we present a formal problem definition and study
the complexity of the problem. We review the related work
in Section 3. A greedy method is developed in Section 4.
An extensive empirical evaluation using both real data sets
and synthetic data sets is reported in Section 5. Section 6
concludes the paper.

2. PROBLEM ANALYSIS
In this section, we define the problem of user preference

mining, and study the complexity of the problem. Table 1
summarizes some notions frequently used in this paper. Lim-
ited by space, the proofs of the theoretical results are omit-
ted here, but can be found in the full version of the paper [9].

2.1 Multidimensional User Preferences
Let O be a set of objects in a multidimensional space

D = D1 × D2 × · · · × Dd. O can be finite or infinite. A
user preference ≺ is a strict partial order on O. That is,
for objects o1, o2 ∈ O, if o1 ≺ o2, the user prefers o1 than
o2. Object o1 is said to dominate o2. We write o1 � o2 if
o1 ≺ o2 or o1 = o2.

Notion Meaning

O A set of objects.
D A multidimensional feature space of objects.
DD =
{D1, . . . , Dd′}

The set of determined attributes in D

DU =
{Dd′+1, . . . , Dd}

The set of undetermined attributes in D

d The dimensionality of D.
d′ The number of determined attributes.
o, o1, o2, o′, o′′ Objects in O.
≺,� A preference relation.
≺i,�i A preference relation on an attribute Di.
≺D The preference relation on the set of deter-

mined attributes.
E(≺) The size of the transitive closure of binary

relation ≺.
P (q) The set of objects partially dominating q

Table 1: The summary of frequently used notions.

Hotel name Star level Price

Amazing 5 180
Best View 4 160
Cindy’s 3 165

Table 2: A set of hotels in Example 1.

In many applications, due to the large size of O or some
other constraints, it is often infeasible to learn the user pref-
erence on O completely. Instead, the user preference can
often be decomposed into preferences on attributes in D fol-
lowing the principles of preferences in [14].

A user preference ≺i on an attribute Di ∈ D (1 ≤ i ≤ d)
is a strict partial order on the domain of Di. That is, for
two values u, v ∈ Di, if u ≺i v, the user prefers u than v.
Again, we write u �i v if u ≺i v or u = v.

The assumption of independent attributes is often made:
a user’s preference in space D is a composition of her/his
preferences on all attributes. The composition of a set of
preferences {≺1, . . . ,≺d} on attributes D1, . . . , Dd is a strict
partial order ≺= (≺1, . . . ,≺d) such that for any objects
o1, o2 ∈ O, o1 ≺ o2 if and only if o1.Di �i o2.Di for ev-
ery attribute Di ∈ D (1 ≤ i ≤ d), and o1.Di0 ≺i0 o2.Di0

holds on at least one attribute Di0 ∈ D. As indicated in [14],
such an assumption often holds in practice.

Example 1 (Preliminaries). Consider a customer’s
preference in choosing hotels. Suppose two factors matter:
the price (the lower the better) and the star level (the higher
the better). In the three hotels in Table 2, since Best View
is more preferable than Cindy’s in both star level and price,
Best View ≺ Cincy’s. Amazing is better than Best View in
star level, but Best View is cheaper than Amazing. Thus,
the customer does not prefer one than the other between
Amazing and Best View.

2.2 Problem Definition
On some attributes such as price, customers often have

well accepted and consistent preferences. For example, all
customers prefer low price. On some other attributes such
as hotel brands, airlines, and locations, however, the prefer-
ences may vary dramatically from one user to another.

An attribute is called determined if a preference is defined
on the attribute for all users. An attribute is called undeter-
mined if there is no preference defined on the attribute for



Object A B C

o1 a1 b1 c1
o2 a1 b1 c2
o3 a2 b1 c2
o4 a2 b2 c2
o5 a2 b3 c2

Table 3: The set of objects in Example 2.

all users. To keep our discussion simple, we focus on learning
user preferences on undetermined categorical attributes.

In order to learn preferences on undetermined attributes,
we need the input from a target user. In this study, we
assume that a target user provides two types of input: a
set S of superior examples and a set Q of inferior examples.
An object o1 is called a superior example if the target user
specifies that, according to the customer’s preference, o1 is
not dominated by any other objects o′. An object o2 is an
inferior example if the target user specifies that, according
to the customer’s preference, o2 is dominated by some other
objects o′′.

In literature, a superior example is also called a skyline
point or a maximal vector [16]. The skyline in a data set
is the complete set of all skyline points. A point is inferior
if it is not a skyline point. In a large data set, there can
be many superior examples. Please note that, in our model,
the target user is not required to specify all superior and
inferior examples. Instead, a user may only provide a small
number of superior and inferior examples. The data mining
task is to learn the user’s preferences as much as possible
using those examples.

Without loss of generality, let D = DD ∪ DU such that
DD∩DU = ∅, where DD = {D1, . . . , Dd′} (0 ≤ d′ < d) is the
set of determined attributes and DU = {Dd′+1, . . . , Dd} is
the set of undetermined attributes. Let ≺D be the preference
defined on DD. Given a set of objects O, a set S ⊆ O of
superior examples and a set Q ⊂ O of inferior examples such
that S ∩ Q = ∅, a set of preferences R = {≺d′+1, . . . ,≺d} is
called a satisfying preference set (SPS for short) if (1) ≺d′+i

(1 ≤ i ≤ d − d′) is a preference on attribute Dd′+i, and
(2) according to the composite preference ≺= (≺D,≺d′+1

, . . . ,≺d), every object o1 ∈ S is not dominated by any other
object o′ ∈ O, and every object o2 ∈ Q is dominated by at
least one other object o′′ ∈ O.

Generally, given a set of superior and inferior examples,
there may be no SPS, one SPS, or multiple SPSs.

Example 2 (SPS). Consider the set of objects in Ta-
ble 3. Let A be a determined attribute where the preference
is a1 ≺A a2. Let B and C be two undetermined attributes.

Suppose a user specifies the set of superior examples S1 =
{o1, o3} and the set of inferior examples Q1 = {o2}. The
user does not label objects o4 and o5. Object o2 is inferior,
and o1 is the only object that can dominate o2 in the data
set. Thus, examples o1 and o2 suggest c1 ≺C c2 on attribute
C. On the other hand, since o3 is superior, if c1 ≺C c2, then
o3 is dominated by o1. In other words, examples o1 and o3

suggest c1 6≺C c2. Therefore, there does not exist a SPS
with respect to S1 and Q1.

Suppose another user specifies the set of superior examples
S2 = {o1} and the set of inferior examples Q2 = {o4}. It is
easy to verify that both {b1 ≺B b2, c1 ≺C c2} and {b3 ≺B

b2} are SPSs with respect to S2 and Q2. In other words, the
SPSs are not unique in this case.

Suggested by Example 2, we study two problems in this
paper. The first problem is whether a SPS exists.

Problem 1 (SPS existence). Given a set of superior
examples S and a set of inferior examples Q, determine
whether there exists at least a SPS R with respect to S and
Q.

As elaborated by the second case in Example 2, multiple
SPSs may exist with respect to a set of superior examples
and a set of inferior examples. Then, how can we evaluate
the quality of the SPSs?

To avoid overfitting, we advocate the minimal SPSs which
are the simplest hypotheses that fit the superior and inferior
examples. A preference is a strict partial order which can be
represented as a binary relation. The complexity of a strict
partial order can be measured by the cardinality of the tran-
sitive closure of the binary relation. The intuition is that a
stronger preference relation sets preferences between more
pairs of objects than a weaker preference relation. Tech-
nically, let ≺ be a strict partial order. The complexity of
≺ is denoted by |E(≺)|, where E(≺) denotes the transitive
closure of ≺ as a binary relation.

The second problem about preference mining is to find a
minimal SPS.

Problem 2 (Minimal SPS). For a set of superior ex-
amples S and a set of inferior examples Q, find a SPS
R = {≺d′+1, . . . ,≺d} with respect to S and Q such that
|E(≺d′+1, . . . ,≺d)| is minimized. R is called a minimal SPS.

As described in Section 2.1, under the assumption of in-
dependent attributes, the preference in a multidimensional
space is the composition of the preferences in all attributes.
The complexity of the preference in a multidimensional space
can be derived by the following rule.

Theorem 1 (Multidimensional preferences). In
space D = D1 × D2 × · · · × Dd, let ≺i (1 ≤ i ≤ d) be a
preference on attribute Di, and ≺= (≺1, . . . ,≺d). Then,

|E(≺)| =

d
Y

i=1

(|E(≺i)| + |Di|) −
d

Y

i=1

|Di| (1)

where |Di| is the number of distinct values in attribute Di

in the data set.

2.3 Computational Complexity Analysis
In this section, we study the complexity of the SPS ex-

istence problem and the minimal SPS problem. When we
consider the two problems with l undetermined attributes,
we call them the l-d SPS existence problem and the l-d min-
imal SPS problem, respectively.

Lemma 1. The 2-d SPS existence problem is NP-complete.
Proof sketch. The SPS existence problem is in NP. We can
prove that the 2-d SPS existence problem is NP-complete by
polynomial time reducing the 3SAT problem [6].

Theorem 2. The existence problem is NP-complete, even
when there is only one undetermined attributes (i.e., l = 1).
Proof sketch. We can prove that there is a polynomial
time redution from the l-d SPS existence problem to the
(l + 1)-d SPS existence problem, and vice versa. Following
Lemma 1, the SPS existence problem is NP-complete.



Clearly, the minimal SPS problem is more difficult than
the SPS existence problem. For a set of preferences that
does not satisfy the given superior and inferior examples,
we define its complexity (Theorem 1) as infinity. Since the
minimal SPS problem is not in NP, applying Theorem 2, the
following theorem immediately follows.

Theorem 3. The minimal SPS problem is NP-hard.

3. RELATED WORK
User preferences have been well recognized important in

many applications. Kießling [14] introduced an expressive
theoretical framework for preferences. The framework con-
siders preferences in a multidimensional space. A set of
preference constructors are given for both categorical and
numerical domains. Our study follows the preference con-
struction framework in [14].

A statistical model of user preferences is presented in [12,
11]. In the statistical model, the frequency of an item in a
data set depends on two factors: the user’s preference and
the accessibility of the item. Moreover, a user’s preference
on an item can be further modeled as a function on the
features of the item as well as the user profile which can be
approximated by the user’s behavior history data.

A framework of expressing and combining preferences is
proposed in [1]. A user can assign a preference score to items
and a model is applied to combine preferences. However, the
model is predefined and is not learnt from data.

Different from [14, 12, 11, 1] which are dedicated to mod-
eling user preferences, this study focuses on mining prefer-
ences from examples.

The problem of mining user preferences has been accessed
by some previous studies from some angles different from
this study. For example, Holland et al. [7] develop the data
driven preference mining approach to find preferences in user
session data in web logs. The central idea is that the more
frequently an item appears, the more preferable the item
is. However, the mining methodology in [7] may not be
accurate since it does not consider the accessibility of data
items which is important as indicated by [11].

Most recently, the problem of context-aware user prefer-
ence mining is addressed in [8]. The major idea is that user
preferences may be transient when the context (e.g., the top-
ics in web browsing) changes. The data-driven approach [7]
is extended accordingly.

[7, 8] do not use any explicit preference examples provided
by users. To this extent, [7, 8] are analogous to the unsuper-
vised learning approaches in classical machine learning [19].
In this study, we advocate to use superior and inferior ex-
amples in preference mining. Our method is analogous to
the supervised learning approaches [19, 5].

There are also studies on supervised mining user prefer-
ences. Cohen et al. [20] develop an approach to order objects
given the feedback that an object should be ranked higher
than another. Joachims [10] uses a support vector machine
algorithm to learn a ranking function of web documents uti-
lizing user query logs of the search engine. Both studies
focus on mining the order of objects according to user pref-
erences. However, in this paper, instead of ordering objects,
we are interested in learning the preferences in attributes
which are the reason why objects should be ranked in such
an order. We mine the preference set on each attribute un-
derneath the preferences on object level.

Object-id D1 D2 D3 D4 Label

o1 1 5 a3 b3
o2 1 6 a2 b1 Inferior
o3 1 6 a2 b3
o4 2 2 a1 b1
o5 2 5 a2 b2 Inferior
o6 3 1 a4 b3
o7 3 4 a2 b2 Inferior
o8 6 1 a5 b1 Inferior
o9 6 1 a5 b3
o10 6 2 a1 b1 Inferior

Table 4: A set of objects as the running example.

Inferior P (q) Condition Cq(p)

o2
o1 Co2

(o1) = (a3 ≺3 a2) ∧ (b3 ≺4 b1)
o3 Co2

(o3) = (b3 ≺4 b1)

o5
o1 Co5

(o1) = (a3 ≺3 a2) ∧ (b3 ≺4 b2)
o4 Co5

(o4) = (a1 ≺3 a2) ∧ (b1 ≺4 b2)

o7
o4 Co7

(o4) = (a1 ≺3 a2) ∧ (b1 ≺4 b2)
o6 Co7

(o6) = (a4 ≺3 a2) ∧ (b3 ≺4 b2)

o8
o6 Co8

(o6) = (a4 ≺3 a5) ∧ (b3 ≺4 b1)
o9 Co8

(o9) = (b3 ≺4 b1)

Table 5: The conditions in the running example.

Our problem is also related to the classification problem.
But the existing classification methods cannot be applied
to the preference mining problem. In the traditional clas-
sification model, a set of training examples are labeled and
the distributions of classes in the data space is learnt. The
prediction is on the class of an unseen case. In this study,
the superior and inferior examples are based on the dom-
inance relation, and the relations between data points are
learnt. The prediction is on, given two cases whose domi-
nance relation is unknown, whether one case dominates the
other.

User preferences are used in many applications, such as
personalized recommendation systems [18] and preference
queries on large databases [13, 3, 4, 15, 17].

4. A GREEDY METHOD
As indicated in Section 2.3, the SPS existence problem

is NP-complete and the minimal SPS problem is NP-hard.
Any polynomial time approximation algorithm cannot guar-
antee to find a SPS whenever a SPS exists. In other words,
such an approximation algorithm may fail to find a SPS in
some cases where a SPS does exist. Moreover, any poly-
nomial time approximation algorithm cannot guarantee the
minimality of the SPSs found.

In this section, we develop a greedy method to mine a
simple SPS with respect to a set of superior examples S and
a set of inferior examples Q. Our focus is on the practicality
of the method – being simple and easily implementable.

For a set of preferences R on the undetermined attributes,
an object q ∈ Q is called satisfied if q is an inferior object
with respect to composite preference (≺D, R). Similarly,
a point s ∈ S is called satisfied if s is a superior object
with respect to (≺D, R). In Section 4.1, we give a method
to satisfy the inferior examples in Q. In Section 4.2, we
describe how to satisfy the superior examples in S.

4.1 Satisfying Inferior Objects
For two objects o1, o2 ∈ O, consider the preference ≺D on



the determined attributes. If o1 �D o2, whether o1 dom-
inates o2 depends on the preferences on the undetermined
attributes. o1 is said to partially dominate o2. On the other
hand, if o1 6�D o2, then no preferences on the undetermined
attributes can make o1 ≺ o2 in space D.

For each object q ∈ Q, let P (q) be the set of objects in O
that partially dominate q. If there exists an object p ∈ P (q)
such that p ≺D q and p.DU = q.DU , then q is satisfied. In
such a case, q is said to be trivially satisfied by ≺D. We can
remove q from Q.

Suppose q is not trivially satisfied. For any set of pref-
erences R on the undetermined attributes, if R satisfies q,
there must exist at least one object p ∈ P (q) such that
p ≺R q, where ≺R is the composite preference of R. We call
Cq(p) = p ≺R q a condition of q being an inferior example.

Technically, Cq(p) = ∧d′<i≤d,p.Di 6=q.Di
(p.Di ≺i q.Di).

Each conjunctive element (p.Di ≺i q.Di) is a preference
term (or term for short) of preference ≺i. A condition
consists of preference terms on multiple undetermined at-
tributes. And a preference term can appear in many condi-
tions. A condition is satisfied if and only if all terms in the
condition are satisfied.

In implementation, we build an in-memory R-tree on de-
termined attributes to facilitate detecting whether an infe-
rior object is trivially satisfied and computing the conditions
of inferior objects.

Example 3 (Conditions). Consider the set of objects
in Table 4 in space D = D1 × D2 × D3 × D4. Both D1 and
D2 are numeric attributes where small values are preferred.
D3 and D4 are undetermined. Suppose a user specifies a set
Q = {o2, o5, o7, o8, o10} of inferior examples.

Since o4 ≺ o10, o10 is trivially satisfied, and thus is re-
moved. Table 5 shows the conditions of the other 4 inferior
examples.

Intuitively, in order to satisfy all inferior examples in Q,
we have to satisfy at least one condition for each object in
Q. We can select one condition for each inferior example,
and then build a SPS by satisfying all selected conditions.
The total solution space is of size

Q

q∈Q |P (q)|. An exhaus-
tive method to find the minimal SPS enumerates all possible
solutions and outputs one SPS with the minimum complex-
ity. Clearly, an exhaustive method is computationally pro-
hibitive in practice. To tackle the problem, we develop two
greedy algorithms to find approximate minimal SPSs.

4.1.1 A Term-Based Algorithm
Let R = (≺d′+1, . . . ,≺d) be the SPS to be computed.

Initially, we set ≺i= ∅ for each undetermined attribute Di

(d′ < i ≤ d). We iteratively add a term t into a preference
≺i until all inferior examples in Q are satisfied. The util-
ity of a term t on attribute Di is measured by two factors:
(1) complexity increment CI(t) which is the increase of size
of E(R) if t is selected, and (2) inferior example coverage
Cov(t) which is the number of interior examples newly sat-
isfied if t is selected.

To keep the complexity of E(R) low, the smaller the com-
plexity increment and the larger the inferior example cover-
age, the better a term. We define a utility score of a term

t as score(t) = Cov(t)
CI(t)

, and select the term with the largest

utility score in each iteration. Algorithm 1 describes the
algorithm framework.

Algorithm 1 The term-based greedy algorithm.

Input: the set of objects O and a set Q ⊂ O of inferior exam-
ples;

Output: a SPS R = {≺d′+1, · · · ,≺d};
Description:

1: initialize all ≺i= ∅ (d′ < i ≤ d);
2: for all q ∈ Q do

3: compute P (q);
4: if q is not trivially satisfied then

5: for all p ∈ P (q) do

6: compute condition Cq(p)
7: end for

8: else

9: Q = Q \ {q}
10: end if

11: end for

12: while Q 6= ∅ do

13: update score(t) for each preference term t;
14: find the term t with the largest score(t) value;
15: if t conflicts with previous selected terms then

16: remove t;
17: else

18: include t into R;
19: for all q ∈ Q do

20: for all p ∈ P (q) do

21: if Cq(p) is satisfied then

22: Q = Q \ {q}; break;
23: end if

24: end for

25: end for

26: end if

27: end while

28: return R

Note that we cannot select a term which conflicts with the
terms selected in previous iterations. That is, if a term a1 ≺
a2 is already selected, then the conflicting term a2 ≺ a1 can-
not be selected, because a partial order is anti-symmetric.
Such a conflicting term is removed in lines 15 and 16.

Computing Complexity Increment.
For a preference on an attribute, if a preference term is

selected, multiple pairs may be added into the transitive
closure of the updated preference.

Example 4 (Implied preference terms). Suppose
on attribute D3, we have a1 ≺3 a2. If we add a new term
a3 ≺3 a1, due to the transitivity of partial orders, we have
a3 ≺3 a2 implied. Thus, the complexity increment on the
attribute is 2.

For a preference ≺i and a term t on attribute Di (d′ <
i ≤ d), if a term t′ holds in preference transitive closure
E(≺i ∪{t}) but not in E(≺i), then t′ is called an implied
preference term from t and ≺i. Imp(t,≺i) is the set of all
implied terms from t and ≺i. Trivially, t ∈ Imp(t,≺i).

As mentioned in Section 2, a preference on an attribute
can be represented as a directed acyclic graph. We main-
tain the transitive closure of ≺i on each undetermined at-
tribute Di. Once a term t on Di is selected, we can compute
Imp(f,≺i) in time O(|Di|) where |Di| is the cardinality of
Di. Using Theorem 1, we can compute the complexity of
the new preference and derive the complexity increment.

Example 5 (complexity increment). In Table 4,
R = {≺3,≺4}. |D3| = 5 and |D4| = 3. Suppose, before an
iteration, ≺3= {a1 ≺3 a2} and ≺4= ∅. Applying Theorem 1,



|E(R)| = (1+5)×3−5×3 = 3. If a3 ≺3 a1 on D3 is selected
in the iteration, as shown in Example 4, |E(≺3)| = 3. So
|E(R)| = (3 + 5) × 3 − 5 × 3 = 9. Therefore, the complex-
ity increment of a3 ≺3 a1 is CI(a3 ≺3 a1) = 9 − 3 = 6.
Similarly, CI(b1 ≺4 b2) = 6.

Computing Inferior Example Coverage.
A condition Cq(p) of an inferior example q consists of at

most (d − d′) terms, each on one undetermined attribute.
We write t ∈ Cq(p) if t is a conjunctive element of Cq(p).
We also denote by |Cq(p)| the number of terms in condition
Cq(p). |Cq(p)| ≤ d− d′. If a term t ∈ Cq(p) is selected, then

1
|Cq(p)|

of terms in Cq(p) are satisfied. Thus, we define the

coverage of term t over condition Cq(p) as

Cov(t, Cq(p)) =

(

1
|Cq(p)|

if t ∈ Cq(p)

0 if t /∈ Cq(p)

Example 6 (Coverage of term over condition).
In Table 5, the coverage of term b3 ≺4 b1 over condition
Co2

(o1) is Cov(b3 ≺4 b1, Co2
(o1)) = 1

2
. Similarly, Cov(b3 ≺4

b1, Co2
(o3)) = 1, Cov(b3 ≺4 b1, Co8

(o6)) = 1
2
, and Cov(b3 ≺4

b1, Co8
(o9)) = 1.

How should we define the coverage of a term over an in-
ferior example? The above example indicates that a term
t can appear in more than one condition of an inferior ex-
ample, and it can appear in the conditions of many inferior
examples. Moreover, we also have to consider the terms
implied from t. Let us see the example below.

Example 7 (Coverage of implied terms). In
Table 5, suppose we already have term b3 ≺4 b1 on D4. Then
b1 ≺4 b2 implies b3 ≺4 b2. Because Cov(b1 ≺4 b2, Co5

(o4)) =
1
2

and Cov(b3 ≺4 b2, Co5
(o1)) = 1

2
, if b1 ≺4 b2 is selected,

then 1
2

of Co5
(o4) and 1

2
of Co5

(o1) will be satisfied. Fur-

thermore, 1
2

of o5 will be satisfied.

To sum up the above discussion, if a term t and its implied
terms appear in many conditions of an inferior example q,
the coverage of t over q is the largest coverage of t and its
implied terms over one condition of q. The reason is that
we only need to satisfy one condition in order to satisfy an
inferior example. Formally,

Cov(t, q) = maxt′∈Imp(t),p∈P (q){Cov(t′, Cq(p))}.

Finally, the total inferior example coverage of t is the sum
of the coverage of t over all inferior examples, that is,

Cov(t) =
X

q∈Q

Cov(t, q).

Example 8 (Inferior Example Coverage). Continue
Example 6, we have Cov(b3 ≺4 b1) = max{0.5, 1}+max{0.5, 1} =
2.

If b1 ≺4 b2 is already selected before, then b3 ≺4 b1 implies
b3 ≺4 b2, therefore Cov(b3 ≺4 b1) changes to 3.

We elaborate the term-based greedy method in the fol-
lowing example.

Example 9 (The term-based greedy algorithm).
We run the term-based greedy algorithm on our running ex-
ample (Tables 4 and 5). Table 6 shows the utility score

Term \ Iteration 1 2 3

D3

a1 ≺3 a2 1/3 1/4 * \
a3 ≺3 a2 1/3 0.5/4 0.5/4
a4 ≺3 a2 0.5/3 0.5/4 0.5/4
a4 ≺3 a5 0.5/3 \ \

D4

b1 ≺3 b2 1/5 1/10 2/12 *
b3 ≺3 b1 2/5 * \ \
b3 ≺3 b2 1/5 1/5 1/6

Table 6: A running example of term-based algo-

rithm.

Algorithm 2 The condition-based greedy algorithm.

Description:

1-12: same as Algorithm 1
13: update score(Cq(p)) for each condition Cq(p);
14: find the condition Cq(p) with the largest score(Cq(p));
15: if any term of Cq(p) conflicts with previous selected

terms then

16: remove Cq(p);
17: else

18: include all terms of Cq(p) into R;
19-28: same as Algorithm 1

(Cov/CI) of each term in each iteration. Once a term is
selected in an iteration (marked by *), the conditions of all
satisfied inferior examples are removed, and some terms are
also removed if they do not appear in any surviving condi-
tion (e.g., a4 ≺3 a5 in iteration 1).

After iteration 3, all inferior examples are satisfied. Fi-
nally, we obtain a SPS R = {≺3,≺4} where ≺3= {a1 ≺3 a2}
and ≺4= {b1 ≺4 b2, b3 ≺4 b1, b3 ≺4 b2}. |E(R)| = 21.

4.1.2 A Condition-Based Algorithm
The term-based algorithm selects one term in each iter-

ation, eventually to satisfy at least one condition for each
inferior example. Once the best term t is selected, the con-
ditions containing t are likely to be satisfied very soon, since
they have less terms left. However, if such a condition has
a term t′ with large complexity increment, then selecting t′

will result in large complexity of the final result.
For example, in iteration 2 in Example 9, the best term

is a1 ≺3 a2. Once it is selected, b1 ≺4 b2 is selected in the
next iteration due to the fact that they are both in conditions
Co5

(o4) and Co7
(o4). But the complexity increment of b1 ≺4

b2 is large (12). Apparently, it may not be a good choice.
To overcome the deficiency of the term-based algorithm,

we develop a condition-based algorithm which selects the
best condition in each iteration, instead of the best term.

We define the inferior example coverage of a condition
Cq(p) to be the sum of the inferior example coverages of all
its terms. That is,

Cov(Cq(p)) =
X

t∈Cq(p)

Cov(t).

We also apply Theorem 1 to compute the complexity incre-
ment of Cq(p) by selecting all terms of Cq(p). Please note
that CI(Cq(p)) is not equal to the sum of the complexity
increments of all its terms.

The utility of a condition is defined as score(Cq(p)) =
Cov(Cq(p))/CI(Cq(p)). Algorithm 2 shows the condition-
based algorithm modified from Algorithm 1. We only modify
lines 13 to 18.



Example 10 (The condition-based algorithm). We
run the condition-based greedy algorithm on the running ex-
ample. Table 7 shows the utility score of each condition in
each iteration. Once a condition is selected in an iteration
(marked by *), the conditions of all satisfied inferior exam-
ples are removed.

All inferior examples are satisfied after iteration 3. We
obtain a SPS with ≺3= {a3 ≺3 a2, a4 ≺3 a2} and ≺4=
{b3 ≺4 b1, b3 ≺4 b2}. |E(R)| = 20, which is smaller than
that of the SPS obtained by the term-based algorithm.

4.2 Satisfying Superior Objects
In the greedy algorithms described before, when a term

(or a condition) is selected, the updated preferences may
make some superior objects dominated by other objects. We
call this term (condition) a violating term (condition). A
violating term (condition) cannot be selected and has to be
removed from further consideration.

Example 11 (Violating Condition). Suppose o3 is
indicated as a superior example of objects in Table 4. In
iteration 2 in Example 10, if Co5

(o1) is selected, a3 ≺3 a2 is
selected. Thus, o1 ≺ o3. Co5

(o1) is a violating condition.

We use superior objects as verifiers. In Algorithms 1
and 2, before we select the best term (condition) (line 18),
we check whether it is a violating term (condition). If yes,
it is removed.

5. EMPIRICAL STUDY
We conducted extensive experiments to study the effec-

tiveness and the efficiency of our two greedy algorithms,
using both synthetic data sets and real data sets. All al-
gorithms were implemented in C++ and compiled by GCC.
We ran experiments on a Pentium 4 2.8GHz PC with 512MB
memory running Red Hat Linux operating system.

5.1 Synthetic Data Sets
A synthetic data set consists of d′ determined attributes

and d − d′ undetermined attributes. Each determined at-
tribute is numerical. We use the benchmark data genera-
tor [2] to generate three types of distributions, anti-correlated,
independent, and correlated. The partial order of an undeter-
mined attribute D0 is generated by combining two indepen-
dent numerical attributes D′

1 and D′
2, that is, D0 = D′

1×D′
2.

Then the domain size of D0 is |D0| = |D′
1| × |D′

2|. For
two values (a1, b1), (a2, b2) ∈ D0 (a1, a2 ∈ D′

1, b1, b2 ∈ D′
2),

(a1, b1) ≺D0
(a2, b2) if (1) a1 ≤ a2 and b1 ≤ b2, and (2)

a1 < a2 or b1 < b2. By default, a data set has 100, 000
objects in a space with 3 determined attributes following in-
dependent distribution and 2 undetermined attributes. The
domain size of an undetermined attribute is 50.

To choose superior and inferior examples, we first pre-
define the preference on every undetermined attribute. Then
based on these preferences, we compute all superior objects
and inferior objects. Finally, superior and inferior examples
are randomly drawn from the set of superior and inferior
objects, respectively. The default numbers of superior and
inferior examples are both 40. Given a data set, the com-
plexity of the minimal SPS and the running time vary a
lot with respect to the selected examples, therefore in every
experiment, we run our algorithms on 10 sets of randomly
generated examples for the specified number of examples,

Inferior Condition 1 2 3

o2
Co2

(o1) 3/9 \ \
Co2

(o3) 2/5 * \ \

o5
Co5

(o1) 2/9 1.5/10 * \
Co5

(o4) 2/9 2/16 \

o7
Co7

(o4) 2/9 2/16 1/12
Co7

(o6) 1.5/9 1.5/10 1/5 *

o8
Co8

(o6) 2.5/9 \ \
Co8

(o9) 2/5 \ \

Table 7: A running example of condition-based al-

gorithm.

and report the average SPS complexity and average running
time.

We first compare the term-based greedy algorithm (TG)
and the condition-based greedy algorithm (CG) with an ex-
haustive algorithm (EX). Then we study the effectiveness
and efficiency of TG and CG.

5.1.1 Comparison with the Exhaustive Method
EX enumerates all possible solutions and outputs one SPS

with the minimum complexity. The time complexity of EX
is O(n

minf
p ), where np is the average number of objects that

partially dominate an object and minf is the number of infe-
rior examples. We can only run EX on very small data sets
with very few examples. Figure 1 shows the running time of
TG, CG, and EX on data sets with 200 objects. The number
of inferior examples is varied in the experiments, and it is
equal to the number of superior examples. Running time is
plotted in logarithmic scale. As expected, the running time
of EX increases exponentially with respect to the number of
examples, while TG and CG are much faster than EX.

Objects in correlated data sets are much easier to be
partially dominated than those in anti-correlated data sets.
Hence, objects in correlated data sets have much more con-
ditions than those in anti-correlated data sets, resulting in
longer running time of EX on correlated data sets than that
on anti-correlated data sets.

We use ratio = complexityG

complexityEX
to measure the effective-

ness of our greedy algorithms. complexityEX is the com-
plexity of the actual minimal SPS computed by EX, while
complexityG is the approximate result obtained by TG or
CG. Apparently, ratio ≥ 1 and the smaller the value of
ratio, the better the approximation. Figure 2 indicates that
both TG and CG are very accurate (ratio < 1.1) on three
types of data sets.

5.1.2 Effectiveness
Since EX is too slow, we exclude it in the rest of ex-

periments. To evaluate the effectiveness of our greedy al-
gorithms, we use ratio′ = complexity

cardinality
as the measurement.

Here, cardinality =
Qd

i=d′+1 |Di| is the domain size of the
space consisting of all undetermined attributes; while follow-
ing Theorem 1, complexity=

Qd

i=d′+1 |E(≺i)|−
Qd

i=d′+1 |Di|
is the complexity of the obtained SPS ≺= (≺d′+1, · · · ,≺d).
Intuitively, a smaller ratio′ represents a smaller SPS, hence,
a better result.

We observe in Figure 3 that ratio′ on anti-correlated data
sets are larger than that on independent data sets, and even
larger than that on correlated data sets. Because in anti-
correlated data sets, inferior examples are more likely to be
dominated by different objects, thus have different condi-
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Figure 1: Running time compared with the exhaustive algorithm.
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Figure 2: Accuracy compared with the exhaustive algorithm.

tions and different preference terms. So more terms are se-
lected. Moreover, the number of non-trivial examples (i.e.,
examples that are not trivially dominated) are few in corre-
lated data sets, where the SPS complexity is even small.

Figure 3(a) shows that ratio′ rises when we increase the
number of inferior examples from 20 to 100, since more pref-
erence terms are selected to satisfy more examples. However,
the increment is sub-linear due to that some examples may
share the same preference terms. Figure 3(b) shows that
ratio′ is not sensitive to the number of superior examples.
Because a superior example is used to eliminate wrong pref-
erence terms and its satisfaction does not increase the com-
plexity. In Figure 3(c), we vary the domain size of undeter-
mined attributes from 25 to 100. The complexity increases
linearly.

Figure 3 also indicates that CG finds a SPS with smaller
complexity than TG.

5.1.3 Efficiency
Figure 4 shows the running time of TG and CG on three

types of data sets with the effects of different factors. Gen-
erally, both TG and CG run faster on correlated data sets
while slower on anti-correlated data sets, because many ex-
amples in correlated data are trivially dominated.

Figure 4(a) shows the effect of increasing the size of data
sets from 50, 000 to 200, 000. TG and CG has similar perfor-
mance while CG is slightly faster than TG on anti-correlated
data sets. The running time of both algorithms increases
linearly.

Figures 4(b) and 4(c) vary the number of determined at-
tributes from 2 to 5 and the number of undetermined at-
tributes from 1 to 4, respectively. The running time in-
creases linearly against the number of determined attributes
while exponentially with respect to the number of undeter-
mined attributes. When the number of undetermined at-
tributes increases, the search space increases exponentially.

In Figures 4(d) and 4(e), we see that the running time rises
linearly when the domain size of undetermined attributes
and the number of inferior examples increase. Figure 4(f)
shows that the number of superior examples has negligible
effect on the efficiency of both algorithms.
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Figure 5: Accuracy on NBA data set.

In conclusion, both two greedy algorithms are effective
and practical. The condition-based algorithm is more accu-
rate than the term-based algorithm and it is also faster on
anti-correlated data sets.

5.2 Real Data Sets
We use the NBA data set (downloaded from www.nba.com)

to evaluate the accuracy of our greedy algorithms. The
data set contains the career average technical statistics of
3,924 players from 1946 to 2006. We select 5 attributes
from the data set, the average points per game (PTS), the
average steals (STL), the average blocks (BLK), the aver-
age rebounds (REB), and the average assists (AST). Large
values are preferred on all attributes.

In this experiment, we use PTS, STL, and BLK as 3 de-
termined attributes, and REB and AST as 2 undetermined
attributes. In common sense, the larger values of REB and
AST are prefered. The idea is that we hide the actual prefer-
ences on REB and AST. Then we use our greedy algorithm
to mine the preferences with some inferior and superior ex-
amples. We want to evaluate whether the mined prefer-
ences are consistent with common sense. This is quantified

by pct = |Ractual|
|Rmined|

, where Rtotal is the set of mined prefer-

ence terms and Ractual consists of terms in Rtotal which are
consistent with common sense. Larger pct indicates higher
accuracy.

We convert REB and AST into integers. REB has 23
distinct values while AST has 12. The inferior and superior
examples are drawn from pre-computed inferior and superior
objects using the actual preferences. Figure 5 shows pct with
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Figure 4: Running time.

different sets of inferior and superior examples. The running
time is negligible.

In Figure 5(a), we use 15 superior examples. pct increases
when the number of inferior examples increases from 5 to
25. Figure 5(b) shows that the result becomes more accu-
rate when the number of superior examples increases from 5
to 25. The number of inferior examples is 15. pct is around
90% when we have more than 15 inferior and superior ex-
amples. Again, CG has better performance than TG. This
experiment shows that in practice we often need a small
number of inferior examples to learn user preferences accu-
rately.

6. CONCLUSIONS
In this paper, we tackled a novel problem of mining user

preferences using superior and inferior examples. We elabo-
rated the applications of the problem and modeled the prob-
lem systematically. We showed that both the SPS existence
problem and the minimal SPS problem are challenging. As
the first attempt to tackle the problem, we devised a greedy
method. The empirical study using both real data and syn-
thetic data indicated that our greedy method is practical.
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