
Towards Multidimensional Subspace
Skyline Analysis

JIAN PEI

Simon Fraser University

YIDONG YUAN and XUEMIN LIN

The University of New South Wales and NICTA

WEN JIN and MARTIN ESTER

Simon Fraser University

QING LIU

The University of Queensland

WEI WANG

The University of New South Wales

YUFEI TAO and JEFFREY XU YU

The Chinese University of Hong Kong

and

QING ZHANG

E-Health Research Centre/CSIRO ICT

The skyline operator is important for multicriteria decision-making applications. Although many

recent studies developed efficient methods to compute skyline objects in a given space, none of

them considers skylines in multiple subspaces simultaneously. More importantly, the fundamental

The research of J. Pei was partially supported by NSERC Discovery Grants, NSERC Collaborative

Research and Development Grants, NSF Grant IIS-0308001, and IBM Eclipse Innovation Awards.

The research of Y. Yuan and Q. Lin was partially supported by ARC Discovery Grant (DP0666428).

The research of M. Ester was partially supported by NSERC. The research of Y. Tao was par-

tially supported by the RGC grant CityU 1163/04E from the HKSAR government. The research of

J. X. Yu was partially supported by RGC grant (CUHK418205) of HKSAR. All opinions, findings,

conclusions and recommendations in this paper are those of the authors and do not necessarily

reflect the views of the funding agencies.

Authors’ addresses: J. Pei, W. Jin, M. Ester, Simon Fraser University, Canada; email:

{jpei,wjin,ester}@cs.sfu.ca; Y. Yuan (also NICTA, Australia), X. Lin (also NICTA, Australia), W.

Wang, The University of New South Wales, Australia; email: {yyidong,lxue,weiw}@cse.unsw.edu.au;

Q. Liu, The University of Queensland, Australia; email: qing@itee.uq.edu.au; Y. Tao, J. X. Yu, The

Chinees University of Hong Kong; email: taofy@cs.cityu.edu.hk, yu@se.cuhk.edu.hk; Q. Zhang,

E-Health Research Centre/CSIRO ICT Centre, Australia; email: qing.zhang@csiro.au.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0362-5915/06/1200-1335 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006, Pages 1335–1381.

1336 • J. Pei et al.

problem on the semantics of skylines remains open: Why and in which subspaces is (or is not) an

object in the skyline? Practically, users may also be interested in the skylines in any subspaces.

Then, what is the relationship between the skylines in the subspaces and those in the super-spaces?

How can we effectively analyze the subspace skylines? Can we efficiently compute skylines in

various subspaces and answer various analytical queries?

In this article, we tackle the problem of multidimensional subspace skyline computation and

analysis. We explore skylines in subspaces. First, we propose the concept of SKYCUBE, which consists

of skylines of all possible nonempty subspaces of a given full space. Once a SKYCUBE is materialized,

any subspace skyline queries can be answered online. However, SKYCUBE cannot fully address the

semantic concerns and may contain redundant information. To tackle the problem, we introduce

a novel notion of skyline group which essentially is a group of objects that coincide in the skylines

of some subspaces. We identify the decisive subspaces that qualify skyline groups in the subspace

skylines. The new notions concisely capture the semantics and the structures of skylines in various

subspaces. Multidimensional roll-up and drill-down analysis is introduced. We also develop efficient

algorithms to compute SKYCUBE, skyline groups and their decisive subspaces. A systematic perfor-

mance study using both real data sets and synthetic data sets is reported to evaluate our approach.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications;

H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Skyline query, multidimensional data analysis, data cubing

1. INTRODUCTION

It has been well recognized that the skyline operator is important for
multicriteria decision making applications. A (classic) illustrative example of
skyline queries is to search for hotels in Nassau (Bahamas) which are cheap
and close to the beach [Börzsönyi et al. 2001]. Suppose each hotel has two at-
tributes: the price and the distance to the beach. Hotel p dominates hotel q (or,
p is a better choice than q in the context of this example) if p.price ≤ q.price,
p.distance ≤ q.distance and at least one inequality holds. Those hotels not
dominated by others in terms of price and distance to the beach form the sky-
line. In other words, the skyline hotels are all possible trade-offs between price
and distance to the beach that are superior to other hotels not in the skyline.

There are many recent studies on efficient methods for skyline computation.
Please see Section 6 for a brief review. However, the fundamental questions
about the semantics of skyline remain open.

Example 1 (Intuition). Consider a set of 5 objects in 2D space (A, B) as
shown in Figure 1. It is easy to verify that objects P1, P2, and P3 are in the
skyline in space (A, B) since each of them is not dominated by any other objects.

In the same figure, we also plot the projections of the objects on dimensions
A and B, respectively. In subspace A, the projections of P1 and P4 collapse. Both
are in the subspace skyline of A. In subspace B, the projection of P3 is in the
subspace skyline. Since all objects collapse in the trivial subspace ∅, hereafter,
we use the term subspace to refer to only nonempty ones except for specifically
mentioned ones.

Although P1, P2, and P3 all are skyline objects in the full space (A, B), there
are some subtle differences among them. Both P1 and P3 have some projections
which are in some subspace skylines (i.e., subspaces A and B, respectively), but

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1337

Fig. 1. An example showing the intuition.

no projection of P2 is in the subspace skyline of any proper subspace. A closer
look finds that P1 taking value 1 on dimension A is already sufficient to qualify
P1 as a skyline object. Similarly, the value 1 of P3 on dimension B is critical for
the skyline membership of P3. On the other hand, P2 is a skyline object only if
both dimensions A and B are considered—it needs two dimensions to qualify.
In other words, subspaces A and B are decisive to P1 and P3, respectively, and
subspace (A, B) is decisive to P2.

Although both P4 and P5 are not in the skyline in space (A, B), they are still
subtly different if we look at the subspaces. The projection of P4 is in the skyline
in subspace A but P5 has no projection belonging to a subspace skyline. P4 is
dominated by P1, nevertheless, the dominance is partial, that is, P4 takes the
same value as P1 in dimension A and thus has the chance to be in the skyline
in subspace A. In other words, subspace A is also decisive to P4 since A enables
P1 as a skyline object in some subspace (subspace A itself in this example).

While the skyline in Example 1, which involves a two-dimensional space and
only a few objects, is simple and easily perceived, the general situation may be
much more complicated when many dimensions and many objects are involved.
Nevertheless, the observations in Example 1 illustrate one important intuition.
Skylines in various subspaces are interesting and meaningful. Whether an
object is in the skylines of the full space or of some subspaces is determined by
the values of the object in some decisive subspaces. The decisive subspaces and
the values in those subspaces vary from object to object in the skyline. For a
particular object, the values in its decisive subspaces justify why and in which
subspaces the object is in the skyline—the semantics of the object with respect
to skyline.

Why should we care about the semantics of skylines? Semantics is important
in order to understand data. For example, Section 7 analyzes a real data set
which contains 17,226 records of Great NBA Players’ seasonal performance
from 1960 to 2001. Wilt Chamberlain’s performance in 1960 is in the skyline of
the full space, which can be identified by the conventional skyline computation
methods. However, one may wonder which merits really make Chamberlain
that outstanding. The semantics analysis in Section 7 shows that Chamberlain
was outstanding in total rebounds in the season of 1960 by achieving the record
of 2,149 in the NBA history. The attribute of total rebounds is the decisive
subspace that establishes his superior status. In fact, he was not exceptional
in any other factors such as total assists. As another example, Michael Jordan
does not hold any record in any single attribute. However, his performance in

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1338 • J. Pei et al.

1988 is in the skyline of subspaces (total points, total rebounds, total assists)
and (games played, total points, total assists), and also in the skyline of the
full space. The two subspaces are decisive and explain why Michael Jordan
is an outstanding player. Clearly, such information cannot be captured by the
traditional skyline computation and analysis in the full space.

The concepts of skyline groups and decisive subspaces can also be used imme-
diately for efficient query answering. For example, given an object or a group
of objects, a skyline membership query determines the subspaces where the
object(s) are in the subspace skylines. On the other hand, given a subspace,
the subspace skyline query finds the set of objects whose projections are in the
subspace skyline.

The investigation of skylines in subspaces naturally introduces the problem
of subspace skyline analysis and computation: for a set of subspaces, find the
objects and their projections that are in the skylines of the subspaces, and
analyze their relationship. These types of queries are interesting and useful in
practice since, more often than not, a user may want to interactively examine
the skylines with respect to different combinations of attributes.

Motivated by these observations, in this article, we study the problem of
multidimensional subspace skyline computation and analysis. We make the
following contributions.

—We propose the concept of SKYCUBE, which consists of skylines of all possible
nonempty subspaces of a given full space. Once a SKYCUBE is materialized, any
subspace skyline queries can be answered online.

—We develop a theoretical framework to answer the question about semantics of
skyline: Why and in which subspaces is an object in the skyline? The semantics
of skyline objects is concisely captured by the novel notions of skyline groups
and the corresponding decisive subspaces. The subspaces where an object (or
a set of objects) is in the skyline can be effectively determined by the skyline
groups that the object belongs to and their decisive subspaces.

—We investigate the problem of subspace skyline analysis. Skylines in subspaces
can be concisely summarized by skyline groups. Moreover, skyline objects
in the full space can be selected as the representatives in skyline groups.
They catch the contour (i.e., technically, the projections) of the skylines. The
multidimensional roll-up and drill-down analysis is useful to support the
online analytic processing of skylines.

—We present efficient algorithms for subspace skyline computation. We develop
two algorithmic frameworks of different styles which can compute both a
SKYCUBE and the set of skyline groups as well as their decisive subspaces ef-
fectively. The algorithms make use of several important computation sharing
principles which are unique in the context of SKYCUBE computation.

—A systematic performance study using both synthetic and real data sets is con-
ducted to evaluate our approach. We showcase some interesting findings in
the skyline semantic analysis using the real data set about technical statis-
tics of NBA players and justify why they are meaningful in practice. Moreover,
we use benchmark synthetic data sets to test the efficiency and the scalability
of our algorithms.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1339

The rest of the article is organized as follows. In Section 2, we extend the
concept of skyline to multidimensional subspaces and introduce the concept of
SKYCUBE. In Section 3, we introduce the notions of skyline groups and decisive
subspaces and justify how the new notions capture the semantics of objects with
respect to skylines. In Section 4, we tackle the problem of subspace skyline
analysis. In Section 5, we present the algorithmic frameworks for subspace
skyline computation, including the specific algorithms to compute SKYCUBE and
skyline groups as well as their decisive subspaces. We review related work in
Section 6. An extensive performance study is reported in Section 7. The article
is concluded in Section 8.

2. MULTIDIMENSIONAL SUBSPACE SKYLINES AND SKYCUBE

In this section, we extend the concept of skyline to multidimensional subspaces,
and introduce the concept of SKYCUBE.

Hereafter, by default we consider a set S of objects in a d -dimensional space
D = (D1, . . . , Dd), where dimensions D1, . . . , Dd are in the domain of numbers.
For the sake of brevity, we often do not explicitly mention S and D when they
are clear in the context.

For objects p, q ∈ S, p is said to dominate q if p.Di ≤ q.Di for 1 ≤ i ≤ d , and
there exists at least one dimension Di0 such that p.Di0 < q.Di0 . Object p is a
skyline object if p is not dominated by any other objects in S.

The notion of skyline can be intuitively extended to subspaces.

Definition 2.1 (Subspace skyline). A subset of dimensions B ⊆ D (B �= ∅)
forms a (nontrivial) |B|-dimensional subspace of D. For an object p in space D,
the projection of p in subspaceB, denoted by pB, is a |B|-tuple (p.Di1 , . . . , p.Di|B|),
where Di1 , . . . , Di|B| ∈ B and i1 < · · · < i|B|.

The projection of an object p (p ∈ S) in subspace B ⊆ D is in the subspace
skyline (of B) if pB is not dominated by any qB in B for any other object q ∈ S.
p is also called a subspace skyline object (of B).

For example, in Figure 1, the projections of both P1 and P4 are in the subspace
skyline in subspace A, and the projection of P3 is in the subspace skyline in
subspace B.

Skylines in all possible nonempty subspaces form a SKYCUBE.

Definition 2.2 (SKYCUBE). The set of all skyline objects in subspace B is de-
noted by SKYB(S). A SKYCUBE is the set of all skylines in all possible nonempty
subspaces, that is,

SKYCUBE(S, D) = {(B, SKYB(S))|B ⊆ D, B �= ∅}.
SKYB(S) is called a cuboid of subspace B.

Example 2 (SKYCUBE). Consider the objects in Figure 2(a) as our running
example. The SKYCUBE is shown in Figure 2(c).

The structure of the SKYCUBE can be visualized in a lattice structure similar
to that of the data cube in the data warehouse (see the example in Figure 2(b)).
From the bottom to the top of the SKYCUBE, we number each level of the
cuboid increasingly. For two cuboids SKYU (S) of subspace U and SKYV (S) of

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1340 • J. Pei et al.

Fig. 2. SKYCUBE of the running example.

subspace V in a SKYCUBE, if U ⊂ V, we call SKYV (S) an ancestor of SKYU (S),
and SKYU (S) a descendant of SKYV (S). Specially, if U ⊂ V and |V − U | = 1, we
also call SKYV (S) a parent cuboid of SKYU (S), and SKYU (S) a child cuboid of
SKYV (S).

A subspace skyline query asks for the set of skyline objects in a given sub-
space. Clearly, once a SKYCUBE is materialized, any subspace skyline queries can
be answered efficiently since all subspace skylines are precomputed.

A SKYCUBE may contain redundant information. For example, in Figure 2(c),
we can observe that the skylines in subspaces A, D, and (A, D) have the
identical set of objects. As another example, the skylines in subspaces (A, C),
(C, D), and (A, C, D) consist of the same set of objects. Why may a group of
objects appear together in the skylines of some subspaces? Can we eliminate
the redundancy in skyline representations and also in multidimensional
skyline analysis? These questions motivate our exploration of the semantics of
subspace skylines.

3. SEMANTICS

For an object or a set of objects, in which subspaces is the object (or are the
objects) in the skylines? We answer this question in this section. We first illus-
trate the ideas. Then, we introduce the new notions. Last, we elaborate on how
the new notions capture the semantics of skyline objects and answer skyline
membership queries.

3.1 Ideas

In general, if an object p is in the skylines of subspaces B1 and B2 such that B1 ⊂
B2, can we declare that p is also in the skyline of any subspace B in between,

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1341

that is, B1 ⊂ B ⊂ B2? This property is appealing since it may considerably
simplify the determination of skyline membership in subspaces. Unfortunately,
the general situation is far from being so simple.

Example 3 (Ideas). Consider the objects in Figure 2(a) again, and the sub-
space skylines in Figure 2(c). We obtain the following two observations.

First, object P1 is in the skylines of full space (A, B, C, D) and of subspace A.
However, it is not in the skyline of subspace (A, B) since its projection, (1, 4, ∗, ∗),
is dominated by (1, 3, ∗, ∗), the projection of P2. This demonstrates that, in
general, for subspaces B1, B2 and B such that B1 ⊂ B ⊂ B2, even though an
object is in the subspace skylines of B1 and B2, it may not be in the subspace
skyline of B in between.

Second, objects P1 and P2 collapse in subspace (A, D). The projection
(1, ∗, ∗, 7) is in the subspace skyline of (A, D). Thus, any dimension values in
subspaces A, D or (A, D) qualifying P1 as a subspace skyline object in those
subspaces also establish the same qualification for P2, and vice versa. In other
words, if a group of objects collapse in a subspace B, then the objects in the
same group share the skyline membership in all subspaces of B.

The observations in Example 3 can be summarized as follows.

—Generally, the skyline membership is not monotonic, that is, being in the
skyline of subspace B does not automatically qualify an object in the skyline
of superspaces of B. The object may be dominated in the superspaces of B by
some other objects which have the same values in B.

—Objects coincide and form groups in subspaces. The skyline memberships
in subspaces are shared by all objects in the same group. The convergence
and divergence of groups from subspace to subspace play critical roles in
forming the skylines of various subspaces. Therefore, it is critical to cap-
ture groups of objects whose shared projections are in the skylines of the
subspaces.

3.2 Skyline Groups and Decisive Subspaces

Now, let us consider objects that collapse in subspaces. They form groups that
are critical in our multidimensional subspace skyline analysis.

Definition 3.1 (C-group). Let G ⊆ S be a subset of objects and B ⊆ D
be a subspace. (G, B) is a coincident group (or c-group for short) if, for each
dimension in B, all objects in G share a same value. The projection of the group
in B, denoted by GB, is uB where u ∈ G.

A c-group (G, B) is maximal if no any other objects p ∈ (S − G) share the
same values as those in G on dimensions in B, and objects in G do not share
a same value on any other dimension D ∈ (D − B). B is called the signature
subspace of G.

Example 4 (C-group). Consider objects P1 and P2 in Figure 2(a). They
share the same value on dimension A. Thus, P1 and P2 form a coincident group
(or c-group for short) on A.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1342 • J. Pei et al.

No other objects have the same value on A. Although we cannot add new ob-
jects into the group ({P1, P2}, A), it can be expanded by including more dimen-
sions. P1 and P2 share the same values in A and D but no other dimensions.
Thus, we can maximize the group to include dimension D. ({P1, P2}, (A, D)) is
a maximal c-group.

Given a subset of objects G, we define I(G) as the maximum set of dimensions
that all objects in G share the same values. That is,

I(G) = {Di|Di ∈ D, ∀p, q ∈ G : u.Di = v.Di}.
Moreover, for a subspace B and a set of objects G, we define O(G, B) as the
maximum set of objects that have the same values on dimensions in B as objects
in G. That is,

O(G, B) = {p|p ∈ S, ∀Di ∈ B ∀q ∈ G : p.Di = q.Di}.
For example, on the data set in Figure 2, I({P1, P2} = AD, and O({P3}, C) =
{P1, P3}.

The previous two operators can be used to derive maximal c-groups for any
given subset of objects or a subset of objects and a subspace. Generally, given a
set of objects G, we can get a maximal c-group in two steps. First, we can find
the maximum subspace I(G) where the objects in G share the same projection.
Then, we can insert into G all other objects sharing the same projection GI(G).
On the other hand, if we want to derive a group in a subspaceB or its superspace,
we can first insert into G all other objects sharing the projection GB (i.e., the
set of objects becomes O(G, B)), and then find the maximum subspace where
the objects in O(G, B) share the same projection.

The following lemma formalizes these derivations and can be shown using
the related definitions immediately there after.

LEMMA 3.2 (C-GROUP). For a given subset of objects G, (O(G, I(G)), I(G)) is a
maximal c-group. For a given c-group (G, B), (O(G, B), I(O(G, B))) is a maximal
c-group.

We are particularly interested in maximal c-groups whose projections are in
the skylines of some subspaces. Intuitively, we want to capture the subsets of
values in their projections that are decisive to their skyline memberships.

Definition 3.3 (Skyline group and decisive subspace). Maximal c-group
(G, B) is called a skyline group if GB is in the subspace skyline of B.

For skyline group (G, B), a subspace C ⊆ B is called decisive if (1) GC is in the
subspace skyline of C; (2) O(G, C) = G; and (3) there exists no proper subspace
C ′ ⊂ C such that conditions (1) and (2) also hold for C ′.

The signature of skyline group (G, B) is written as Sig (G, B) =
〈GB, C1, . . . , Ck〉, where C1, . . . , Ck are all decisive subspaces of the skyline group.

Conditions (1) and (3) are straightforward. Condition (2) requires that the
decisive subspaces are exclusive to the group G. This reflects our intension
to catch the decisive factors for a group of objects that are in the (subspace)
skylines. We will revisit this point soon when we discuss the semantics.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1343

Example 5 (Skyline group). Consider the objects in Figure 2(a) again. In
the full space, P1, P2, and P3 are unique and each of them is a skyline object,
therefore, each of them forms a maximal c-group in space (A, B, C, D). Each
group contains only one object.

For group (P1, ABCD), where P1 and ABCD are shorthand for set {P1} and
subspace (A, B, C, D), respectively, subspace CD is decisive. Please note that
AD is not a decisive subspace for the group since P1 collapses with P2 in AD, and
the maximal c-group in AD contains two objects, that is, O(P1, AD) = P1 P2. In
other words, condition (2) in the definition is violated. Another decisive subspace
for this group is AC. Thus,

Sig(P1, ABCD) = 〈(1, 4, 5, 7), AC, CD〉.
As another example, for group (P1 P2, AD), its projection is in the subspace

skyline of AD. The group has two decisive subspaces, namely A and D. Thus,

Sig(P1 P2, AD) = 〈(1, ∗, ∗, 7), A, D〉.
Similarly, we have Sig(P1 P3, C) = 〈(∗, ∗, 5, ∗), C〉.

3.3 Semantics of (Subspace) Skyline Objects

The question about the semantics1 asks: For a given object or a group of objects,
can we determine the subspaces where the projections of the object(s) are in
the subspace skyline?

THEOREM 3.4 (DECISIVE SUBSPACE). For skyline group (G, B), if C is a decisive
subspace, then for any subspace C ′ such that C ⊆ C′ ⊆ B, GC ′ is in the subspace
skyline.

PROOF. We prove by contradiction. Suppose GC ′ is not in the subspace sky-
line, and is dominated by an object pC ′ in subspace C ′. Then, p �∈ G. For each
dimension Di ∈ C ′, p.Di ≤ GB.Di and the inequality holds on at least one di-
mension. On the other hand, since C is decisive, GC is not dominated by the
projections of any other objects. Thus, GC = pC . That means, O(G, C) ⊃ G,
which violates condition (2) in Definition 3.3.

Theorem 3.4 indicates how decisive subspaces capture the semantics of sky-
line objects: The skyline membership of an object or a group of objects is estab-
lished by its decisive subspaces.

Example 6 (Semantics). As shown in Example 5, Sig(P1, ABCD) =
〈(1, 4, 5, 7), AC, CD〉. Thus, P1 is in the skylines of subspaces inclusively bor-
dered by ABCD, AC and CD, as shown in Figure 3(a). This also explains why
we opt for the representation of signature.

The signature of skyline group (P1, ABCD) explains why and in which sub-
spaces P1 is in the skyline without any accompanying coincident objects. P1

coincides with P2 and P3 in some subspaces and thus may jointly be in some
subspace skylines. This is captured by the corresponding skyline groups.

1Here, we use the term semantics to refer to the meaning and the explanation of data.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1344 • J. Pei et al.

Fig. 3. The subspaces where object P1 in Figure 2(a) Is in the skyline.

THEOREM 3.5 (SEMANTICS). An object p is in the skyline of subspace C if and
only if there exists a skyline group (G, B) and its decisive subspace C ′ such that
p ∈ G and C ′ ⊆ C ⊆ B.

PROOF. (Direction if). Following Theorem 3.4, GC is in the subspace skyline.
Since p ∈ G, pC is also in the subspace skyline.

(Direction only-if). Consider the group of objects O(p, C). All objects in the
group are in the subspace skyline of C since they share the same values as p
on dimensions in C. Following Lemma 3.2, (O(p, C), I(O(p, C))) is a maximal
c-group. Furthermore, it is easy to see that the group must be in the skyline of
subspace I(O(p, C)). Thus, the group is a skyline group. We notice that subspace
C satisfies conditions (1) and (2) of Definition 3.3. Thus, if C is minimal, then
C itself is decisive, i.e., C ′ = C. Otherwise, there must exist a C ′ ⊂ C that C ′ is
decisive.

Theorem 3.5 can be extended to the cases of a set of objects that appear in
subspace skylines simultaneously.

COROLLARY 3.6 (A SET OF SKYLINE OBJECTS). A set of objects S are together in
the skyline of subspace C if and only if there exists a skyline group (G, B) and its
decisive subspace C ′ such that S ⊆ G and C ′ ⊆ C ⊆ B.

3.4 Answering Skyline Membership Queries

Theorem 3.5 leads to a generic yet simple framework of answering skyline
membership queries using skyline groups and their signatures: given an object
or a group of objects, determine the subspaces where the object(s) are in the
subspace skylines.

Suppose the set of skyline groups and their signatures are materialized. (The
algorithm for computing skyline groups and their signatures will be given in
Section 5.) Then, instead of searching all possible subspaces, we only need to
check the skyline groups in which the object is a member. This is effective since
only the signatures of the skyline groups are needed. Moreover, the skyline
groups can be indexed by their signatures to speed up the search. To illustrate,
we give an intuitive example here.

Example 7 (Semantics continued). Continued from Example 6, P1 is a
member of skyline group (P1 P2, AD) which has decisive subspaces A and D.
Thus, P1 is also in the subspace skylines of A, D, and AD. Similarly, as a

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1345

member of group (P1 P3, C), P1 is in the subspace skyline of C. The complete set
of subspaces where P1 is in the skyline is shown in Figure 3(b).

4. SUBSPACE SKYLINE ANALYSIS

The notion of skyline groups naturally leads us to explore skylines in subspaces.
When skylines in all subspaces are considered, it is imperative to ask: How are
the subspace skylines formed and what is the relationship among them?

4.1 Intuition

We try to decipher some elegant structures embedded in the subspace skylines.
Skylines in subspaces consist of projections of objects. For a projection that

is in the skyline of a subspace, the set of objects that share the same projection
form a c-group. By the c-group containment relationship, the projections in sub-
space skylines form a lattice called the skyline projection lattice (Theorem 4.1
in Section 4.2), which is a concise structure.

The projection lattice may contain redundant information. The critical point
here is that some projections in skylines of different subspaces may be made by
the same maximal group of objects. Conceptually, a skyline group is a maximal
group of objects that coincide in some subspaces and whose projections are
also in the subspace skyline. Therefore, we can use skyline groups to derive
a concise representation. Later in this section, we will show that the lattice
of skyline groups, called the skyline group lattice, is a quotient lattice of the
skyline projection lattice (Theorem 4.2 in Section 4.2).

Manipulating groups of objects all the time is still inconvenient. Ideally, we
would like to select some representatives for the skyline groups. Fortunately,
this is achievable since each skyline group must contain at least one object that
is in the skyline of the full space. This indicates that the full space skyline casts
the contours of skylines in subspaces.

4.2 Skyline Group Lattice

A projection pB where p ∈ S is called a skyline projection if it is in the skyline of
B. We can define a relation � on the set P of all skyline projections: for u, v ∈ P
that are in the subspace skylines of B1 and B2, respectively, u � v if B1 ⊇ B2

and uB2
= v.

For example, on the dataset in Figure 2, the projection of P1 on A, (1, ∗, ∗, ∗)
and the projection of P2 on AD, (1, ∗, ∗, 7) are skyline projections since they are
in the subspace skylines. (1, ∗, ∗, 7) � (1, ∗, ∗, ∗).

THEOREM 4.1 (SKYLINE PROJECTION LATTICE). Let P be the set of all skyline
projections with respect to a set of objects S. (P, �) is a complete lattice if
(∗, ∗, . . . , ∗) and ∅ are treated as the two trivial skyline projections for the unit
element and the zero element, respectively.

PROOF. Obviously, � is a partial order on P. We also notice that ∅ is the
projection of any objects in subspace ∅ (the trivial subspace), and (∗, ∗, . . . , ∗)
is the projection of an empty set of objects on all dimensions. They are trivial

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1346 • J. Pei et al.

and just technically make up the lattice. The completeness of the lattice follows
from the fact that the number of skyline projections is finite.

To characterize that multiple skyline projections may be made by one max-
imal group of objects, we define an equivalence among skyline projections as
follows. For any projection u in subspaceB, define the pre-image of u as the set of
objects that have u as the projection inB, denoted by pre(u) = {p|p ∈ S, pB = u}.
For two skyline projections u and v in subspacesB1 andB2, respectively, they are
equivalent (in terms of being generated by the same group of objects), denoted
by u ∼ v, provided pre(u) = pre(v).

THEOREM 4.2 (SKYLINE GROUP LATTICE). Let SG be the set of all skyline
groups. (SG, �) forms a complete lattice where � is on the projections in the
groups. Moreover, (SG, �) = (P, �)/ ∼.

PROOF. The claim follows from the fact that a skyline group also expands to
include all possible dimensions where the objects share the same projections.
For any skyline projections u in subspace B1 and v in subspace B2 such that u ∼
v, let G = pre(u) = pre(v). We show u and v are in fact in the same skyline group.

According to Lemma 3.2, (O(G, I(G)), I(G)) is a maximal c-group. From the
definition of pre-image, we know O(G, I(G)) = G, B1 ⊆ I(G) and B2 ⊆ I(G).
Now, we show that (G, I(G)) is a skyline group by contradiction.

Suppose (G, I(G)) is not a skyline group, that is, GI(G) is not in the skyline
of subspace I(G). Then, there must exist an object p �∈ G such that pI(G)

dominates GI(G), i.e., for each dimension Di ∈ I(G), p.Di ≤ q.Di where q ∈ G.
However, since GB1

is in the skyline of subspace B1, pB1
= qB1

. In other words,
p ∈ pre(u) = G. That leads to a contradiction.

Thus, u and v are in fact the projection of skyline group (O(G, I(G)), I(G)) on
B1 andB2, respectively. That means u and v belong to the same skyline group.

Theorem 4.2 shows that skyline groups capture skyline projections in sub-
space skylines effectively, and the signatures of skyline groups serve as the
summarization. Immediately, we know that the number of skyline groups is at
most the number of skyline projections.

Practically, is the summarization using skyline groups meaningful? In prac-
tice, data is more or less correlated. Thus, objects may share values in some
dimensions and form groups. In addition to capturing the semantics of sky-
line objects, skyline groups also summarize data records collapsing in some
subspaces and appearing in some subspace skylines.

4.3 Skyline Groups and Skyline Objects

Although skyline groups provide a succinct summarization of the skylines in
various subspaces, it still can be inconvenient and costly to manage all group
members if many objects exist in a dataset. Can we select some representative
objects from the skyline groups?

Encouragingly, we observe the following interesting fact.

THEOREM 4.3 (SKYLINE OBJECT). For any skyline group (G, B), there exists at
least one object u ∈ G such that u is in the skyline of full space D.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1347

PROOF. Let p be an object in G such that, in the full space D, p is not
dominated by any other objects in G. In other words, p is a skyline object with
respect to objects in G. Clearly, for any G �= ∅, we can find at least one object
that is in the skyline with respect to objects in G. We show that p is a skyline
object in D with respect to the set of all objects S.

Suppose p is dominated by q �∈ G in the full space D, then two cases may
arise. First, pB = qB, then q ∈ G, and it contradicts the assumption that p is
not dominated by any other objects in G. Second, if there exists a dimension
Di ∈ B that p.Di > q.Di, then given that p is dominated by q in the full space,
pB is dominated by qB. That leads to a contradiction to the assumption that pB
is in the subspace skyline.

Theorem 4.3 indicates that the skyline objects in the full space play critical
roles in the construction of subspace skylines, their projections are sufficient
to represent the contour of the skyline, that is, the dimension values of the
projections in the subspace skyline. In other words, an object that is not in the
skyline of full space can be in the skyline of some subspace only if it collapses
to some full space skyline object(s).

Please note that the other direction of Theorem 4.3 does not hold. Generally,
a maximal c-group that is not a skyline group still may have a skyline object
in the full space as a member. For example, in Figure 1, the group (P1 P5, B) is
a maximal c-group and P1 is a skyline object in the full space (A, B), but the
group itself is not a skyline group.

For a dataset S, we can obtain the set SK of skyline objects in the full space.
An object p is in the skyline of subspace B in S if and only if there exists an
object q that is in the skyline of the full space such that pB = qB and q is also
in the skyline of the same subspace B in SK .

For example, on the dataset in Figure 1, P4 is not in the skyline of the full
space. However, it is in the skyline of subspace A since it shares the same
value on A with P1, a full space skyline object, and P1 is also in the skyline of
subspace A.

Moreover, we have the following result on the relationship between subspace
skyline groups in a dataset and the subspace skyline groups in the subset of
full space skyline objects.

THEOREM 4.4 (SKYLINE GROUP LATTICES AND FULL SPACE SKYLINE OBJECTS). For
a dataset S, let SK be the complete set of skyline objects in the full space.
Furthermore, let SGS and SGSK be the skyline group lattices on datasets S
and SK, respectively. Then, SGSK is a quotient lattice of SGS.

PROOF. According to Theorem 4.2, both SGS and SGSK are complete lattices.
For any objects p, q ∈ SK , if p and q are in a skyline group (G, B) in SGS , then
we have pB = qB. Therefore, p and q must also be in the skyline on set SK. On
set SK, let G ′ = O({p, q}, B) and B′ = I(G ′). (G ′, B′) is a maximal c-group. Since
p and q are in the skyline of B, (G ′, B′) is also a skyline group on SK. According
to Theorem 4.3, every skyline group on S must contain at least one skyline
object in the full space. Thus, any skyline group (G, B) on S can be mapped to
a skyline group (O({p, q}, B), I(G ′)) on SK.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1348 • J. Pei et al.

Fig. 4. Relationships of the four types of lattices.

Fig. 5. Skyline group lattice for Figure 2(a).

On the other hand, for any skyline group (G ′′, B′′) on SK, skyline group (O(G ′′,
B′′), B′′) on S is mapped to the group on SK. Thus, the mapping is a surjection
from SGS to SGSK. The claim that SGSK is a quotient lattice of SGS follows.

On the other hand, if we are only concerned with the projections in the
subspaces skyline, only the skyline objects in the full space are necessary for
the analysis. In such a case, we do not need to manipulate all objects. This
potentially leads to a significant reduction in the computational cost.

Theorems 4.3 and 4.4 immediately have two practicaly useful applications.
First, they give rise to efficient algorithms for subspace skyline computation
which will be discussed in Section 5. Second, they can also lead to a novel
multidimensional analysis of subspace skylines which will be showcased in
Section 4.4.

In summary, we discuss four types of lattices in this section, namely, the
lattice of c-groups, the lattice of maximal c-groups, the lattice of skyline projec-
tions, and the lattice of skyline groups. Their relationships are summarized in
Figure 4.

4.4 Multidimensional Analysis on Skylines

Since the skyline groups form a complete lattice, it is natural to introduce the
multidimensional roll-up and drill-down analysis on skyline groups.

Example 8 (Multidimensional Analysis). Figure 5 shows the skyline group
lattice for the objects in our running example (Figure 2(a)). For each node in
the lattice, the projection, the skyline objects, and the decisive subspaces are
shown.

By browsing Figure 5, the following structural information about the sub-
space skylines can be presented.

—Subspace skylines. The information is recorded in the signatures.

—Relationships between skylines in subspaces. For example, from the figure,
we know that an object is in the subspace skyline of C if it has value 5 on C.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1349

There are two ways to further qualify the object as a skyline object in the full
space: either having value 3 on B (i.e., object P3), or having value 1 on A or
7 on D (i.e., object P1). The latter two values (A = 1 and D = 7) always come
together.

—Closure information. From the figure, we can learn that it is impossible to
have an object in the subspace skyline of BCD, but not in the subspace
skyline of ABCD. While a naïve method to derive this information has to
check all objects in the dataset, we derive this information from only the
skyline groups.

In practice, why are such roll-up and drill-down operations useful? When a
user examines subspace C, she finds that both P1 and P3 are subspace skyline
objects. This is interesting to her, but she would like to find out further in what
other subspaces P1 is also good and is better than P3. Then, she finds AC and
CD and their super-spaces through a roll-up.

Clearly, the online roll-up and drill-down analysis is not available in the
traditional skyline analysis.

5. MULTIDIMENSIONAL SUBSPACE SKYLINE COMPUTATION

Given a data set, the problem of multidimensional subspace skyline computa-
tion is to compute the skyline for each nonempty subspace. At the same time,
we also compute the complete set of skyline groups and their signatures as the
summarization of the skylines.

In this section, we first provide the theoretical analysis of SKYCUBE compu-
tation. Then, we identify a special condition, termed distinct value condition,
under which the key ideas of our proposed SKYCUBE computation algorithms
are easily illustrated. Finally, we present two novel SKYCUBE computation algo-
rithms, Bottom-Up and Top-Down algorithms.

5.1 Complexity of SKYCUBE Computation

As shown in previous study, with the dimensionality fixed, the skyline com-
putation is polynomial with respect to the number of objects. Thus, with the
dimensionality fixed, the complexity of skyline cubes and skyline groups com-
putation is also polynomial with respect to the number of objects.

Similar to data cube computation and many other OLAP problems, the major
challenge is the dimensionality curse. In this section, we study the complexity
of the computation with respect to the increase of the dimensionality.

The following theorems show that the problem of SKYCUBE computation is
NP-hard.

THEOREM 5.1 (COMPLEXITY OF SKYCUBE COMPUTATION). The problem of com-
puting a SKYCUBE is NP-hard.

PROOF. We prove the complexity by reducing the problem of mining frequent
itemsets [Agrawal et al. 1993] to computing a SKYCUBE.

Let ITEM be a set of items. An itemset X is a subset of ITEM. A transaction
database is a multiset of itemsets. For an itemset X and a transaction database

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1350 • J. Pei et al.

T , the support of X in T is the number of transactions in T that contain X
as a subset. For a given support threshold, an itemset is called frequent if its
support passes the threshold. The problem of frequent itemset mining is to find
all frequent itemsets.

To convert the problem, we create a database DB of |ITEM| dimensions, such
that a dimension is created for each item in ITEM. Each transaction is trans-
formed to an object in the following way: if item x appears in the transaction,
then the object takes value 0 on dimension Dx ; otherwise, it takes value 1. We
denote the object for transaction t by O(t). We also add one object O0 into the
database which takes value 0 in every dimension.

For any itemset X = {i j1
, . . . , i jk }, we consider subspace S(X) =

(D j1
, . . . , D jk). Clearly, transaction t contains X if and only if O(t) is in the

skyline of the subspace. In other words, the support of X is the number of sky-
line object in subspace S(X) minus 1 since O0 is always in the skyline of every
nonempty subspace.

Apparently, the reduction is of linear time. As shown in Angiulli et al. [2004],
mining categorical frequent itemsets is NP-hard. Thus, the problem of comput-
ing a SKYCUBE is also NP-hard.

THEOREM 5.2 (COMPLEXITY OF SKYLINE GROUP COMPUTATION). The problem of
computing the complete set of skyline groups is NP-hard.

PROOF. We reduce the problem of mining frequent closed item-
sets [Pasquier et al. 1999] to computing the set of skyline groups. An itemset
X is closed if and only if there exists any proper superset X ′ ⊃ X such that
sup(X) = sup(X ′). The problem of mining frequent closed itemsets was proved
NP-hard by Yang [Yang 2004].

The problem transformation is the same as in Theorem 5.1. For any itemset
X = {i j1

, . . . , i jk }, we consider subspace S(X) = (D j1
, . . . , D jk). Clearly, trans-

action t contains X if and only if O(t) is in the skyline of the subspace. In other
words, the support of X is the number of skyline object is subspace S(X) minus
1, since O0 is always in the skyline of every nonempty subspace.

Let {t1, . . . , tn} be the set of transactions containing X . Consider object set
G = {O(t1), . . . , O(tn)}. Now, we only need to show X is closed if and only if
(G, S(X)) is a skyline group.

All objects in G share the same values on all dimensions in S(X). More-
over, there exists no dimension on which all objects in G share a same value,
otherwise X is not closed. Therefore, (G, S(X)) is a skyline group.

To show the other direction, assume (G, S(X)) is skyline group, but X is
not closed. There must exist an itemset X ′ ⊃ X such that sup(X) = sup(X ′).
That is, every transaction containing X also contain X ′. Under the problem
transformation, all objects in G also share the same values on dimensions in
S(X ′ − X). That means (G, S(X)) is not a skyline group, a contradiction.

The problem transformation is of linear time. Thus, the theorem is proved.

5.2 Distinct Value Condition

Before we present our algorithms to compute the SKYCUBE and skyline groups
for a dataset, we discuss the relationship of skyline objects between an

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1351

ancestor and a descendant subspace in this section. In particular, we identify
the distinct value condition, under which the computations can be greatly
simplified. We also identify a theorem which guides our algorithms to deal
with the general case.

One difficulty of SKYCUBE computation lies in the fact that, in general, the
skyline of an ancestor subspace does not contain that of a descendant subspace.
That is, for two subspaces U and V such that U ⊂ V, SKYV (S) does not contain
all the skyline objects in SKYU (S) (S is the set of objects) as illustrated in
Example 3 and Figure 2.

Nevertheless, we have identified Theorem 5.3 which accurately characterizes
the relationship between skyline objects in the descendant subspace and its
ancestor subspace.

THEOREM 5.3. Given a set S of objects in the full space D, U , and V are two
subspaces where U ⊂ V. In subspace V, each skyline object q in SKYU (S) is either
dominated by another skyline object p in SKYU (S) such that pU = qU (and thus
q is not a skyline object in subspace V), or a skyline object in SKYV (S).

PROOF. For each skyline object q in SKYU (S), if there is another object p
such that pU = qU , p may dominate q in subspace V if p dominates q in the
subspace V −U . Obviously, p is a skyline object in SKYU (S) as well. Otherwise,
if such a skyline object p does not exist, q is a skyline object in SKYV (S) because
no other objects can dominate it in subspace V.

While Theorem 5.3 guides us in developing SKYCUBE and skyline group com-
putation algorithms for the general case, we have also identified a special sit-
uation, termed as distinct value condition (defined in Definition 5.4) where
the containment relationship between an ancestor and descendant subspace
holds.

Definition 5.4 (Distinct Value Condition). In a given set S of objects in the
full space D, the distinct value condition holds if for any two objects p and q,
∀D ∈ D, p.D �= q.D.

The distinct value condition dictates that no two objects share the same
projection in any subspace. The following two corollaries guarantee the
containment relationship between an ancestor and a descendant subspace as
well as the property of skyline groups under the distinct value condition.

COROLLARY 5.5 (CUBOIDS UNDER DISTINCT VALUE CONDITION). Under the dis-
tinct value condition, given a set S of objects, SKYU (S) ⊆ SKYV (S), for any
two subspaces U and V such that U ⊂ V.

PROOF. We prove by contradiction. Suppose there exists an object p ∈
SKYU (S) but p �∈ SKYV (S). There must be another object q such that q dom-
inates p in V. In other words, for any dimension D ∈ U ⊂ V, q.D ≤ p.D.
Under the distinct value condition, q.D �= p.D. Thus, q.D < p.D. That means
q dominates p in U , which contradicts the assumption.

COROLLARY 5.6 (SKYLINE GROUP UNDER DISTINCT VALUE CONDITION). Under the
distinct value condition, given a set of objects on the full space D, for any subset

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1352 • J. Pei et al.

of objects G �= ∅,

I(G) =
{
D if |G| = 1
∅ if |G| > 1

For any subset of objects G �= ∅ and subspace B �= ∅,

O(G, B) =
{

G if |G| = 1
∅ if |G| > 1

For any skyline group (G, B), |G| = 1 and B = D if B �= ∅.

PROOF. The corollary follows the definitions of I(G) and O(G).

Intuitively, with such good properties, SKYCUBE and skyline group computa-
tion under the distinct value condition is easier. For example, the skyline of a
child subspace can be computed from that of its parent subspace instead of the
original dataset which might be much larger. In the sequent sections, we will
discuss algorithms that assume the distinct value conditions and then present
modifications and extensions when such assumptions are dropped.

5.3 Bottom-Up SKYCUBE Computation

In this section, we present our Bottom-Up Skycube algorithm (BUS). The BUS
algorithm computes the skyline results of all possible nonempty subspaces as
well as the complete set of skyline groups and their signatures as the summa-
rization of the skylines. As the BUS algorithm adopts the basic idea of nested-
loop-based skyline algorithm to compute the skyline for each subspace, we first
introduce the two classical nested-loop-based skyline algorithms: the Block-
nested-loop (BNL) algorithm and the Sort-filter-skyline (SFS) algorithm.

For the ease of illustration of the BUS algorithm, we first assume that the
distinct value condition holds. The BUS algorithm takes advantages of two
computation sharing strategies: sharing result and sharing sorting. To save
unnecessary pairwise comparisons between objects, a filter-based heuristic is
developed. This heuristic greatly improves the performance of BUS, which is
confirmed by our extensive experiment evaluations. Finally, we discuss the
modifications on BUS to deal with cases where the distinct value condition
does not hold.

5.3.1 The BNL and SFS Algorithms. To compute the skyline, BNL scans
the dataset and compares each object p with the current list of candidate skyline
objects. Initially, the candidate list is empty. If p is dominated by any object in
the list, it is discarded. If p dominates some of objects in the list, it is inserted
into the list and all dominated objects are deleted from the list. If p is neither
dominated nor dominates any objects in the list, it is inserted into the list as a
new candidate. After examining all the objects, BNL outputs all the candidates
in the list as the skyline result.

In order to reduce the number of pairwise comparisons between objects in
BNL, SFS introduces the entropy value [Chomicki et al. 2003]. The entropy
value of an object p on subspace U is EU (p) = ∑

∀Di∈U ln(p′.Di + 1), where p′.Di

is the normalized value of p.Di. Intuitively, the smaller the entropy value is,

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1353

the less likely the object is dominated by others. Based on this observation,
SFS presorts the data set in nondecreasing order of the entropy values. Then,
SFS examines the objects in this order in a similar way to BNL. As the objects
with smaller entropy values are examined first, in general, skyline objects can
be found earlier. Therefore, the number of unnecessary comparisons between
objects and non-skyline objects in the candidate list is reduced.

5.3.2 The Bottom-Up SKYCUBE Algorithm (BUS). The basic idea of the BUS
algorithm is to compute each cuboid in the SKYCUBE in a levelwise and bottom-
up manner. Each cuboid is computed by a nested-loop-based algorithm similar
to SFS [Chomicki et al. 2003]. Note that a naı̈ve generalization of the SFS
algorithm for the SKYCUBE computation does not have good performance for two
reasons: (1) each cuboid is computed from the original data set independently;
and (2) it requires sorting of the original dataset (2d −1) number of times, as the
orders among objects with respect to the entropy values defined vary according
to the subspace in question.

In our BUS algorithm, we identify two computation-sharing strategies which
address the first issue; to handle the second issue, we propose a sorting-and-
filtering technique that effectively reduces the number of sorting operations
from (2d − 1) to d . We also optimize our algorithm by employing a filtering
function which avoids many dominance tests, which determine the dominance
relationship between two objects by comparing the d attribute values of them.

Sharing Result. According to Corollary 5.5, we can easily derive that the
union of the child cuboids belongs to the parent cuboid. Therefore, during com-
puting a cuboid, the objects, which are in one of its child cuboids, are guaranteed
to be skyline objects. The advantages of this “result sharing” are twofold: on
the one hand, it reduces the size of input to the individual skyline computation
process; on the other hand, a fewer number of dominance tests are performed
because those objects do not need to be examined again. We call this strategy
sharing result.

In addition, since we compute the SKYCUBE in a levelwise and bottom-up
fashion, we can exploit this result sharing on all the child cuboids of the cuboid
in question. In other words, we can union all the child cuboids as the starting
point of the computation of the parent cuboid. In terms of implementation, we
use efficient bitmap operations so that the union can be done in linear time.

Sharing Sorting. To avoid the explosion of the number of sorting operations
required by SKYCUBE computation based on the SFS algorithm, we propose to
change the sorting criteria as follows: when computing the skyline on subspace
V, we accept input sorted on any dimension Di (Di ∈ V) (or in general, any
U ⊆ V). Because of the nested loop nature of the skyline computation algorithms
used in our BUS algorithm, changing the input sorting order only affects the
performance, not the correctness. We make such a change for two reasons.

—It may reduce the number of sorting required to compute the SKYCUBE from
2d − 1 to d . Consequently, we only need to sort the source dataset d times,
once per dimension. Moreover, we do not keep d copies of each object in the

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1354 • J. Pei et al.

dataset; instead, only the pointers to the objects are sorted and stored for d
times.

—Such input ordering still guarantees the correctness and efficiency of the
block-nested loop-based skyline computation algorithm. An object p cannot
be dominated by another object q if p is ordered before q and they do not
share the same value on the dimension being sorted. The reason is that p
must have a smaller value than q on at least one dimension, which makes p
before q in the sorted list.

Furthermore, we complement this sorting scheme by a filtering process dur-
ing the skyline computation which further reduces the cost of dominance test.
We will cover this part shortly in Section 5.3.3.

In our implementation, we use the following heuristic: when computing the
skyline on subspace V, we always pick the input sorted on the dimension Di ∈ V
where the domain of Di is the largest among all D j ∈ V. We note that this heuris-
tic is similar in spirit to that adopted in the bottom-up data cube computation
algorithm [Beyer and Ramakrishnan 1999].

BUS Algorithm. Based on the previous two sharing strategies, we develop
our BUS algorithm, which computes the SKYCUBE in a levelwise and bottom-
up fashion. The algorithm is listed in Algorithm 1. To compute every cuboid
SKYV (S), it first computes a list of skyline objects based on the skyline objects in
all of its child cuboids by the UnionChildSkylines method. Under the distinct
value condition, this method simply unions the skylines of all child cuboids of
SKYV (S). We will discuss necessary modifications to this method in the general
case in Section 5.3.5. BUS then examines each object in the nondecreasing order
of their projection on dimension Di. All objects in the core are skyline objects
in V. We also compare the objects not in the core against the skyline objects
in the subspace V computed so far (Lines 6–7 in Algorithm 1). Otherwise it is
compared with the current skyline to determine whether it is a new skyline
object by calling the function Evaluate, that is, doing a dominance test by
comparing the d attribute values of two objects (Line 9).

Algorithm 1. BUS (S)

Input:
S: a set of d -dimensional objects

Output:
cuboid SKYV (S) for every subspace V;
the complete set of skyline groups and their signatures

Description:
1: sort S on every dimension Di (in nondecreasing order) to form d sorted lists l Di

(1 ≤ i ≤ d)
2: for all subspace V in a levelwise and bottom-up manner do
3: Core := UnionChildSkylines(V)
4: choose a sorted list l Di (Di ∈ V) V
5: for all object q in l Di do
6: if q ∈ Core then
7: insert q into SKYV (S)
8: else
9: Evaluate(q, SKYV (S))

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1355

Table I. An Example Dataset

Objects A B C D

P1 4 3 2 2

P2 5 1 1 2

P3 1 4 4 1

P4 2 2 3 1

5.3.3 Optimizing Dominance Test via Filtering. The simplest implementa-
tion of the Evaluate function (Line 9) in Algorithm 1 is to perform a dominance
test between q and every skyline object in SKYV (S). To further optimize the per-
formance, our BUS algorithm is integrated with a filtering function, f , which
drastically reduces the number of such dominance tests.

We define a filter function as a multivariate monotonic nondecreasing func-
tion that takes a multidimensional object as the parameter; the function value
is called the filter value of the object. In the BUS algorithm, we use the fol-
lowing filter function defined on subspace U because it outperforms other filter
functions in our experiments with various parameters.

fU (p) =
∑

∀Di∈U
p.Di

For example, in Table I, fABCD(P1) = 11, and fABCD(P4) = 8. Based on
the property of the multivariate monotonic nondecreasing function, it is easy
to derive that, given two objects p and q, if fU (p) ≤ fU (q), then q does
not dominate p on subspace U . In the previous example, based on their fil-
ter values, without an exhaustive comparison on every dimension, we know
that P1 cannot dominate P4 on space ABCD because the filter value of P4 is
smaller.

We note that the complexity of the filtering function is still O(d) (where d
is dimensionality of the space) asymptotically; consequently, the complexity of
calculating the filter values of all n objects on every subspace of d -dimensional
space is O(nd2d). Nevertheless, the filtering function accelerates the BUS algo-
rithm significantly due to the following facts: (1) the lexicographical comparison
between two objects on multidimensional space is more expensive than doing a
comparison based on such a filter function; and (2) by maintaining the filtering
values of skyline objects in sorted order, an incoming object, p, only needs to be
compared to skyline objects whose filter value is smaller than p’s filter value.
We found a 40% to 2700% speedup by adopting the filtering heuristics in our
experiments.

Algorithm 2 presents the implementation of the Evaluate function using
the filter-based heuristic. The algorithm requires us to maintain the skyline
SP such that objects inside are in a nondecreasing order of their filter values.
When evaluating object q against skyline object p, we first compare their filter
values. If q’s filter value is smaller than p’s, p and all the skyline objects after
p in the candidate list cannot dominate q. Therefore, it is known immediately
that q is a new skyline object. Otherwise, p and q are further compared on each
dimension to determine whether q is a new skyline object.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1356 • J. Pei et al.

Algorithm 2. Evaluate (q, SP)

Input:
q: an object to be evaluated
SP: the skyline of subspace U computed so far (the full space is D), maintained in
the increasing order of filter values.

Output:
insert q into SP and construct/update the skyline group for q if it is a skyline object
of U

Description:
1: for all object p in SP in the increasing order of their filter values do
2: if fU (q) < fU (p) or fU (q) < fU (LastObj(SP)) then
3: insert q into SP
4: if calculating skygroups then
5: UpdateSkyGroup({q}, U) /* to compute skyline groups, details will

be covered in Section 5.3.5 */
6: break
7: else if (p ≺ q)U then
8: discard q;
9: break

Fig. 6. Example of the filter-based heuristic.

Here is an example to illustrate the filter-based heuristic. Consider comput-
ing SKYAB(S) for the dataset shown in Table I. The objects are already sorted
on dimension B. The access order and filter value of each object are listed in
Figure 6(a). As P2 is a skyline object of the child cuboid SKYB(S), it is directly
inserted into the skyline SP. Figure 6(b) shows the scenario when P4 is eval-
uated. Since fAB(P4) < fAB(P2), P4 is inserted into the SP immediately with-
out comparison with P2 on subspace AB. Then, P1 is evaluated (Figure 6(c)).
P1 is first compared with P4. Since fAB(P4) < fAB(P1) and P4 dominates P1,
P1 is discarded. Similarly, P3 is evaluated. The skyline of subspace AB is
{P4, P3, P2}.

5.3.4 Computing the Skyline Groups under the Distinct Value Condition.
In this section, we consider computing skyline groups (and their signatures)
assuming the datasets conforms to the distinct value condition. We shall drop
this assumption and discuss the generalization needed to handle the general
case in Section 5.3.5.

Recall that a skyline group is formed as 〈G, B, C1, C2, . . . , Ck〉. Here, G is a
set of objects in the skyline group; B is the signature subspace such that all the
objects in G share the same projection on B; and all Ci (1 ≤ i ≤ k) are decisive
spaces that informally indicate the skyline group. According to the definition of
the decisive subspace, objects in G are also in the skylines of the subspace Ci.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1357

A naı̈ve way to compute the skyline groups once the SKYCUBE has been com-
puted is to organize skyline objects in each of the subspaces B ⊆ D according to
their definition (i.e., Definition 3.3). For each object p in the subspace skyline
SKYB(S), we find all objects q ∈ S, such that pB = qB. However, it is costly to
compute the decisive spaces for the skyline group. This is because we have to
check whether any of the subspaces of the subspace in question is decisive or
not.

In the following, we will show an efficient method to compute the skyline
groups within the BUS algorithm framework. The algorithm is based on the
observation that decisive spaces of any skyline group in subspace B can be
computed easily if we have computed all the skyline groups in all the subspace
B′ ⊂ B. As the BUS algorithm works in a levelwise and bottom-up manner,
skyline group computation can therefore be easily supported by enhancing the
BUS Algorithm.

Specifically, we can make the following proposition regarding the skyline
groups under the distinct value condition.

PROPOSITION 5.7. The skyline groups for a dataset satisfying the distinct
value condition have the following properties:

(1) all skyline groups, G, consist of only a single object and this object is a skyline
object in the full space;

(2) the signature subspace B of all skyline groups is the full space D.

The proposition follows from Corollary 5.6.

5.3.4.1 Modification to the BUS Algorithm. In the enhanced BUS algo-
rithm, we need to maintain an additional global hash table, Sk yGroups, which
associates skyline group (G) with its current signature subspace (B) and deci-
sive subspace(s) (i.e., C1, . . . , Ck). This choice is based on the observation that
the signature subspace and decisive subspaces of the group may be updated
every time the same group of objects is identified as skyline objects in a new
subspace.

When computing skyline objects for single dimensions, according to Proposi-
tion 5.7, it is clear that all the skyline objects form skyline groups of their own,
and the signature subspaces of such skyline groups are the full space D. In
addition, we also know that the current single dimension is one of the decisive
subspaces of the skyline group. Our subsequent goal is to update and maintain
the decisive subspaces for the groups in the subsequent skyline computation.

It can be shown that in the subsequent iterations, we only need to

—create new skyline groups;

—or update the signature subspace2 and decisive subspaces for an existing
group.

2Note that we can skip maintaining the signature subspace of skyline groups under the distinct

value condition because it must be the full space D. We still include this operation here for the sake

of consistency.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1358 • J. Pei et al.

Algorithm 3. UpdateSkyGroup (G, V)

Description:
1: if SkyGroups.has(G) then
2: Let 〈G, B, C〉 := SkyGroups[G]
3: B := B ∪ V
4: for all Ci in C do
5: contained := false
6: if V ⊇ Ci then
7: contained := true /* This happens in both the bottom-up and the

top-down computation */
8: break /* goto Line 11 */
9: else if V ⊂ Ci then

10: C := C − Ci /* This happens only in the top-down computation */
11: if contained = false then
12: C := C ∪ V
13: SkyGroups[G] := 〈G, B ∪ V, C〉
14: else
15: SkyGroups[G] := 〈G, V, {V}〉

These operations are captured in the UpdateSkyGroup function (Algo-
rithm 3). This function is called from the BUS algorithm when a new sky-
line object of the current subspace is identified (Lines 2–5). Inside the Up-
dateSkyGroup function (Algorithm 3), we will either create a new sky group
for this skyline object (Line 15), or update its existing skyline group informa-
tion (Lines 2–13). Assume that the group is 〈G, B, C1, C2, . . . , Ck〉. We add the
fact that the same skyline group is still valid for skyline objects in the current
subspace U by:

(1) updating the signature subspace from B to B ∪ U . This is to record the fact
that all the objects in the group coincide on all dimensions in U . As an
optimization for efficiency, this step can be skipped under the distinct value
condition as the signature subspaces of all skyline groups are already the
full space D.

(2) inserting the current subspace U into the signature subspaces of the group
if U is not a superset of an existing signature subspace (Lines 4–12). It is
immediate from the definition of decisive space that if ∃i, 1 ≤ i ≤ k such
that Ci ⊂ U , then Ci, rather than U , is the decisive subspace for the group.
Note that Lines 6–8 of Algorithm 3 are codes for skyline group computation
in the top-down algorithm described later in Section 5.4; they will not be
reached in the BUS algorithm.

5.3.5 BUS in the General Case. In this section, we extend the BUS algo-
rithm to handle the general case where the distinct value condition does not
hold.

Computing the SKYCUBE. The major challenge to compute the SKYCUBE in the
general case is that, as stated in Section 5.2, only part of child cuboid SKYU (S)
belongs to the parent cuboid SKYV (S) (See Example 3 and Figure 2).

Therefore, the UnionChildSkylines function in Algorithm 1 will not only
union all the skyline objects in the child cuboids, but also calculate the skyline of

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1359

the union of objects to remove non-skyline objects in the parent cuboid SKYV (S).
Several optimizations are used to accelerate this step.

—According to Theorem 5.3, to examine object q in SKYU (S), we only need to
compare q with those object p in SKYU (S) whose projection on subspace U
is identical to that of q, and the dominance test only needs to consider their
projected values on the subspace (V − U). If such an object p does not exist,
q is a skyline object of cuboid SKYV (S).

—As the skyline objects in all subspaces are always maintained to have a non-
decreasing order of their filter values, we only need to scan each child cuboid
once and process skyline objects with the same filter values at a time.

—As a by-product of this computation, we can identify those objects that are
definitely not the skyline objects in the parent cuboid SKYV (S) (as they are
dominated by other objects with the same filter values). These objects can be
marked and will not enter the FOR loop in Lines 5–9 in Algorithm 1. This
avoids redundant comparisons.

Computing Skyline Groups. The computation of skyline groups and their
signatures is more complicated in the general case as well. Specifically, neither
of the properties for the skyline groups and their signatures in the distinct
value case (see Proposition 5.7) holds in the general case, as

(1) a skyline group, G, may consist of one or more than one object;

(2) the signature subspace B of all skyline groups may not be the full space D.

Therefore, our tasks are to keep track of the changes of skygroups and main-
tain their signature subspace as well as decisive subspaces during the BUS
computation.

The first issue is how to maintain skyline groups when integrating skyline
objects from child cuboids in the UnionChildSkylines function. Depending
on whether a skyline group G in the child cuboid changes or not with respect
to the parent cuboid SKYV (S), we have two possible scenarios.

—All the objects in G are still the skyline objects in the parent cuboid SKYV (S).
In this case, we only need to update signature subspace and decisive sub-
spaces of the group by calling UpdateSkyGroup(G, V) (shown in Algo-
rithm 3).

—Some object in G (that are skyline objects in the child cuboid SKYU (S)) is
no longer a skyline object in the parent cuboid SKYV (S). While the original
skyline group G remains the same, we need to construct a new skyline group
G ′ = GV , set its temporary signature subspace as V, and set its decisive space
as V.

The second issue is how to create new skyline groups for an object p which
has been identified as a skyline object in subspace V but not in any of the child
subspace of V as identified in Lines 2–5 in Algorithm 2. The subtlety here is that
we must construct a skyline group for all objects sharing the same projection
on the current subspace V that is, we need to set G = O(p, V). As we process
all the objects in the increasing order of their values on dimension Di, we just
search for such objects for all objects q such that q.Di = p.Di. Note that the

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1360 • J. Pei et al.

Fig. 7. Running BUS on the example dataset. (light shaded cells indicate the skyline groups were

newly created dark shaded cells indicate the skyline groups were updated.)

signature subspace of the group is indeterminate until all the cuboids have been
computed. However, it is easy to show that the signature space of a skyline group
(G, B) is the union of all subspaces ofB on which G are skyline objects. Similarly,
the decisive subspaces are not known yet, although the current subspace, V, is
one of them. As the BUS algorithm traverses the cube lattice in a bottom-up
manner, we can create a new skyline group with partial information about the
signature subspace and decisive spaces and maintain them in the subsequent
computation. Therefore, when a new skyline object p is identified, we will create
a new skyline group 〈O({p}, V), V, V〉.

Example 9. Consider the example dataset shown in Table I. This dataset
does not conform to the distinct value condition as there are more than one
objects sharing the same value on dimension D. In this example, for ease of
presentation, we ignore the dimension B. As a result, the full space is {A, C, D}.
All cuboids and the snapshots of skyline groups are shown in Figure 7. We will
focus on the computation of the skyline groups here.

Initially, there is no skyline group. P3 is identified as a skyline object in
subspace A. Since there is no skyline group identified by P3, a new skyline
group, ({P3}, A, A), is created.

Next we compute the skyline objects for subspace AC. After comparing ob-
jects with the same filter values in child cuboids SKYA(S) and SKYC(S), we find
P3 and P2 to be the skyline objects of cuboid SKYAC(S). As a result, we call the
UpdateSkyGroup function for them, knowing that the objects in the groups
remains the same and only their signature subspaces and decisive subspaces
need to be updated. We then evaluate the rest of the objects with a list of sky-
line objects computed so far with the help of the filter function. Eventually, we
identify that both P1 and P4 are also skyline objects in subspace AC. Therefore,
two new skyline groups are created for P1 and P4, respectively.

When we compute subspace AD, we need to filter skyline objects on the
child cuboids SKYA(S) and SKYD(S) in the function UnionChildSkylines.
We identify that although both P3 and P4 are skyline objects on D, only P3 is
the skyline object on AD. We only need to update skygroup information for (the
existing group) P3.

5.4 Top-Down SKYCUBE Computation

In this section, we present our Top-Down Skycube algorithm (TDS). TDS relies
on a novel Shared-Divide-and-Conquer skyline algorithm (SDC), which adopts

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1361

Fig. 8. Divide-and-conquer algorithm.

the basic idea of the Divide-and-Conquer skyline algorithm (DC) [Börzsönyi
et al. 2001] while it computes multiple related skyline queries simultaneously
with little additional overhead. In TDS, two new computation-sharing strate-
gies: sharing-partition-and-merging and sharing-parent are developed.

In the following parts, we first illustrate the basic idea of the DC algorithm.
Then, we propose the SDC algorithm, which is followed by the detailed TDS
algorithm under the distinct value condition. Finally, we discuss the necessary
modifications on the TDS algorithm in the general case.

5.4.1 The Divide-and-Conquer Skyline Algorithm (DC). To compute the
skyline for a set of objects, DC first divides them into several parts and computes
the skyline over each part. Then DC merges these skylines to obtain the final
one. Consider the example to compute the skyline of subspace AB on the dataset
in Figure 8.

—First, DC calculates the median mA of all objects on dimension A and divides
the dataset into two parts, l1 and l2 (divide step). l1 contains the objects
whose values on dimension A are less than mA. l2 contains all others.

—Then the skyline of l1 (l2) is computed. This is done by recursively applying
the divide step until one object is left. In that case, to compute skyline is
trivial. The skyline result s1 (s2) is shown in Figure 8(a).

—To obtain the overall skyline, DC eliminates the objects in s2 which are domi-
nated by those in s1 (merge step). In the merge step, the median mB of objects
in s1 on dimension B is calculated. s1 and s2 are further divided into s11, s12,
s21, and s22 with mB, shown in Figure 8(b). Clearly, the objects in s21 have
smaller value on dimension B than that of objects in s12. Therefore, the ob-
jects in s21 are not dominated by any one in s12. As a result, after further
partition, DC only needs to merge s11 and s21, s12 and s22, s11 and s22, re-
spectively (shown as arrows in Figure 8(b)). Each merge applies the merge
step recursively until one object remains in either part, then to merge them
is trivial. In this example, P1 is eliminated from s2 after merge. The final
skyline of AB is {P3, P4, P2}.
5.4.2 Computation Sharing Opportunities for the DC Algorithm. Although

DC is one of the most efficient skyline computation algorithms, it computes one
cuboid only. However, we observe that both the divide step and the merge step

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1362 • J. Pei et al.

Fig. 9. Share merging. (In the figure, the merge operation indicated by the shaded background

can be shared among the computation of cuboid ABC and cuboid AB).

can be shared between a parent cuboid and its child cuboid. We call such sharing
principles sharing-partition-and-merging collectively.

As described in detail in Section 5.4.1, the DC algorithm always chooses the
median point with respect to the same dimension to divide the input set in the
divide phase. We call such a dimension the partitioning dimension (e.g., A is
the example shown in Figure 8(a)). Obviously, to compute a skyline for child
cuboid SKYU (S) and parent cuboid SKYV (S), if we divide the dataset using the
same partitioning dimension, the partition results in both computations being
the same. Hence, if we compute SKYU (S) and SKYV (S) simultaneously using
the DC algorithm, the divide step can be shared.

In the merge step, DC merges the skylines of each part to obtain the final sky-
line. We observe that in this step the computation for the parent cuboid SKYV (S)
can be shared with its child cuboid SKYU (S) (U is a prefix of V). Therefore, the
merge step for U can be saved.

Let us use the example in Figure 9 to illustrate the intuition of such sharing.
We consider computing two cuboids on subspaces ABC (Figure 9(a)–(d)) and AB
(Figure 9(e)), respectively. After the divide step with the partitioning dimension
A, the dataset is partitioned into two parts l1 and l2. Then for the subspace ABC,
the skyline of each part is calculated as SKYABC(l1) and SKYABC(l2). After that,
DC needs to eliminate the objects in SKYABC(l2) which are dominated by those of
SKYABC(l1) on subspace BC as shown in Figure 9(a). According to Corollary 5.5,
it is easy to derive that the skyline for the subspace ABC contains that for the
subspace AB. So, we split the skylines of li (i = 1, 2) on ABC, e.g., SKYABC(li),
into two parts as SKYAB(li) and SKYABC(li) − SKYAB(li) (Figure 9(b)).

One key observation is that, after the split on both skyline objects, the merge
operation can be decomposed into four steps, as shown in Figure 9(c). Step 1 is
to eliminate objects in SKYABC(l2) which are dominated by SKYABC(l1). After
Step 1, we call the remaining objects in SKYABC(l2) the remainder of Step (1).

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1363

Step (2) is to further eliminate the objects in the remainder of Step (1) which are
dominated by SKYABC(l1) − SKYAB(l1). Step (3) and Step (4) follow the similar
steps but are applied on SKYABC(l2) − SKYAB(l2).

In the previous decomposition, all the merge operations are performed on
the subspace BC. The other key observation is that such dominance test can be
further decomposed into checking dominance on dimension B first, and then C.
Applying this idea to Step (1) will result in Step (1.1) and Step (1.2), as shown
in Figure 9(d). Step (1.1) is to merge SKYAB(l1) and SKYAB(l2) on the subspace
B (i.e., filter out objects in SKYAB(l2) those are dominated by SKYAB(l1) on di-
mension B). Instead of eliminating those objects, we keep them as O BJB. Then,
in the next step, Step (1.2), each object q in O BJB is further examined against
the objects p in SKYAB(l1) which dominate q on the subspace B whether q is
still dominated by p on the subspace C. If so, q is eliminated. All the remaining
objects (in both Step (1.1) and Step (1.2)) are returned as the remainder of Step
(1).

Now, if we consider the skyline computation on AB using the same di-
vide methods (i.e., obtain the same partition as l1 and l2), we need to merge
SKYAB(l1) with SKYAB(l2) on dimension B. Clearly, this merge step is identical
to Step (1.1) when computing the skyline on ABC (see, the shaded areas in
Figure 9(d) and (e)). This means that the merge step for the parent cuboid can
be shared with that of its child cuboid.

By further generalizing this observation, we found that the divide steps and
merge steps in DC can be shared by the two cuboids as long as the subspaces
of one cuboid contains that of another (i.e., ancestor/descendant or parent/child
relationship in the cube lattice). This motivates our SDC algorithm.

5.4.3 Shared-Divide-and-Conquer Algorithm (SDC). The basic idea of the
Shared-Divide-and-Conquer algorithm (SDC) is to compute a number of related
cuboids at a time-based on the aforementioned sharing principles. More specif-
ically, SDC can compute a set of cuboids on a path in the cube lattice at a time.
We call the set of subspaces associated with the cuboids path of subspaces, or
simply path when there is no ambiguity. Without loss of generality, we can al-
ways represent a path in a canonical form by (1) arranging the subspaces in
ascending order of their level values; and (2) two adjacent subspaces share the
common prefix. For instance, the canonical form of the path {ABCD, ABD, AB}
is 〈AB, ABD, ABDC〉.

Skylist. The key to the SDC algorithm is a novel data structure, skylist,
that concisely represents skylines for subspaces belonging to a path. Given a
path c, a skylist consists of a number of elements, each of which stores the
skyline objects for the corresponding subspace in c. Recall Corollary 5.5, for
two subspaces U and V, SKYU (S) ⊆ SKYV (S) if U ⊂ V. A skylist organizes
the skyline objects of each subspace in c in the following accumulative way: the
first element stores the skyline objects of the first subspace; and the ith element
stores the difference between the skyline objects of the ith subspace and the
(i − 1)th one. For example, consider objects in Table I on subspace ABC where
the distinct value condition holds. For the path c = 〈A, AB, ABC〉, the skylist
is 〈{P3}, {P2, P4}, {P1}〉.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1364 • J. Pei et al.

The skylist data structure can benefit our SDC algorithm in the following
ways. First, skylist stores the skyline objects for a path in a compact way which
saves much storage space. Second, by storing the objects accumulatively, skylist
enables our SDC algorithm to decompose the divide step and the merge step
during the computation such that they can be shared by computing skylines
for all subspace in the path simultaneously.

Here are some basic operations on the skylist data structure which are used
in the SDC algorithm.

—split(l , v, Di). Given a skylist l and a value v on dimension Di, the split
operation divides l into two skylists s1 and s2. For each object p in l , if p.Di <

v, it is moved to the corresponding element in s1. Otherwise, p is moved to
the corresponding element in s2.

—union(s1, s2). Unite the objects in the corresponding elements of the two
skylists s1 and s2 to build a new skylist.

—filter(c, s1, s2). Given a path c and two skylists, s1 and s2, the filter operation
updates s2 such that the remaining objects in s2 are still skyline objects on the
corresponding subspace even if s1 and s2 are united. Implementation-wise,
for each object in every (the ith) element of s2, if it is dominated by any objects
in s1 on the subspace corresponding to that element, it is moved to the next
element of s2.

For example, consider the skylists of the path 〈A, AB〉 on the top left ({P3})
and the top right ({P1}) datasets in Figure 8(b). Two skylists are constructed,
s12 = 〈{P3}, {}〉 and s22 = 〈{P1}, {}〉. To filter s22 by s12, we first examine P1 against
P3 on subspace A. As P1 is dominated by P3 on A, it is moved to the next element.
Then the second element of s22 is examined. Because P3 does not dominate P1

on subspace AB, P1 is kept in the second element. So after filter, s22 = 〈{}, {P1}〉.
The SDC Algorithm. To answer skyline queries on a path, SDC processes

the objects in the divide-and-conquer manner similar to DC. The detailed SDC
is presented in Algorithm 4. To compute skylines on a path c, an initial skylist
l corresponding to c is constructed, where all objects are stored in the first
element of l .

Algorithm 4. SDC (c, l)

Input:
c: a path, the last subspace in this path is V
l : a skylist corresponding to c, initially, all objects are stored in the first element of l

Output:
a skylist corresponding to c stores the skyline result

Description:
1: if |l | = 1 then /* |l |: the number of objects in l */
2: return l
3: else
4: D1 := the first dimension of V
5: mD1

:= the median of l on dimension D1

6: (l1, l2) := split(l , mD1
, D1)

7: s1 := SDC(c, l1)
8: s2 := SDC(c, l2)

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1365

9: s3 := SDC Merge(c, s1, s2, 2)
10: return union(s1, s3)

Algorithm 5. SDC Merge (c, s1, s2, i)

Input:
c: a path, the last subspace in this path is V
s1, s2: two skylists
i: the ith dimension of subspace V is used to split s1 and s2

Output:
the revised s2 that eliminates the object in each element which is dominated by those
in s1 on the corresponding subspace in c

Description:
1: if |s1| = 1 or |s2| = 1 or i = |V| then /* |V|: the number of dimensions in V */
2: return filter(c, s1, s2)
3: else
4: Di := the ith dimension of V
5: v := the median on dimension Di
6: (s11, s12) := split(s1, v, Di)
7: (s21, s22) := split(s2, v, Di)
8: r1 = SDC Merge(c, s11, s21, i)
9: r2 = SDC Merge(c, s12, s22, i)

10: r3 = SDC Merge(c, s11, r2, i + 1)
11: return union(r1, r3)

Fig. 10. An example of the SDC algorithm.

We use the following example to further illustrate SDC. Consider the skyline
queries on a path c = 〈A, AB, ABC〉 over the dataset in Table I. Initially, a skylist
l is constructed according to c, and all objects are stored in the first element of
l as shown in Figure 10(a). After a recursive split on dimension A, l is split into
4 skylists, each of which contains one object only (Figure 10(b)). Then we merge
the skylist l3 and l4 first. As both of them contain only, one object in this merge,
we directly call filter operation on them. In the filter process, P4 is compared

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1366 • J. Pei et al.

to P3. Since P3 dominates P4 on subspace A and does not on subspace AB, P4

is moved to the second element. Then, we union them, and the merge result s1

is shown in Figure 10(c). Similarly, l5 and l6 are merged and the result is s2. In
order to merge s1 and s2 to obtain the final skylines, we split s1 and s2 with the
median of objects in s1 on dimension B. Figure 10(d) shows the split results.
After that, three filter operations are processed. The filter results r1 and r3 are
shown in Figure 10(e). Finally, we union s1 and the merge results in the final
skylist. To retrieve the skylines of all the subspaces in c, we use the procedure
described in Algorithm 6. Essentially, we decompress the skylines of the ith
subspace by unioning objects in all the preceding elements in the final skylist.
For example, SKYA(S) = {P3} and SKYAB(S) = {P3, P2, P4}.

5.4.4 The Top-Down Skyline Algorithm (TDS). In this section, we present
our TDS algorithm which employs the SDC algorithm to compute SKYCUBE

in a top-down manner. The pseudocode of the TDS algorithms is listed in
Algorithm 7.

Algorithm 6. RetrieveSkylist (li)

Input:
li : a skylist

Output:
SKYV (S) for every subspace V in the path ci corresponding to the skylist li

Description:
1: for all element ei (from the head to the tail) in the skylist li do
2: Vi := the subspace corresponding to ei
3: if ei is the first element then
4: SKYVi (S) := all objects in ei
5: else
6: SKYVi (S) := UnionAndFilter(SKYVi−1

(S), all objects in ei) /* Perform
set union when distinct value condition holds; otherwise, need to
perform filtering after union. */

Algorithm 7. TDS (S)

Input:
S: a set of d -dimensional objects

Output:
cuboid SKYV (S) for every subspace V;
the complete set of skyline groups and their signatures

Description:
1: compute the minimal set of paths that cover all the subspaces
2: for all path ci in the path set do
3: SDC(ci , li) /* li is the result skylist corresponding to the path ci */
4: RetrieveSkylist(li)
5: if calculating skygroups then
6: for all object p in each cuboid SKYV (S) where V is in the path ci do
7: UpdateSkyGroup({p}, V) /* Skyline groups are maintained in a

global hash table */

As analyzed in Section 5.4.3, SDC can compute subspace skylines on a path
simultaneously. Thus, in order to compute SKYCUBE using SDC efficiently, we

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1367

Fig. 11. An example of the TDS algorithm.

need to find a minimal set of paths such that every node in the cube lattice is
covered by one path. In TDS, we apply the path finding algorithm in Ross and
Srivastava [1997] to find such minimal sets of paths. In Ross and Srivastava
[1997], it is shown that, on d -dimensional full space, the size of the minimal
set of such paths is

(d
�d/2�

)
. Figure 11(a) shows a minimal set of paths for a

4-dimensional dataset.
After finding a minimal set of paths (Line 1 in Algorithm 7), TDS calls SDC

to compute cuboids on each of the paths and computes the skyline groups on
the skyline results of each path. Note that we only need to invoke SDC for the
top cuboid of every path once, and all cuboids on the path can be computed with
minimal additional cost. We adopt a further optimization here: when calling
SDC on a path ci, instead of computing the skylists from the original dataset S,
we feed the already-compute cuboid SKYX (S) if SKYX (S) is the ancestor of the
top cuboid along the path ci. For example, in Figure 11(b), the computation of the
second, 〈B, BC, BCD〉, is based on the cuboid of SKYABCD(S). The correctness
of this optimization follows directly from Corollary 5.5. In practice, this leads
to a substantial saving of computation because (1) the whole dataset might
be much larger than its skyline on a subspace; and (2) the reduction in the
input size is most beneficial to the divide-and-conquer style algorithms as its
time complexity is O(n logd−2 n). We call this optimization the sharing parent
sharing strategy.

5.4.5 TDS in the General Case. Now we address necessary modifications
to TDS in order to deal with the general case scenarios.

Computing the SKYCUBE. In the general case, there is no containment rela-
tion between a parent cuboid and its child cuboid. As a result, the straightfor-
ward sharing parent strategy may miss some skyline objects. For example, for
the dataset shown in Table I, if we compute skylines for the path 〈D, DB〉 from
the skyline of subspace BCD(i.e., {P2, P4}), we will miss the object P3, which
is the skyline object in the subspace D. Nevertheless, according to Theorem 5.3,
these missing objects (e.g., P3) must have the same values on some dimensions
as some skyline objects of the parent cuboid. Therefore, the modification to the
TDS algorithm is that, when invoking SDC for a path, the union of the chosen
ancestor cuboid and those missing objects are passed as input. These missing
objects can be easily retrieved as we have presorted the dataset on every single
dimension.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1368 • J. Pei et al.

Another modification is related to the restoration of skyline objects from
skylists, that is, the UnionAndFilter function in Algorithm 6. Under the dis-
tinct value condition, for the skyline queries on a path c, SDC returns a skylist.
To retrieve skyline for the ith subspace in c, the objects in all the preceding
(i.e., 0 < j ≤ i) elements in the skylist are also written to the output. However,
this again does not hold in the general case. According to Theorem 5.3, in the
general case, the objects in the j th (j < i) element might not be the skyline
objects of the ith subspace in c. As a result, we cannot output them directly (as
Lines 4 and 6 in Algorithm 6). In order to determine whether these objects are
still the skyline objects of the ith subspace in c efficiently, we take advantages of
their filter values as is done similarly in the BUS algorithm. More specifically,
objects in each element are maintained in the nondecreasing order of their fil-
ter values. Then, the same method to union the results of child cuboids in the
general case of the BUS algorithm is adopted to obtain the skyline result.

Computing Skyline Groups. The method to compute skyline groups in addi-
tion to the SKYCUBE is similar to that in the BUS algorithm. The key procedure
is the UpdateSkyGroup function (Algorithm 3). This is shown in Lines 5–7 in
Algorithm 7: when skyline groups computation is needed, all skyline objects are
checked against existing skyline groups via the UpdateSkyGroup function.
However, since we do not compute all the descendant cuboids before computing
the cuboid in question, it is possible that the subspace, V of the current cuboid
SKYV (S) might be a subset of an existing decisive space. For example, as shown
in Figure 11, when computing skyline objects in subspace ABC, skyline objects
in subspace C has not been computed yet. This means there might be some
false decisive subspaces associated with the current skyline groups. Lines 9–10
in Algorithm 3 are designed to remove such false decisive subspaces. It invali-
dates all decisive subspaces that are a proper superset of the current subspace
V on which all objects in the group G are skyline objects.

5.5 Update Maintenance

Our work in this article is focused on static datasets. To maintain the effi-
ciency of our techniques, we handle occassional updates in a straightforward
way. We rerun our SKYCUBE computation algorithms to generate the updated
SKYCUBE from scratch. However, as stated before, since several sharing strate-
gies are employed in our algorithms, we do not have to recompute the complete
SKYCUBE for the updates. Specifically, in the BUS algorithm, when computing
one cuboid U during recomputation, if all its child cuboids V are not changed
after recomputation, it is immediately clear that the cuboid U will also not be
changed. Therefore, recomputation of this cuboid U is saved. Similarly, during
recomputation in the TDS algorithm, if the input of the SDC algorithm for a
path is the same as the one before the updates, none of the all the cuboids
in this path will be changed. Consequently, the recomputation of this path is
skipped.

Very recently, Xia and Zhang [2006] proposed a new structure, Compressed
SkyCube (CSC), to compute a skyline cube against dynamic datasets (i.e., data
objects are frequently updated). Instead of storing the complete SKYCUBE results

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1369

(i.e., all subspace skylines), CSC represents the SKYCUBE in a concise way: (1)
for each skyline object p, it is only stored in the minimum subspaces, mss(p),
which is a set of subspaces, such that ∀U ∈ mss(p), p ∈ SKYU (S) and ∀V ⊂ U ,
p /∈ SKYU (S); and (2) only the nonempty cuboids U (i.e., U ∈ mss(p), where p
is some skyline object) are kept in CSC. Then, an object-aware update schema
is developed to effectively examine and update this small portion of SKYCUBE

maintained in CSC upon the updates of the dataset. Refer to Xia and Zhang
[2006] for more details.

6. RELATED WORK

To the best of our knowledge, Pei et al. [2005] and Yuan et al. [2005] are the
first studies on the semantics and structure of subspace skylines and their com-
putation. However, as two initial and independent studies, the two articles do
not propose comprehensive solutions to efficient computation of skyline cubes,
skyline groups, and their decisive subspaces.

In this section, we review some related work on skyline query processing and
formal concept analysis and its applications in multidimensional data analysis
as well as data cubes.

6.1 Skyline Query Processing

The problem of finding a skyline is a typical type of multiobjective query pro-
cessing [Balke and Güntzer 2004]. It is first investigated in Kung et al. [1975]
where an O(n logd−2 n) time algorithm for d ≥ 4 and an O(n log n) time al-
gorithm for d = 2, 3 are proposed. An expected linear running time algo-
rithm is presented in Bentley et al. [1978] if the data distribution on each
dimension is independent. Bentley et al. [1978] also estimates that the ex-
pected number of skyline objects under the independent distribution assump-
tion is O(lnd−1 n). In Buchta [1989], the estimation is improved to �((lnd−1 n)
/(d − 1)!).

Since Börzsönyi et al. [2001] introduced skyline operator in the database
context, numerous skyline computation algorithms have been developed. Most
of these algorithms can be classified into three categories: nested-loop-based,
divide-and-conquer-based, and index-based.

The Block-nested-loop (BNL) algorithm [Börzsönyi et al. 2001], Sort-filter-
skyline (SFS) [Chomicki et al. 2003], and (LESS) belong to the first category.
Börzsönyi et al. [2001] also presents an algorithm (DC) based on the divide-
and-conquer technique. As our two SKYCUBE computation techniques are de-
veloped based on these three algorithms, we have described them in detail in
Sections 5.3.1 and 5.4.1, respectively.

Index-based algorithms include the Index method [Tan et al. 2001], the
Bitmap method [Tan et al. 2001], Nearest neighbor search (NN) [Kossmann
et al. 2002], and Branch-and-bound skyline (BBS) [Papadias et al. 2003]. Un-
like nested-loop-based algorithms which have to visit the entire dataset, index-
based algorithms only need to access a portion of the dataset to compute the
skylines.

The Index method [Tan et al. 2001] organizes the d -dimensional dataset into
d B+-Tree indexes, T1, ..., Td . Object p is assigned to the index Ti if p.Di is the

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1370 • J. Pei et al.

minimum value among all d dimensions. To progressively compute skylines,
in each iteration, the index method processes the object p with the minimal
value among all unprocessed objects. If the minimum value of p is greater than
the minimum of all the maximum values of each current skyline object, p and
all unprocessed objects in the same index are pruned safely. Otherwise, p is
evaluated against all the current skyline objects to determine whether it is a
new skyline object.

The Bitmap method encodes an object with a bit vector according to its rank
on each dimension. The bitmaps enable the algorithm to efficiently determine
whether an object is a skyline object by bitwise AND/OR operations. One issue
with the method is that the bitmaps can be prohibitively large when the number
of distinct values on each dimension is large.

Both NN and BBS are based on nearest neighbor search, assuming the
dataset is indexed by an R-Tree. Since BBS is I/O optimal and outperforms
NN, we focus on the BBS method here. BBS traverses the R-Tree in an optimal
order: it always evaluates and expends the node that is closest to the origin
among all unvisited nodes. To do that, a heap is used. The key of this heap is
the minimum distance between a node and the origin. Initially, BBS inserts
the root of the R-Tree into the heap. In each iteration, the top element e of the
heap is removed and examined against the skyline computed so far. If e is not
dominated by any current skyline objects, either e is output as a new skyline
object (if e is an object); or the child nodes of e, which are not dominated by
any current skyline objects, are inserted into the heap (if e is an intermediate
node). BBS ends when the heap is empty.

Godfrey et al. [2005] surveyed the runtime complexities of existing generic
skyline algorithms and introduced a new generic skyline algorithm, Linear-
elimination-sort for skyline (LESS) that has O(dn) average case running time,
where d and n are dimensionality and cardinality of the date set, respectively.
The basic idea is to improve the SFS algorithm by having a tight integration of
external sort merge and skyline computation.

Most recently, several other research work stdy skyline computation in var-
ious applications, such as computing a skyline in the distributed database sys-
tems [Balke et al. 2004], continuous skyline queries in a data stream environ-
ment [Lin et al. 2005], approximate skyline computation [Koltun and Papadim-
itriou 2005], computing skyline in partially-ordered domains [Chan et al. 2005],
computing skyline cubes in dynamic datasets [Xia and Zhang 2006].

6.2 Formal Concept Analysis and Its Applications in Multidimensional
Data Analysis

The maximal c-group lattice is levered by the formal concept analysis [Ganter
and Wille 1996]. However, unlike previous studies on database and data min-
ing studies using formal concept analysis, such as Pasquier et al. [1999] and
Lakshmanan et al. [2002], we are interested in a small part of the lattice—
only the skyline groups. Moreover, the challenge is how to compute the skyline
groups and the objects in the subspace skylines. These issues are far beyond
the traditional studies on formal concept analysis.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1371

BUS Our Bottom-Up SKYCUBE algorithm.
BNLS The algorithm computes each skyline query by BNL algorithm

[Börzsönyi et al. 2001].

SFSS The algorithm computes each skyline query by SFS algorithm
[Chomicki et al. 2003].

TDS Our Top-Down SKYCUBE algorithm.

DCS The algorithm computes each skyline query by DC algorithm
[Börzsönyi et al. 2001].

There have been some recent studies on finding the determinant factors
in multidimensional subspaces for some critical data. Two typical examples
are Knorr and Ng [1999] and Lakshmanan et al. [2002]. In [Knorr and Ng
1999], the outhors propose an approach to finding the minimal sets of factors
that explain the distance-based outliers. In Lakshmanan et al. [2002], the quo-
tient cube lattice is developed to identify groups of aggregates that share the
same set of base tuples in a data warehouse and thus the semantics of the ag-
gregates can be explained and summarized concisely. While the philosophy in
this research shares some similarity with these studies, the technical problems
and the approaches are essentially different.

This study is also related to data cube computation. The concept of data cube
was first proposed in Gray et al. [1996]. Efficiently computing data cubes has
been an active research topic. A number of techniques have been reported in the
literature [Gray et al. 1996; Agarwal et al. 1996; Ross and Srivastava 1997; Zhao
et al. 1997; Beyer and Ramakrishnan 1999; Xin et al. 2003; Feng et al. 2004;
Han et al. 2001; Lakshmanan et al. 2002; Lakshmanan et al. 2003]. Specifically,
several heuristics for computing multiple group-bys (i.e., cuboids) efficiently
have been identified, such as smallest-parent, cache-results, amortized-scans,
share-sorts, and share-partitions [Sarawagi et al. 1996].

7. EXPERIMENTAL EVALUATION

In this section, we present the comprehensive performance evaluations of our
techniques. As mentioned earlier, there is no existing technique specifically de-
signed to support efficient SKYCUBE computation and skyline group computation.
In our performance study, we implement some skyline algorithms (e.g., BNL,
SFS, and DC) to compute each skyline and the skyline groups independently
and use them as benchmark algorithms to evaluate our techniques. Below are
the algorithms that have been evaluated.

Similar to BUS, BNLS and SFSS compute the SKYCUBE in the bottom-up
manner. We also apply the sharing result strategy to both of them to share the
child cuboid for computing the parent cuboid. DCS computes the SKYCUBE in the
top-down manner. The sharing parent strategy is applied to DCS as well, which
enables DCS to compute each cuboid from one of its parent cuboids instead of
the whole dataset. To maintain the skyline group information during SKYCUBE

computation, similar methods to UpdateSkyGroup are used in BNLS, SFSS,
and DCS.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1372 • J. Pei et al.

In the following sections, we first evaluate the meaningfulness of skyline
groups and their signatures. Then, we study the overall performance of the BUS
and the TDS algorithms, which includes the sensitivity and scalability against
the data distribution, dimensionality, and cardinality. We also evaluate the
efficiency of the filter-based heuristic to BUS and the sharing parent strategy
to TDS, respectively. Finally, the effect of the number of duplicate values per
dimension on our techniques is studied.

In our experiments, we employ both three real datasets and the three
most popular synthetic benchmark datasets, correlated, independent, and anti-
correlated [Börzsönyi et al. 2001], with dimensionality d in the range [4, 10]
and cardinality n in the range [100k, 500k]. For each experiment, we measure
the query execution times of different algorithms for SKYCUBE and skyline group
computation on these datasets, unless explicitly stated otherwise. All the ex-
periments were carried out on a Pentium 4 PC with a 2.8GHz processor and
1GB main memory.

7.1 Results on Real Dataset Great NBA Players’ Statistics

We downloaded from the NBA official Web site (www.nba.com) the Great NBA
Players’ technical statistics from 1960 to 2001. There are 17,266 total records.
Each record is the statistics of a player in a season. We selected four attributes:
the number of games played (GP), total points (PTS), total rebounds (REB), and
total assists (AST). In this dataset, the larger the attribute values, the better.
That is, player A dominates player B if A’s attribute values are not less than
B’s, and A has at least one attribute better than B.

Finding the skyline in these players’ statistics dataset makes excellent sense
in practice. People are often interested in finding the skyline players—players
who have some outstanding merits that are not dominated by some other play-
ers. Moreover, finding the semantics of skyline in this application is of great
interest; we not only want to know who the great players are, but we also want
to know exactly on which combinations of factors a player is dominates the
other players.

The knowledge of subspace skylines has immediate applications. For exam-
ple, if a coach wants to find a player good at total points and total rebounds, he
should look at the skyline players in the subspace (PT S, RE B), instead of all
skyline players.

In this dataset, we found 67 skyline records in the full 4D space. The total
number of corresponding decisive subspaces is 146, and the average dimension-
ality of the decisive subspaces is 2.21. We list some skyline players and their
decisive subspaces in Table II.

The first four records are in the skyline since each of them takes the max-
imum value in one dimension. Interestingly, Wilt Chamberlain’s performance
in 1961 was outstanding in some combinations of attributes. Michael Jordan’s
performance in 1988 was not exceptional in terms of any single attribute. How-
ever, it is in the skyline once attribute combinations (PTS, REB, AST) or (GP,
PTS, AST) are considered. Gary Payton’s performance in 2001 is in the skyline
only if all the attributes are considered. Clearly the decisive subspaces provide
more insightful information than just the list of skyline players in the full space.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1373

Table II. Some Skyline Players and the Corresponding Decisive Subspaces

Player GP PTS REB AST Decisive subspaces

Wilt Chamberlain (1960) 79 3033 2149 148 (REB)

Wilt Chamberlain (1961) 80 4029 2052 192 (PTS), (GP, REB), (REB, AST)

Chuck Williams (1973) 90 1113 250 557 (GP)

John Stockton (1990) 82 1413 237 1164 (AST)

Michael Jordan (1988) 81 2633 652 650 (PTS, REB, AST), (GP, PTS,

AST)

Gary Payton (2001) 82 1815 396 737 (GP, PTS, REB, AST)

Table III. Number of Skyline

Players in Subspaces with

Different Dimensionality

Dimensionality # of players

1 4

2 41

3 102

4 67

We found skyline records in all nonempty subspaces. Some of them may not
be skyline records in the full space. The numbers of subspace skyline groups
are listed in Table III. These numbers can be explained by the different number
of subspaces associated with the given dimensionality and by the fact that the
number of skyline records increases with increasing dimensionality.

We also counted the total number of subspaces where a record is in the sky-
line. This is an interesting measure. Intuitively, if a player is in the skylines of
more subspaces, he has a better overall capability in terms of combinations of
attributes. We found that, in addition to dominating all others in total points
(PTS), Wilt Chamberlain’s performance in 1961 has the highest number, 13, of
subspaces where it is in the skyline. On the other hand, although John Stock-
ton’s performance in 1990 dominates all others in total assists (AST) which is
decisive, it is only in the skyline of 5 subspaces.

From the analysis on the real dataset, we obtained some interesting and
meaningful observations that cannot be derived from the traditional skyline
computation. This demonstrates the meaningfulness of the proposed subspace
skyline analysis.

7.2 Effect of Dimensionality

In this section, we study the effect of dimensionality on our techniques. Corre-
lated, independent, and anticorrelated datasets with dimensionality d between
4 to 10 and cardinality n = 500k are used in this experiment. Figure 12 shows
the times of all the algorithms.

From the results, it is clear that although SFSS and BNLS adopt the sharing
result strategy, their performances are worse than that of BUS in all datasets.
This is because both insert some non-skyline objects into the candidate list
which leads to more unnecessary pairwise comparison. Due to O(2d) presorting
overhead, SFSS has the worst performance among all the algorithms. We do not
plot the results of SFSS and BNLS in high-dimensional datasets because their

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1374 • J. Pei et al.

Fig. 12. Effect of dimensionality (n = 500k).

Fig. 13. Effect of cardinality (d = 8).

times are too large. For instance, in an anticorrelated dataset with d = 10,
BNLS takes 265,000 seconds, while TDS requires only 2,500 seconds, which
outperforms the former by 2 orders of magnitude. Due to their bad performance,
we do not evaluate SFSS and BNLS in the following experiments.

In lower-dimensional datasets, BUS is faster than DCS and TDS. However,
with the growth of the skyline size (e.g., in high-dimensional datasets or in an-
ticorrelated datasets), more pairwise comparisons between objects and skyline
objects are performed in BUS. Therefore, BUS performs badly in these datasets.
As TDS employs the SDC algorithm, which can compute cuboids of a path with
the same cost with which DC can compute the last cuboid in the path, TDS
outperforms DCS in all datasets. When the dimensionality is low, the perfor-
mance difference between DCS and TDS is relatively small. This is because the
advantage of shared computation of cuboids in TDS over DCS is rather limited
as both the number of cuboids and the cost of computing subspace cuboids are
small with low dimensionality. The difference between their times increases
quickly in high-dimensional datasets, since the number of cuboids increases
exponentially as the dimensionality increases linearly. TDS is always at least
1.5 times faster than DCS in the dataset with dimensionality d = 10.

7.3 Effect of Cardinality

In order to evaluate the effect of cardinality on our techniques, we use datasets
with the dimensionality d = 8 and vary the cardinality n from 100k to 500k. As
the skyline in correlated datasets contains few skyline objects, we evaluate the
performance of BUS, DCS, and TDS in independent and anticorrelated datasets
only. Their times are shown in Figure 13.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1375

Fig. 14. Cost of skyline group computation.

Although both DCS and TDS take advantages of the sharing parent strat-
egy, DCS is slower than BUS in independent datasets, while TDS outperforms
BUS. It indicates that simply adopting the sharing parent strategy in DCS only
cannot improve it significantly as DCS computes each skyline independently.

It is appares that TDS is the winner among all these algorithms. In the low-
cardinality datasets (d ≤ 2), TDS is 2 times faster than the others. With the
growth of cardinality, TDS’ time increases only slightly, while others increase
rapidly. For example, in anticorrelated datasets, the ratio of TDS’ time with the
dataset n = 500k to that with n = 100k is 4.8, while BUS’ and DCS’ are 10.7
and 6.6, respectively. Compared with the other algorithms, TDS does not only
have better performance but also better scalability.

7.4 Cost of Skyline Group Computation

As described in Section 5, both our BUS and TDS algorithms can construct
SKYCUBE with or without computing skyline groups. In this section, we inves-
tigate the impact of the skyline group computation on the SKYCUBE computa-
tion. We conduct this experiment on two sets of datasets. The first set consists
of independent datasets with dimensionality d varying between 4 to 8 and
fixed cardinality n = 500k. The other set contains 8d independent datasets
with varying cardinality n from 100k to 500k. We measure the processing
times of SKYCUBE computation with and without skyline the group computation.
The results on the two datasets are shown in Figure 14(a) and Figure 14(b),
respectively.

As we can see from the figures, computing the skyline group information
in addition to the SKYCUBE computation incurs overheads. The overhead grows
with the increase of cardinality or dimensionality, as more skyline groups exist
and need to be computed. Nonetheless, the additional cost is relatively small
compared to the cost of computing the SKYCUBE. In our experiments, the over-
head due to skyline group computation remains under 20% in all the datasets
for both algorithms.

7.5 Efficiency of Filter-Based Heuristic

Now we study the efficiency of the filter-based heuristic to our BUS algorithm.
We implement our BUS in two ways. One (with filter) adopts a filter-based
heuristic, the other (without filter) does not, which evaluates objects in the

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1376 • J. Pei et al.

Fig. 15. Efficiency of filter-based heuristic (d = 6).

Fig. 16. Efficiency of sharing parent (d = 6).

same way as that of BNL. We evaluate them in the datasets with dimensionality
d = 6 and vary cardinality n from 100k to 500k. Figure 15 shows the time in
each dataset.

From the results, it is clear that with filter outperforms nonfilter in all
datasets. As analyzed in Section 5.3.3, the filter-based heuristic can reduce
the pairwise comparison between objects and the skyline objects, which is the
most expensive computation in BUS. Thus, in filter-based heuristic improves
BUS. In independent datasets the version with filter is 40% faster than with-
out filter. With the growth of cardinality, the time of with filter remains fairly
consistent, while that of nonfilter increases significantly. In the anticorrelated
data setwith cardinality n = 500k, without filter is 27 times slower than with
filter.

7.6 Efficiency of Sharing Parent Strategy

In this section, we evaluate the efficiency of the sharing parent strategy on
the TDS algorithm. For two implementations (sharing-parent and nonsharing-
parent) of TDS, we study their performance in correlated, independent, and
anticorrelated datasets with dimensionality d = 6 and cardinality n =
200k, 400k. Figure 16 reports the query times on these datasets. The num-
ber above the bars inside of the figure is the ratio of nonsharing-parent time to
that of sharing-parent.

It is clear that the sharing parent strategy improves TDS in all datasets.
The sharing parent strategy enables TDS to compute the cuboids of one path
from its parent cuboids while the nonsharing-parent does this from the whole
dataset. Generally, the parent cuboid is much smaller than the whole dataset.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1377

Fig. 17. Effect of duplicate values (d = 8).

Furthermore, by the time ratios, it is shown that sharing-parent becomes more
efficient in the larger dataset.

7.7 Effect of Duplicate Values

In this experiment, we study the effect of the number of duplicate values per di-
mension on our techniques. We define the duplicate ratio α in the following way:
on each dimension for every object p, there are α−1 number of other objects with
the same coordinate as p’s. In this experiment, independent and anticorrelated
datasets with dimensionality d = 8, cardinality n = 100k, 300k, 500k, and
duplicate ratio α = 5, 10 are generated. Note that compared with the datasets
used in the previous experiments, these datasets contain more duplicate values
on each dimension. Figure 17 shows the times in these datasets.

In the independent dataset, all algorithms take more time in higher, du-
plicate ratio datasets because the size of each cuboid is larger. Among these
algorithms, the effect of duplicate values on BUS is the least. Although the
larger size of the cuboid in higher duplicate ratio datasets causes more pair-
wise comparison in BUS, it also makes the sharing result strategy, which is
adopted in BUS, more efficient. As a result, BUS has similar performance in
these two datasets with different duplicate ratios. On the contrary, in higher
duplicate ratio dataset, the larger size of the cuboid decreases the efficiency
of the sharing parent strategy because the difference between the size of
the whole dataset and that of the parent cuboid is smaller. Therefore, DCS,
which employs the sharing parent strategy only, is affected by duplicate values
most.

In anticorrelated datasets, it is interesting that BUS is a little bit faster
in the higher duplicate ratio dataset than that in the lower one. It confirms
that the sharing result strategy is more efficient when each cuboid’s size is
larger. However, with the growth of the dataset, the number of pairwise com-
parisons between objects and skyline objects in BUS increases rapidly which
slows BUS down. Similar to the trends in the previous experiments (Figure 12,
13), TDS performs best among these algorithms. In the datasets with cardi-
nality n = 500k and duplicate ratio α = 10, TDS takes 710 seconds which
is around 4 times faster than DCS. Moreover, it is clear that the difference
between TDS’ times on two duplicate ratio databases is smaller than that of
DCS.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1378 • J. Pei et al.

Fig. 18. Performance on the real datasets.

7.8 Performance on Real Datasets

Finally, we evaluate our skycube computation algorithms on real datasets. In
this experiment, two real datasets Household (http://www.ipums.org) and Color
(http://kdd.ics.uci.edu) are deployed. Specifically, Household is a 6-dimensional
dataset with a cardinality 127, 931, and each object represents the percentage
of an American family’s annual income spent on 6 types of expenditures (e.g.,
gas, etc.). Color consists of 68, 040 9-dimensional objects, where the dimensions
represent different properties of an image. Figure 18 plots the runtimes of BUS,
DCS, and TDS on these two datasets.

In accordance with the trends of the experimental results on the synthetic
datasets, TDS outperforms the other algorithms in both datasets. This is be-
cause TDS can efficiently compute several cuboids simultaneously with little
overhead. In the lower-dimensional dataset (i.e., Household), BUS has similar
performance as TDS. However, with increasing dimensionality, more pairwise
comparisons among objects and skyline objects are performed in BUS. Conse-
quently, the performance of BUS is deteriorated in the Color dataset.

7.9 Summary

Our extensive performance study clearly shows that the multidimensional sky-
line analysis is interesting and useful in real datasets. The three algorithms,
BUS, DCS and TDS, have similar performance on small datasets of low dimen-
sionality. TDS outperforms the others substantially when the dimensionality
is high, the cardinality is large, and there are many subspace skyline objects
(e.g., in the anticorrelated datasets).

8. CONCLUSIONS

In this article, we answered the questions about semantics of skyline objects
by introducing the novel notions of skyline groups and decisive subspaces. We
proposed the problem of subspace skyline analysis and computation. On the
subspace skyline analysis side, a novel roll-up and drill-down analysis of sky-
lines in various subspaces was introduced. On the subspace skyline computa-
tion side, two efficient algorithms Bottom-Up and Top-Down were developed.
A performance study using both real and synthetic datasets was conducted to
verify the meaningfulness and the efficiency of our approach. The experimen-
tal results strongly suggest that the semantics of skyline objects and subspace

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1379

skyline analysis are highly meaningful in practice, and the two algorithms are
efficient and scalable.

This research also naturally leads to a few interesting problems for future
work. For example, a SKYCUBE and a complete set of skyline groups can be costly
in space. Under a constraint on space usage, how to materialize a subset of
skyline cuboids to facilitate query answering is an interesting question. More-
over, it is important to develop efficient algorithms for SKYCUBE, and skyline
group computation for high dimensional data is a challenging task. Some other
issues, such as incremental maintenance of SKYCUBE and skyline groups as well
as disk-based and/or parallel algorithms, also deserve further investigation.

ACKNOWLEDGMENTS

The authors are grateful to the reviewers for their careful and insightful
reviews, and to Dr. Donald Kossmann for providing us the synthetic data
generator.

REFERENCES

AGARWAL, S., AGRAWAL, R., DESHPANDE, P., GUPTA, A., NAUGHTON, J. F., RAMAKRISHNAN, R., AND SARAWAGI,

S. 1996. On the computation of multidimensional aggregates. In Proceedings of the 22ndh
International Conference on Very Large Data Bases (VLDB’96). Mumbai (Bombay), India, 506–

521.

AGRAWAL, R., IMIELINSKI, T., AND SWAMI, A. N. 1993. Mining association rules between sets of items

in large databases. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’93). Washington, DC, 207–216.

ANGIULLI, F., IANNI, G., AND PALOPOLI, L. 2004. On the complexity of inducing categorical and

quantitative association rules. Theor. Comput. Sci. 314, 1, 217–249.

BALKE, W.-T. AND GÜNTZER, U. 2004. Multi-objective query processing for database systems. In

Proceedings of the 30th International Conference on Very Large Data Bases (VLDB’04). Toronto,

Canada, 936–947.

BALKE, W.-T., GÜNTZER, U., AND ZHENG, J. X. 2004. Efficient distributed skylining for web informa-

tion systems. In The 9th International Conference on Extending Database Technology (EDBT’04).
Heraklion, Crete, Greece, 256–273.

BENTLEY, J. L., KUNG, H. T., SCHKOLNICK, M., AND THOMPSON, C. D. 1978. On the average number

of maxima in a set of vectors and applications. J. ACM 25, 4, 536–543.

BEYER, K. AND RAMAKRISHNAN, R. 1999. Bottom-up computation of sparse and iceberg cubes. In

Proceedings ACM SIGMOD International Conference on Management of Data (SIGMOD’99).
Philadelphia, 359–370.

BÖRZSÖNYI, S., KOSSMANN, D., AND STOCKER, K. 2001. The skyline operator. In Proceedings of
the 17th International Conference on Data Engineering (ICDE’01). Heidelberg, Germany, 421–

430.

BUCHTA, C. 1989. On the average number of maxima in a set of vectors. Information Processing
Letters 33, 2, 63–65.

CHAN, C. Y., ENG, P.-K., AND TAN, K.-L. 2005. Stratified computation of skylines with partially-

ordered domains. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’05). 203–214.

CHOMICKI, J., GODFREY, P., GRYZ, J., AND LIANG, D. 2003. Skyline with presorting. In Proceedings of
the 19th International Conference on Data Engineering (ICDE’03). Bangalore, India, 717–816.

FENG, Y., AGRAWAL, D., ABBADI, A. E., AND METWALLY, A. 2004. Range cube: Efficient cube computa-

tion by exploiting data correlation. In Proceedings of the 20th International Conference on Data
Engineering (ICDE’04). Boston, MA, 658–670.

GANTER, B. AND WILLE, R. 1996. Formal Concept Analysis—Mathematical Foundations. Springer,

Berline, Germany.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

1380 • J. Pei et al.

GODFREY, P., SHIPLEY, R., AND GRYZ, J. 2005. Maximal vector computation in large data sets. In

Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05). Trondheim,

Norway, 229–240.

GRAY, J., BOSWORTH, A., LAYMAN, A., AND PIRAHESH, H. 1996. Data Cube: A relational ag-

gregation operator generalizing group-by, cross-tab, and sub-total. In Proceedings of the
12th International Conference on Data Engineering (ICDE’96). New Orleans, LA, 152–

159.

HAN, J., PEI, J., DONG, G., AND WANG, K. 2001. Efficient computation of iceberg cubes with complex

measures. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’01). Santa Barbara, CA, 1–12.

KNORR, E. M. AND NG, R. T. 1999. Finding intensional knowledge of distance-based outliers. In

Proceedings of the 25th International Conference on Very Large Data Bases (VLDB’99). Morgan

Kaufmann Publishers, 211–222.

KOLTUN, V. AND PAPADIMITRIOU, C. H. 2005. Approximately dominating representatives. In The
10th International Conference on Database Theory (ICDT’05). Edinburgh, Scotland, 204–

214.

KOSSMANN, D., RAMSAK, F., AND ROST, S. 2002. Shooting starts in the sky: An online algorithm for

skyline queries. In Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB’02). Hong Kong, China, 301–310.

KUNG, H. T., LUCCIO, F., AND PREPARATA, F. P. 1975. On finding the maxima of a set of vectors. J.
ACM 22, 4, 469–476.

LAKSHMANAN, L. V. S., PEI, J., AND HAN, J. 2002. Quotient cube: How to summarize the semantics

of a data cube. In Proceedings of the 28th International Conference on Very Large Data Bases
(VLDB’02). Hong Kong, China, 778–789.

LAKSHMANAN, L. V. S., PEI, J., AND ZHAO, Y. 2003. Qc-trees: An efficient summary structure for

semantic OLAP. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’03). San Diego, CA, 64–75.

LIN, X., YUAN, Y., WANG, W., AND LU, H. 2005. Stabbing the sky: Efficient skyline computation

over sliding windows. In Proceedings of the 21st International Conference on Data Engineering
(ICDE’05). Tokyo, Japan, 502–513.

PAPADIAS, D., TAO, Y., FU, G., AND SEEGER, B. 2003. An optimal and progressive algorithm for

skyline queries. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’03). San Diego, CA, 467–478.

PASQUIER, N., BASTIDE, Y., TAOUIL, R., AND LAKHALS, L. 1999. Discovering frequent closed item-

sets for association rules. In The 7th International Conference on Database Theory (ICDT’99).
Jerusalem, Israel, 398–416.

PEI, J., JIN, W., ESTER, M., AND TAO, Y. 2005. Catching the best views of skyline: A semantic

approach based on decisive subspaces. In Proceedings of the 31st International Conference on
Very Large Data Bases (VLDB’05). Trondheim, Norway, 253–264.

ROSS, K. A. AND SRIVASTAVA, D. 1997. Fast computation of sparse datacubes. In Proceedings of
the 23rd International Conference on Very Large Data Bases (VLDB’97). Athens, Greece, 116–

125.

SARAWAGI, S., AGRAWAL, R., AND GUPTA, A. 1996. On computing the data cube. Tech. rep., IBM

Almaden Research Center.

TAN, K.-L., ENG, P.-K., AND OOI, B. C. 2001. Efficient progressive skyline computation. In Pro-
ceedings of the 27th International Conference on Very Large Data Bases (VLDB’01). Roma, Italy,

301–310.

XIA, T. AND ZHANG, D. 2006. Refreshing the sky: The compressed skycube with efficient support for

frequent updates. In Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD’06).

XIN, D., HAN, J., LI, X., AND WAH, B. W. 2003. Star-cubing: Computing iceberg cubes by top-down

and bottom-up integration. In Proceedings of the 29th International Conference on Very Large
Data Bases (VLDB’03). Berlin, Germany, 476–487.

YANG, G. 2004. The complexity of mining maximal frequent itemsets and maximal frequent pat-

terns. In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’04). ACM Press, 344–353.

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

Towards Multidimensional Subspace Skyline Analysis • 1381

YUAN, Y., LIN, X., LIU, Q., WANG, W., YU, J. X., AND ZHANG, Q. 2005. Efficient computation of the

skyline cube. In Proceedings of the 31st International Conference on Very Large Data Bases
(VLDB’05). Trondheim, Norway, 241–252.

ZHAO, Y., DESHPANDE, P. M., AND NAUGHTON, J. F. 1997. An array-based algorithm for simultane-

ous multidimensional aggregates. In Proceedings ACM SIGMOD International Conference on
Management of Data (SIGMOD’97). Tucson, Az, 159–170.

Received January 2006; revised June 2006; accepted August 2006

ACM Transactions on Database Systems, Vol. 31, No. 4, December 2006.

