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Abstract

Selectivity estimation of queries not only provides useful infor-
mation to the query processing optimization but also may give
users a preview of processing results. In this paper, we inves-
tigate the problem of selectivity estimation in the context of a
spatial dataset. Specifically, we focus on the calculation of four
relations, contains, contained, overlap and disjoint, between
data objects and a query rectangle using Euler -histograms.
We first provide a multi-resolution algorithm which can lead
to the exact solutions but at the cost of storage space. To con-
form to a given storage space, we also provide an approximate
algorithm based on a hybrid multi-resolution paradigm. Our
experiments suggest that our algorithms greatly out-perform
the existing techniques.

Keywords: Approximation query processing, Spatial
databases, Histograms, Selectivity estimation.

1 Introduction

Research in spatial database management systems
has recently emerged as central to numerous impor-
tant applications. These include geographic informa-
tion systems, computer-aided design, robotics, image
processing and very large scale integration. Selectiv-
ity estimation is one of the most important aspects
to the success of a development of query process-
ing optimizer in spatial database management sys-
tems. Moreover, techniques developed in selectiv-
ity estimation may be used for providing approxi-
mate query processing results (Garofalakis, Gehrke &
Rastogi 2002) and giving user a preview (Garofalakis
et al. 2002) of results before issuing more complex
queries. In this paper, we will investigate the prob-
lem of selectivity estimation in very large spatial
datasets. Specifically, we will investigate the problem
of an effective estimation of the break-down informa-
tion about the number of objects from a large spatial
dataset, which have ”contains”, or ”contained”, or
”overlap”, or ”disjoint” relation between the objects
and a given query window.

There are many search and index techniques
(Zhou, Truffet & Han 1999) (Xiao, Zhang & Jia 2001).
Sampling (Lipton, Naughton & Schneider 1990) was
the most popular technique to estimate the spa-
tial selectivity. To overcome a possible skew distri-
bution, histogram techniques (Acharya, Poosala &
Ranmaswamy 1999, Aboulnaga & Naughton 2000,
Jin, An & Sivasubramaniam 2000, Beigel & Tanin
1998) have been recently developed. In this paper,
we will investigate several new spatial histogram tech-
niques.
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There are a number of recent histogram techniques
for spatial selectivity estimation. To estimate the
number of objects which intersect a given query rect-
angle, the authors in (Beigel & Tanin 1998) proposed
to build a spatial histogram based on the Euler theo-
rem (Harary 1969). It has been shown that the tech-
niques developed in (Beigel & Tanin 1998) can guar-
antee the exact solutions if the given query rectangle
is a rectangle aligning with the histogram “grid”. The
paper (Jin et al. 2000) provides another technique Cu-
mulative Density Algorithm to target the same prob-
lem as in (Beigel & Tanin 1998). The Min-skew al-
gorithm (Acharya et al. 1999) and the SQ-histogram
technique (Aboulnaga & Naughton 2000) investigated
the problem of effectively partitioning the data space
to accommodate an arbitrary query rectangle. The
authors in (Sun, Agrawal & Abbadi 2002) have gone
one step further to identify finer spatial relations; that
is, the intersect relation is decomposed into three re-
lations, overlap, contains, and contained (to be pre-
cisely defined in the next section). Based on the
Euler-histogram techniques in (Beigel & Tanin 1998),
(Sun et al. 2002) presents 3 approximate algorithms
to calculate these 3 finer relations together with the
disjoint relation.

In this paper, we first present an exact algorithm
based on a multi-resolution paradigm to identify the
4 relations: overlap, contains, contained, and disjoint.
This is the first contribution of the paper. The second
contribution of the paper is to provide a new approx-
imate algorithm, based on a combination of spatial
histogram techniques and statistic techniques, to con-
form to a given storage space. Both of our algorithms
can run in a constant time. Our experiments showed
that our approximate algorithm can greatly improve
the accuracy compared with the previous techniques.

The rest of the paper is organized as follows. In
Section 2, we provide a background overview together
with the necessary notation. Section 3 presents our
new techniques. Section 4 presents the experiment
results. This is followed by conclusion and remarks.

2 Preliminary

A spatial object is usually encompassed by the min-
imal isothetic bounding rectangle(MBR) to approx-
imate its spatial extent. The binary topological re-
lation between two objects, D and Q, is based upon
the comparison (Egenhofer & Herring 1994) of D’s
interior(Di), boundary (Db), exterior (De) (shown in
Figure 1(a)) with Q’s interior (Qi), boundary (Qb),
and exterior(Qe); it can be classified into 8 different
relations. The four relations, as depicted in Figures
1(b) - (e), are regarded (Sun et al. 2002) as the most
important ones.

In this paper, we are interested in a set of MBRs
only. Consequently, a set S of objects always means
a set of isothetic rectangles. The Euler theory was
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Figure 1: 4 Spatial Relations between two Objects

first applied by (Beigel & Tanin 1998) to build a spa-
tial histogram for a set S of isothetic rectangles; the
corresponding histogram is called Euler Histogram in
(Sun et al. 2002). To build an Euler histogram H for
S, the isothetic MBR containing the whole S is first
divided into n1 × n2 equal cells; for instance, figure
2(a) illustrates the 5×5 equal cells which is also called
the 5× 5 grid. The histogram H is therefore referred
to the histogram on the n1×n2 grid; and the n1×n2
grid is the grid of H. A rectangle aligns with the grid
of H if its 4 edges align with the 4 lines in the grid
(see Figure 2(b) for example). A rectangle occupies
the w × h cells if its horizontal edges cross w cells
and its vertical edges cross h cells (see Figure 2(c) for
example).

5 x 5 cells(a) (b) align with the grid (c) occupy 3 x 2 cells

Figure 2: Histogram Grid

To build the Euler histogram on the n1 × n2 grid,
the (2n1− 1)× (2n2− 1) buckets are needed to be al-
located to keep the information, which correspond to
the internal edges, cells, or nodes, where each bucket
in the histogram stores an integer, such that:

• The integer corresponding to a cell in the grid is
increased by 1 if an object intersects the cell.

• The integer corresponding to a node in the grid
is increased by 1 if an object contains the node.

• The integer corresponding to an edge in the grid
is decreased by 1 if the edge crosses an object.

Figure 3(a) gives an example of Euler histogram.
Clearly, if we sum up all the buckets one object
corvers, the result should be 1 according to the Euler
theorem. However, if an object with a hole inside, the
summation is 0 (shown in Figure 3(b)).
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Figure 3: Euler Histogram

Based on the Euler histogram techniques, very re-
cently the four relations, disjoint, overlap, contains,
and contained between a query rectangle and an ob-
ject in S, have been investigated in (Sun et al. 2002).

It has been shown that the information in one Euler
histogram is not enough to determine the break-down
information about the number of objects in S that
fall into these 4 relation categories, respectively. For
instance, in Figure 4 the two different scenarios (Fig-
ure 4(a) and Figure 4(b)) lead to the same histogram
(Figure 4(c)). However, the break-down information
against the same query rectangle (the shaded rectan-
gle in Figures 4(a) and 4(b)) is different with respect
to these two different scenarios; and thus, it is impos-
sible to get the exact break-down information by one
Euler histogram.
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Figure 4: A Counter Example

As illustrated in Figure 1(c), we seperate the over-
lap relation into 1) one-end intersect (the left figure
in Figure 1(c)), and 2) cross-over (the right figure
in Figure 1(c)) becaue of their different behaviors in
Euler histogram.

Suppose that H is a n1 × n2 Euler histogram for
a set S of objects (rectangles), and Q is a query rect-
angle aligning with the n1 × n2 grid.

• |S| denotes the total number of objects in S

• Ncs denotes the number of objects in S which Q
contains (shown in Figure 5(a), the object a).

• Nit denotes the number of objects in S which
(one-end) intersect Q (shown in Figure 5(a), the
object b).

• Ncr denotes the number of objects in S which
cross over Q (shown in Figure 5(a), the object
c).

• Nds denotes the number of objects in S which
disjoint with Q (shown in Figure 5(a), the object
d).

• Ncd denotes the number of objects in S by which
Q is contained (shown in Figure 1(e))

• Pi denotes the number of objects in S whose inte-
riors intersect the interior of Q. (the dark shad-
owed part in Figure 5(b))

• Pe denotes the number of objects in S whose
interiors intersect the exterior of Q. (the light
shadowed part in Figure 5(b))

Based on the facts shown in Figure 3 and Figure
5, the following three equations are immediate.
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Figure 5: Compute Pi and Pe for Disjoint, One-end
intersect, Cross-over, Contains Relation

|S| = Ncs + Nit + Ncr + Ncd + Nds (1)
Pi = Ncs + Nit + Ncr + Ncd (2)
Pe = Nit + 2Ncr + Nds (3)

Note that Pi and Pe can be obtained by adding
up all the integers contained in the corresponding re-
gions, respectively; that is, the region for Pi is the
interior of Q and the region for Pe is the exterior
of Q. Further, we have to count a cross-over object
twice in (3). For example, in Figure 5, Pi = 3 that
means there are 3 objects which interiors intersect the
interior of Q, whereas Pe = 4 that means there are
4 objects which interiors intersect the exterior of Q.
But note here, because the object c is a cross-over
object which contributes 2 to Pe, in fact there are
only 3 objects (the object b,c and d) which interiors
intersect the exterior of Q.

For the object by which Q is contained (shown in
Figure 1(e)), it contributes 1 to Pi but contributes 0
to Pe (shown in Figure 3(b)).

In the equations (1) - (3), there are 5 variables
to be fixed. Actually, it tends to be impossible to
create more equations without introducing new vari-
ables. Therefore, 3 approximate algorithms have been
proposed (Sun et al. 2002) to find the approximate so-
lutions for these 4 variables excluding Nds that can
be always computed exactly. In the first approximate
algorithm, Ncd and Ncr have been both ignored; and
thus, three equations are just enough for fixing the
three remaining variables. In the second approximate
algorithm, Ncr is also omitted, while certain one-end
intersecting objects are also omitted in order to in-
troduce a new equation. In the third algorithm, the
first and second approximate algorithms are used al-
ternately to deal with a multi-resolution Euler his-
togram; that is, the Euler histogram is decomposed
into a set of Euler sub-histograms according to the
object areas.

Motivation
In some applications, the cross-over relation is not

always negligible. On the other hand, it should be
clear that the three equations (1) - (3) can support
only 3 variables. Consequently, it would be ideal if in
a histogram, there are only 3 relations.

This is the motivation for us to develop a new
multi-resolution algorithm. Further, the trade-off be-
tween the limited storage space and the accuracy is
another motivation for us to investigate a new ap-
proximate algorithm.

3 Multi-resolution Algorithm

In this section, we will present two multi-resolution
algorithms. The first algorithm will provide an exact
answer to the five variables in the equations (1) - (3),

while the second algorithm will provide an approx-
imate answer regarding a given storage space. We
start with the presentation of the exact algorithm.

3.1 An Exact Multi-resolution Algorithm

The basic idea of the algorithm is based on the above
motivation. We decompose the Euler histogram on
the n1 × n2 grid into a set A of Euler histograms
on the n1 × n2 grid, such that the objects in each
histogram in A have only three relations to a given
query rectangle.

Let Qi×j denote a rectangle aligning with the n1×
n2 grid and occupying i×j cells. Suppose that Hw×h
denotes the n1 × n2 Euler histogram for a set Sw×h
of objects (rectangles), where each object in Sw×h
occupies w× h cells in the n1× n2 grid. We have the
following theorem.

Theorem 1: Each Hw×h can provide an exact so-
lution to identify Nds, Nit, Ncs, Ncd and Ncr for a
given Qi×j.

Proof : When a Qi×j is used to query an Euler his-
togram Hw×h, there are three cases by comparing
w × h with i× j:

• Case 1 w ≤ i and h ≤ j (shown in Figure 6(a)).

• Case 2 w > i and h > j (shown in Figure 6(b)).

• Case 3 (w > i and h ≤ j) or (w ≤ i and h > j)
(shown in Figure 6(c)).

Below we prove the theorem with respect to these
three cases.

Note that in case 1, the width of any object in
Sw×h is not greater than that of Qi×j , nor the height
is. It can be immediately verified that no object in
this histogram can have cross-over relation with Q,
neither the contained relation. Consequently, Ncr = 0
and Ncd = 0. Clearly, the remaining three variables
Ncs, Nit, and Nds can be fixed from the equations (1)
- (3).

For a similar reason, we can immediately show
that in case 2, there is no cross-over relation nor con-
tains relation; that is, Ncr = 0 and Ncs = 0. Thus,
the remaining three variables can also be fixed by the
three equations.

In case 3, it is also immediate that there is no con-
tained relation nor contains relation; that is, Ncd = 0
and Ncs = 0. Again, the three remaining variables
can be fixed by the three equations. ¤

Our exact algorithm is based on Theorem 1. It
can be described below.

Exact Multi-resolution Algorithm

Step 1 Scan the dataset S and allocate each object
into a corresponding Sw×h.

Step 2 Construct the Euler histogram Hw×h for
each Sw×h on the n1 × n2 grid.

Step 3 With respect to each Hw×h and a given Qi×j ,
the exact results of Ncs, Ncd, Ncr, Nds and Nit
can be computed by the methods shown in the
proof of Theorem 1; adding them up respectively
to get the global Ncs, Ncd, Ncr, Nds, and Nit.

Storage Space
An Euler histogram on the n1 × n2 grid requires

O(n1×n2) storage space. In the worst case, our algo-
rithm may need O(n1 × n2) Euler histograms. Con-
sequently, our algorithm requires O(n2

1 × n2
2) storage

space; however, in practice the actual storage space
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may be much smaller than that in the worst case. For
instance, if we build the multi-resolution histograms
for the California road segments extracted from the
US Census Tiger (TIGER 2000) on the 360×180 grid,
there are only 37 histograms instead of 360×180 his-
tograms needed.

Further, it can be immediately shown that the ob-
jects falling into S1×1, S1×2, S2×1 or S2×2, may be put
into one Euler histogram instead of 4 histograms.

Query Processing Costs
For every histogram Hw×h, a Qi×j can be an-

swered in a constant time by using prefix-sum tech-
niques. The interested reader will find the details
of this techniques from (Ho, Agrawal, Megiddo &
Srikant 1997).

3.2 Hybrid Multi-resolution Approximate
Algorithm (HMA)

Clearly, our exact multi-resolution algorithm may be
very space consuming for some applications; it may
exceed a given storage space. In this subsection, we
provide a multi-resolution approximation algorithm
restricted to a given storage space.

Suppose that a fixed storage space is given, say,
only k histograms on the n1 × n2 grid are allowed.
The main idea of our algorithm is to construct the
first k−1 histograms which can provide the exact so-
lutions, while the remaining objects are all dumped
into the kth histogram which will give an approxi-
mate solution only. Intuitively, less objects fall into
the kth histogram, more accuracy of the approxima-
tion may be globally expected in general. Therefore,
in our algorithm we first choose k − 1 Swi×his such
that

∑k−1
i=1 |Swi×hi | is maximized. Our approximate

algorithm (HMA) may be presented as follows.

HMA

Step 1 Scan S to allocate each object into an ap-
propriate Sw×h. Choose k− 1 Swi×his such that∑k−1

i=1 |Swi×hi | is maximized.

Step 2 Built the Euler histogram Hwi×hi on the n1×
n2 grid for each chosen Swi×hi . Calculate the
exact answers for each Hwi×hi .

Step 3 Create the Euler histogram Hlast for the re-
maining objects (rectangles). Use the following
approximate algorithm to calculate the answers
for a given Qi×j .

Step 4 Sum up the results respectively in steps 2 and
3.

Obviously, we can use the first or second approxi-
mate algorithm in (Sun et al. 2002) to approach Hlast
(Step 3). However, it should be clear that such a
choice is not appropriate since Hlast may contain the

objects with various different sizes. Below we present
a hybrid algorithm for Step 3.

A Hybrid Algorithm
The last histogram Hlast collects all the objects

from the remaining set Slast of objects. Suppose we
keep the n1 × n2 summation numbers sw,h (for 1 ≤
w ≤ n1, 1 ≤ h ≤ n2), such that each sw,h represents
the number of objects in Slast which occupy w × h
cells in the grid. For a given Qi,j , we can group the
objects in Slast into 3 groups.

Group 1: Any object in this group occupies w × h
cells, such that w ≤ i and h ≤ j. By Theorem 1,
the only possible relations corresponding to Qi×j
are: contains, one-end intersect, disjoint.

Group 2: Any object in this group occupies w × h
cells where w > i and h > j. By Theorem 1, the
only possible relations corresponding to Qi×j are:
contained, one-end intersect, disjoint.

Group 3: Any object in this group occupies w × h
cells with w > i and h ≤ j, or with w ≤ i and
h > j. By Theorem 1, the only possible relations
corresponding to Qi×j are: crossover, one-end
intersect, disjoint.

Note that each of these three groups includes the
two relations: (one-end) intersect and disjoint. If we
assume that the objects in Slast are distributed evenly
over the grid, then we can use u

u+v+x × (Nit + Nds),
v

u+v+x×(Nit +Nds), and x
u+v+x×(Nit +Nds) respec-

tively to represent the total number of one-end in-
tersecting objects and disjoint objects in each group.
Here, u, v, and x denote the total number of objects
in group 1, group 2 and group 3, respectively. Note
u, v and x can be computed from {sw,h}. These give
us the following equations for a given Qi×j :

Ncs + u
u+v+x × (Nit + Nds)

Ncr + v
u+v+x × (Nit + Nds)

=
u

v
(4)

Ncd + x
u+v+x × (Nit + Nds)

Ncr + v
u+v+x × (Nit + Nds)

=
x

v
(5)

Combine these 2 equations with the equations
(1),(2),(3), we obtain Ncd, Ncs, Nit, Ncr and Nds for
Hlast.

HMA Computation Cost
The selection of k − 1 Sw×hs can easily run in

O(min(k × n1 × n2, (log(n1) + log(n2)) × n1 × n2))
time. The prefix-sum techniques (Ho et al. 1997) can
also be adopted to make the computation of u, v and
x run in a constant time.
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Figure 7: Experiment Results for T1X1 Regarding Dif-
ferent Storage Spaces

4 Performance Evaluation

In this section we evaluate the performance of our
new algorithm HMA. Specifically, we will evaluate the
accuracy of HMA comparing with the techniques in
(Sun et al. 2002) but not the efficiency; this is because
in HMA, querying one histogram runs in a constant
time as the algorithms in (Sun et al. 2002) do.

Dataset
In our initial experiment, we use a real dataset Cal-

ifornia Road segments selected from the US Census
TIGER (TIGER 2000). It consists of 2, 837, 688 ob-
jects. We normalize the dataset into a given 360×180
grid.

Query Sets
In our experiments, we use 4 sets of query rectan-

gles. These include different shapes such as square
rectangles as well as long and narrow rectangles as
described below.

T = {T1×1, T2×2, T5X2, T10X2}

where each Ti×j consists of (360−i+1)×(180−j+
1) query rectangles in the grid, each of which occupies
i× j cells.

Error Metrics
As mentioned earlier, we evaluate the approxima-

tion accuracy of our algorithm by using the average
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Figure 8: Experiment Results for T2X2 Regarding Dif-
ferent Storage Spaces

relative error below in our performance study.
∑

q∈Ti×j
εq

|Ti×j | (6)

where

εq =

{
|e−e

′ |
e if e 6= 0

|e− e
′ | otherwise

Here, e is an exact value and e
′
is an approximate

value. εq is the average relative error of a single query
q.

Implementation
We examined the performance of HMA against 3

different storage space requirements, 1 histogram, 3
histograms, and 5 histograms. For comparison rea-
son, S-Euler, AproxEuler and M-Euler (Sun et al.
2002) are also implemented for different query rect-
angles. We name such a collection of these three al-
gorithms as MEA.

In our experiments, we record the average relative
errors for a given storage space and a given query set
for HMA and MEA, respectively. We denote:

• the number of objects, overlapping a given query
rectangle, by Ni (Ni = Nit + Ncr);

• the number of objects, which a given query rect-
angle contains, by Ncs;
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Figure 9: Experiment Results for T5X2 Regarding Dif-
ferent Storage Spaces

• the number of objects, by which a given query
rectangle is contained, by Ncd.

We did not evaluate the solutions for the number of
objects (Nds)that disjoint with a given query rectan-
gle in our experiments, because both HMA and MEA
can provide the exact answers to this problem.

In our experiments, we found that HMA provides a
better answer (i.e., with smaller relative errors) than
MEA does; this tends to be more significant when
a query object is small or long and narrow. Re-
call that we present our experiment results regard-
ing some small query rectangles or long and narrow
query rectangles. We use 1-H to represent the storage
limitation when only 1 histogram is used, 3-H and 5-
H to represent the situation where only 3 histograms
and 5 histograms can be used respectively. Note that
in HMA, the last histogram needs n1 × n2 space to
store the statistic information. Therefore, the storage
space for the last histogram in HMA needs about one
fourth space more than the MEA does. However, our
experiment results suggest that the additional storage
space may bring enormous benefits. We can see that
in our experiment results, HMA with i histograms
even out-performs the MEA with i + 2 histograms
(for 1 ≤ i ≤ 3).

Figure 7 and Figure 8 show the experiment re-
sults for T1×1 and T2×2. Note that in California Road
dataset, the number of small objects is much greater
than the number of the large objects; consequently
Ncs may be quite large while Ncd could be negligible.
In fact, in our experiments we found that over all
queries in T1×1 (T2×2), the total Ncs is about 2.5 mil-
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Figure 10: Experiment Results for T10X2 Regarding
Different Storage Spaces

lions (10.7 millions), while the total Ncd is 398 (80).
Therefore, the estimation accurarcy of Ncs is much
more important than that of Ncd. Figure 7 and Fig-
ure 8 show that the HMA provides significantly better
estimation of Ncs than MEA does. Though the esti-
mation of Ncd in HMA is slightly worse than that in
MEA for testing T2×2, this will not bring a siginifi-
cant impact on the performance of HMA due to the
2 reasons: 1) the difference between is not significant
and both of them are within 0.1%, 2) the total num-
ber of Ncd over all the queries is very small 80 (less
than about 0.001 per query on average).

In MEA, the cross-over objects have been ignored.
The experiment results in Figure 9 and Figure 10
show the approximate error may be propagated to
the other parameters because of this kind of ignoring.
When a query rectangle is narrow and long, cross-
over objects should not be ignored. In fact, our al-
gorithm HMA provides a much more accurate results
than MEA for T5×2 and T10×2, as depicted in Figures
9 and 10.

5 Conclusion and Remarks

In this paper, we investigated the problem of effec-
tively obtaining a preview of spatial query process-
ing results using spatial histograms. We first present
an exact algorithm based on a multi-resolution
paradigm. To conform to a given storage space, we
also provide a hybrid multi-resolution algorithm by
combining the geometric information with the statis-
tic information. Our experiments suggest that our



techniques, developed in this paper, out-perform the
existing techniques.

As a possible future study, we will investigate the
randomized algorithmic techniques to approach the
problem in this paper.
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