
Smart (Legal) Contracts: A Case Study using

Simple Agreements for Future Equity

Ron van der Meyden and Michael J. Maher

October 29, 2022

Abstract

The paper gives an overview of a project that has explored how
distributed ledger and smart contract technology might be applied to
a type of contract that is used in financing early-stage ventures: Y-
Combinator’s Simple Agreement for Future Equity. The range of ques-
tions that needed to be addressed in developing smart contract code
for this application is discussed, from understanding financial and ac-
counting aspects of the contract, game theoretic issues, dealing with
open-textured legal terms in the source legal documents, smart con-
tract architecture, and terms of an associated “smart legal contract”
that gives the smart contract legal standing and covers residual issues
that inherently cannot be governed by the smart contract itself.

1 Introduction

Distributed Ledger Technology (DLT), also known as “blockchain”, pro-
vides a novel form of computational infrastructure for securing ownership
records of a range of assets. The emergence of this class of systems was
driven by the success of Bitcoin [Nak08] as a decentralized digital currency
platform that supports enforcement of simple rules concerning the transfer
of value. Subsequent DLT platforms such as Ethereum have incorporated
more expressive languages for representing such rules, enabling a realization
of Szabo’s vision of “smart contracts” [Sza97]: commercially relevant multi-
party agreements enforced by code running on computer networks. This
development was soon applied to develop “Decentralized Autonomous Or-
ganisations” and “Initial Coin Offering” smart contracts, which were used
in crowd-fundings raising substantial amounts of cryptocurrency value for
projects developing blockchain technology and its applications.

1

These crowd-fundings were often of legally questionable status. Follow-
ing a significant amount of fraud, regulators have started to assert their pow-
ers over blockchain-based fundraising, and to develop a regulatory stance to
this new technology. The focus of the application of DLT is therefore in-
creasingly moving towards regulated forms of assets, for which multi-party
trust has historically been managed using legal contracts. This raises the
question of how regulated assets can be supported using DLT technology.

Some simple forms of commercial agreement can be completely enforced
using smart contracts: a swap of a digital asset represented on a blockchain
for that chain’s cryptocurrency is one example [Her18]. There is an emerg-
ing view, however, that the typical representation of a legal instrument on
a DLT platform will require natural language text as well as smart contract
code, a hybrid form of representation for which the term smart legal contract
has emerged [AH22]. On this view, claims of immutability notwithstand-
ing, the legal system will have powers to overrule actions performed on the
blockchain. This position was foreshadowed already in Ian Grigg’s notion of
“Riccardian Contracts” [Gri04].

The methodology of smart (legal) contract development is still nascent,
and raises many questions. To what extent can the contracts defining regu-
lated assets be represented in smart contract code? Which of the provisions
of commercial agreements can be automatically enforced using code on DLT
systems, and which require representation in natural language? What issues,
more generally, need to be addressed in developing a smart legal contract
for a regulated instrument?

The present paper describes the outcomes of a project in which we have
studied these questions by means of a case study of a legal contract that has
become widespread in the financing of early stage ventures: Y-Combinator’s
Simple Agreement for Future Equity (SAFE) [Lev18]. Developed in order
to simplify negotiations between seed investors and startup founders, these
contracts are like convertible bonds but omit their provisions for payment
of interest, simply offering either a return of the investment or a conversion
of the contract to shares at the time of a priced equity round. (After a
brief introduction to DLT and smart contracts in Section 2, we describe the
structure of a SAFE contract, and summarize its terms in Section 3.) Due to
the formality of the corporate finance domain, and the relative brevity and
simplicity of SAFE’s, they are, prima facie, a good candidate for a study
intended to elucidate the nature of smart contract representation of legal
contracts.

The detailed development of a smart contract representation of legal
contracts, nevertheless, is non-trivial, and requires the careful consideration

2

of a significant number of issues for the representation to adequately capture
the legal dynamics of the source contracts. Indeed, the work of attempt-
ing to formalize SAFE contracts using smart contracts raises many issues,
but leads, we claim, to an improved understanding of the contract itself.
The outcomes of our effort to understand these issues has been captured
in a number of papers [vdMM21b, vdMM21a, vdM21, Cou21], which are
summarized in the present work.

To begin with, the preciseness and formality of code requires that finan-
cial operation of SAFE contracts first needs to be very well understood. As
we describe in Section 4, the terms of a SAFE raise unanticipated questions
about the meaning of the financial notion of “pre-money valuation” of a
company in a priced equity round, which plays a key role in the terms relat-
ing to conversion of the SAFE to shares. There are multiple ways in which
these questions are understood in practice, raising the question of which
should be supported in the smart contract code.

Another issue that impacts decisions concerning the smart contract code
is that the SAFE provides that in Liquidity Events (e.g., an acquisition
of the startup), the SAFE investor is offered two options concerning the
determination of their payout. One expects that an investor will always
choose the option that maximizes their payout. However, it turns out that
the payout may depend also on choices made by other investors, giving
Liquidity Events an inherently game theoretic nature. We summarize our
analysis of this game and its impact on coding of the smart contract in
Section 5.

Section 6 discusses a number of impediments to straightforward trans-
lation of a SAFE contract to code. Related to the issue of precision and
formality is that the source legal text contains open textured terms, not
straightforwardly formalizable, and potentially subject to shifting interpre-
tations as a result of legal rulings. We describe strategies for dealing with
these difficulties in Section 7. A key element of our approach is to code the
smart contract representation of the SAFE in a form that allows multiple
different understandings to be accommodated. In the actual implementa-
tion of code components of the smart legal contract, as with any software
engineering project, decisions need to be made concerning the architecture
of the solution. In Section 8 give a brief description of our architecture,
which has been designed to deal with a number of further issues, includ-
ing the open structure of the context in which the SAFE operates, and the
fact that some versions of the SAFE state declarative constraints instead of
giving explicit computations for certain operations.

A further aspect of the financial operation of the SAFE concerns the

3

freedom that equity round investors and the company have to negotiate the
terms of equity rounds. In analyzing this aspect, we have found that a simple
translation of the SAFE to smart contract code leaves the SAFE investor
vulnerable to “gaming” of the SAFE contract by the company and the equity
round investor. As described in Section 9, if the equity round is structured
into two separate rounds at different prices, the SAFE investor can be left
in a situation where their post-round stake in the company is significantly
smaller than it would have been in an honestly constructed single round.
We argue that this “attack” implies that the SAFE investor cannot rely
upon a smart contract alone to protect their interests. The source legal
text contains language that gives the SAFE investor legal recourse in such
a situation, but its effect inherently cannot be captured in smart contract
code. This is one example in which use of a smart legal contract, that retains
the original legal terms, is critical.

The use of smart contracts and DLT as part of multi-party arrange-
ments that have legal significance raises many general questions of law that
we have not attempted to address in our work (see [DCP19, AH22] for ex-
tensive treatments). We do, however, in Section 10, lay out the demarcation
between work done in code, and work done by natural language components
of the smart legal contract we propose. Some further legal issues specific to
the use of smart contracts for the equity financing domain are also discussed.

A key theme emerging from the work of this project has been to illus-
trate the way that undertaking a smart contract implementation of a legal
instrument forces a greater degree of precision than is usual in the design of
contracts. We draw out some general conclusions in Section 12, discussing
circumstances in which the effort required for such precision is worthwhile,
and giving general remarks on the discipline of Smart Legal Contract Engi-
neering, of which the present work might be considered an exemplar.

2 Background: Blockchain and Smart (Legal) Con-
tracts

Blockchain systems are a type of computational platform running on net-
works of computers, that coordinate to maintain a shared consensus state
(a ledger of asset ownership, in many applications), in such a way that no
individual node of the network, or even a submajority of the nodes, has
the power to corrupt the state and make it differ from the state agreed
by the network majority. The innovation of Bitcoin was to create the first
broadly adopted digital currency by combining a number of earlier crypto-

4

graphic ideas into a novel synthesis that for the first time made it possible
to securely maintain such a consensus state over an open network (one that
allows unconstrained entry and exit of nodes of the network). For the pur-
poses of this paper, the details of the operation of the network protocol do
not need to be understood, and the reader may conceptualize DLT as simply
providing an uncorruptable computer accessible on the internet. The main
point relevant below is that use of this computer comes at a cost, making
it desirable to minimize the amount of computation that a user asks the
platform to perform.

Bitcoin contains a simple form of programming language that enables
constraints to be associated to amounts of monetary value, so that the value
can be transferred only when the constraints are met in the transaction that
makes the transfer (for example, certain forms of cryptographically signed
assertion may need to be provided before the transaction can go ahead).
This enabled a first realization of an open “smart contract”’ [Sza97] plat-
form, in which computer code running on a computer network enforces the
terms of multiparty agreements concerning the disposition of certain assets.
Bitcoin’s programming language has its limitations, which have been re-
moved in subsequent systems such as Ethereum, which enables, in principle,
arbitrary code to be used to implement smart contracts.

A very simple example of a multiparty agreement that can be enforced
by smart contracts is an “Atomic Swap” of digital assets represented on the
blockchain [Her18]. For example, suppose Alice controls digital currency
(Ethers) and Bob controls a digital asset (a CryptoKitty non-fungible token
(NFT), representing that Bob is the owner of a digital image of a cute cat).
Alice and Bob agree to an exchange: for two Ethers, Bob will transfer the
NFT to Alice. An Atomic Swap smart contract can be used to enforce
“Payment versus Delivery”, so that it is guaranteed that either Alice will
have control of the NFT and Bob will have control of two of Alice’s Ethers,
or both parties will still have control of their original assets. The situation
where Alice has transferred her Ethers to Bob and Bob has not transferred
the NFT to Alice or, conversely, where Bob has transferred the NFT and
Alice has not transferred two Ethers, can provably not arise when Alice and
Bob make use of an Atomic Swap smart contract [vdM19].

Such capabilities of DLT enable the development of platforms for trad-
ing of digital assets, and have led to considerable excitement about the
idea of representing and automatically enforcing other forms of contractual
arrangement using smart contracts, eliminating the need for the legal infras-
tructure provided by lawyers, arbitrators and courts. There are limitations
to this vision, however. It may be feasible when all the assets involved

5

are digitally represented, but obligations involving actions performed in the
physical world obviously cannot be enforced by computer code, because it
can neither directly observe nor directly affect the world. In many cases
where smart contract technology is used, there remains, therefore, a need
for standard forms of contract and legal processes if the agreements are to
be enforced.

There is an emerging view, consequently, that there is a need for “smart
legal contracts”, a hybrid of computer code for DLT platforms and natu-
ral language text [AH22]. The precise structure of such hybrids remains a
subject of debate, as does their legal status and the need for legal reform to
accommodate the new technology.

Still, when all assets involved are digitally represented, the ambition
of representing contracts as code remains plausible. However, determining
whether this vision can be realized for a particular multi-party agreement,
and precisely how, may require a detailed investigation. In what follows, we
describe our investigation of this question for the particular case of SAFE
contracts.

3 Background: SAFE contracts

SAFE (Simple Agreement for Future Equity) contracts [Lev18] are a class
of contract that were developed and published by the Silicon Valley incuba-
tor fund Y-Combinator for use in seed financing of startup ventures. The
principal motivation for the design of these contracts is to simplify the ne-
gotiations between founders and seed investors to decisions on a few key
parameters of a standard document, avoiding the need for complex legal
work.

Investments in companies typically come in the form of an exchange of
shares for the money invested, but this requires a valuation of the company
in order to determine a price for the new shares to be issued. Since early
stage ventures are generally highly speculative and difficult to value, the
valuation can be a sticking point in negotiations. SAFE contracts eliminate
the need for a negotiation on valuation by offering the investor, in place of
shares, a promise of shares at a future event (a future equity round, typically
involving venture capital firms).

The number of shares to be issued to the investor at this future event is
determined according to a conditional “conversion formula” that gives the
investor a lower price in the equity round if the company has performed well,
but also protects the investor against losses in case of poor performance. In

6

essence, SAFE contracts are similar to convertible bonds, except that their
provisions for payment of interest in the investment prior to conversion have
been eliminated. (Again, the motivation for this is a simplification of the
instrument, saving complexities in its tax treatment.)

There are multiple variants of SAFE contracts, differing with respect
to the details of the conversion formula. In the original variants of the
Y-Combinator SAFEs [Y C], there were 4 versions, depending on a choice
of which of two parameters called the Valuation Cap and Discount are in-
cluded in the conversion formula, along with the Pre-Money Valuation of
the company (that is, the valuation of the company agreed by the investors
just before the equity round.) The Valuation Cap, effectively, sets a limit
on the price at which the SAFE investors money is converted to shares, and
the Discount is, effectively, a percentage discount on the price that will be
paid by the new equity round investors. Y-Combinator later switched to a
new set of “Post-Money” variants [Lev18], in which use of the Pre-Money
Valuation is replaced by the Post-Money valuation.

We focus in this paper on a discussion of one of these variants, the Pre-
Money SAFE with Cap only [Y C16]. This contract is in the form of a
template with just two numerical parameters that are filled in before the
contract is signed: the Purchase Amount (the amount being invested by the
SAFE investor) and the Valuation Cap. The conversion formula is defined
by the following clause:

(a) Equity Financing. If there is an Equity Financing before
the expiration or termination of this instrument, the Company
will automatically issue to the Investor either: (1) a number
of shares of Standard Preferred Stock equal to the Purchase
Amount divided by the price per share of the Standard Pre-
ferred Stock, if the pre-money valuation is less than or equal to
the Valuation Cap; or (2) a number of shares of Safe Preferred
Stock equal to the Purchase Amount divided by the Safe Price,
if the pre-money valuation is greater than the Valuation Cap.

The notion of “price per share of the Standard Preferred Stock” is treated
as a primitive input available at the time of the equity round. The Safe Price
is defined by the following clauses:

“Safe Price” means the price per share equal to the Valuation
Cap divided by the Company Capitalization.

“Company Capitalization” means the sum, as of immedi-
ately prior to the Equity Financing, of: (1) all shares of Capital

7

Stock (on an as-converted basis) issued and outstanding, assum-
ing exercise or conversion of all outstanding vested and unvested
options, warrants and other convertible securities, but exclud-
ing (A) this instrument, (B) all other Safes, and (C) convertible
promissory notes; and (2) all shares of Common Stock reserved
and available for future grant under any equity incentive or sim-
ilar plan of the Company, and/or any equity incentive or similar
plan to be created or increased in connection with the Equity
Financing.

Beside Equity Financing events, SAFE contracts recognize two other
event types that produce some form of return to the SAFE investor: Liquid-
ity Events (an Initial Public Offering, acquisition or merger of the company)
and Dissolution Events (in which the company is dissolved). In Pre-Money
SAFEs there is no provision for dividend distributions to SAFE investors;
these are an additional event type in the Post-Money SAFEs.

The Liquidity Event clauses differ depending on the SAFE variant, but
their overall structure considers a SAFE holder to have two options in the
case of a Liquidity Event: to Cashout or to Convert. The Cashout option
returns to the SAFE holder the Principal Amount that they invested in
purchasing the SAFE, or, if there are inadequate funds to be distributed,
a pro-rata amount determined from the claims of all the SAFE investors
choosing the Cashout option. The Convert option first converts the SAFE
to shares, and then gives a pro-rata payout determined from the claims of
the Converting SAFE holders and all other share-holders. Investors choos-
ing to Cashout have priority over investors choosing to Convert as well as
other shareholders, so the Cashout amounts are distributed first, before the
Conversion amounts are determined.

Dissolution Events also yield a payout to the SAFE investor, more simply
determined. SAFE investors are treated with priority over shareholders. In
the case of the Pre-Money SAFE with Cap only, the payout is simply either
the Purchase Price or, if there are insufficient funds for such a distribution to
the SAFE investors, they receive an amount determined pro-rata according
to their Purchase Amounts.

A SAFE terminates if there is either an Equity Financing, Liquidity
Event, or Dissolution Event. In addition to the clauses describing this dy-
namics of SAFE contracts, there are clauses covering representations made
by the company and the SAFE investor that underpin their capacity to enter
into the contract and the legal validity thereof, as well as a number of pro-
visos relating to revisions to the contract, delivery of relevant notices, rights

8

not implied by the contract, transfer of rights associated to the contract,
treatment of invalidity of part of the contract, and the legal jurisdiction
governing the contract.

4 Financial Analysis

When setting out to develop code that represents a contract, it is necessary
to develop a correct understanding of the intended interpretation of the
terms of the contract, as well as the way that those terms are applied in
practice. Prima facie, the Equity Financing clause has a straightforward
statement. However, the nature of the SAFE contract itself raises issues for
the interpretation of some of the terms of art that it contains, that requires
clarification and forces some decisions to be made about how to convert
these terms to code. We give a sketch of the issues in the present section,
and refer to [vdMM21a] for a detailed analysis.

The terms “pre-money valuation and “post-money valuation are terms of
art for equity investors. Their meanings are buttressed by a set of equations
that relate these terms to other parameters of an equity financing. However,
once a company has issued a SAFE (or other convertible note), these equa-
tions are no longer consistent [vdMM21b]. This has led to confusion among
equity investors and founders who, using different subsets of the equations,
arrive at different conversion outcomes.

As a result, multiple conversion methods have evolved (see, for example,
[Col]). One method can be viewed as accounting for the SAFE as a liabil-
ity of the company that is discharged as a result of the equity round. An
alternative view is that a SAFE is represented on the capitalization table
of the company, corresponding to some (variable, until the equity round)
number of shares. (While eschewing the provision of advice on the matter,
Y Combinator states that its preferred view is that SAFEs are “equity in-
struments” [Y C18].) Other methods seem more ad hoc. In summary, in
the context of issued SAFEs, the terms of art are now ambiguous.

In some of these potential conversion methods, there is the further issue
that the conditions defining the number of SAFE Shares to be issued intro-
duce a circularity. Accounting for the SAFE as a liability requires, in order
to value the company to determine a share price, that the SAFE be valued
first, but this in turn requires a valuation for the company. This issue can
again be resolved by treating the contract as setting up a set of simultaneous
equations from which the relevant quantities can be deduced. (Post-Money
versions of the SAFE [Lev18] explicitly state a set of simultaneous equations

9

rather than give a formula for determining the SAFE share issuance.)
The question this raises for the task of representing the SAFE contract

in code is which of these conversion methods to support in the code, and
the extent to which the relevant calculations should be performed off-chain.
Representing the solution process for a set of simultaneous equations in code
is potentially non-trivial1 and its cost may be prohibitive on platforms like
Ethereum that charge for computation performed on the blockchain.

The solution to these difficulties that we have adopted is to represent
the scenario of a company issuing SAFE contracts in a general way that
accommodates multiple views. Rather than have the SAFE smart contract
explicitly calculate the share issuance in the equity round, we view it as
stating a declarative constraint on a description of the equity round proposed
by the company. The proposal states the parameters of the equity round: the
pre-money valuation, the number of shares to be issued to each new investor
and to each of the SAFE investors, and the share price for these issuances.
The code governing the company proceeds with the proposed share issuance
only if this proposal is approved by the smart contracts representing each
of the SAFE contracts.

The benefits of this approach are that the smart contract embodies the
meaning of terms like “pre-money valuation” as agreed by the founders and
the SAFE investor at the time, and that it leaves potentially computationally
complex equation-solving processes to off-chain computation (replacing this
by a more efficient computation that checks that the proposal satisfies the
SAFE contract). This approach also allows for the smart contract to be
coded to permit manual approval by the SAFE investor.

It remains for the SAFE investor and company to select a coding of the
SAFE that captures the desired degree of flexibility. For example, they may
decide that a particular conversion method applies, but additionally allow
for manual approval by the SAFE investor in case required by negotiations
in the course of the equity round. In any case, as discussed below, there is
a need to allow for negotiated revisions of the contract and legal rulings for
variance of the SAFE terms.

5 Game Theoretic Aspects

A further issue requiring some analysis to determine what is in scope of
enforcement by the smart contract arises from the Liquidity Event clauses

1With sufficient expressiveness in the contract terms, solutions could even become
uncomputable.

10

of the SAFE contracts. As noted in Section 3 these clauses give a SAFE
investor a choice between two options (Cashout and Covert), each producing
a payout amount. However, some SAFE contracts state that the investor
will receive the maximum of the payouts resulting from the two options.
Obviously, this is the option that would be chosen by a rational investor,
but this assumes that this maximum is well defined.

In fact, an analysis of this question reveals that when multiple SAFEs
have been issued, an investor’s payout for a given choice depends on the
choices of other investors. This gives the Liquidity Event setting an in-
herently game theoretic nature, with maximization of one investor’s payout
potentially at the cost of the reduction of another investor’s payout. To make
sense of the notion of “maximum”, in this case, requires that we understand
the likely outcomes of these competing interests using an appropriate notion
of game theoretic equilibrium.

One of the most commonly considered notions of the “solution” of a
game is that of Nash equilibrium. A discrete Nash equilibirium is a strategy
profile (a collection of choices of move for each of the players) from which
no player has an incentive to deviate, in the sense that a change of move by
any one player, while the others do not change their move, does not increase
the payoff of that player. If there is a strategy profile that maximizes the
payoffs of all players simultaneously, then it is also a Nash equilibrium, so
one approach to addressing the problem of maximizing the payoff of all
players is to understand the discrete Nash equilibria of the game.2

We have conducted an analysis of the discrete Nash equilibria of the
Liquidity Event games arising from both Pre-Money and Post-Money SAFE
contracts in [vdM21]. This analysis shows that the situation with respect to
the existence of Nash equilibria is complicated. If the company issues both
Pre-Money and Post-Money SAFE contracts, then there are situations where
the Liquidity event game has no discrete Nash equilibria. However, if the
SAFEs issued are uniformly Pre-Money SAFEs, or uniformly Post-Money
SAFEs, then it can be shown that discrete Nash equilibria exist, and indeed,
amongst the discrete Nash equilibria, there is at least one such equilibrium
(but possibly exponentially many) that simultaneously maximizes payout

2Mixed strategies seem less appropriate in this setting, since the game is played only
once. In general, one would also prefer that a financial contract deterministically specifies
a payout in a specific scenario, rather than leave this subject to uncertainty. Other forms
of game theoretic equilibria, such as correlated equilibria, may be of interest, particularly
since agreements of the parties playing a game can be enforced using smart contracts
on the blockchain. However, we do not have an analysis of such equilibria of the SAFE
Liquidity Event games at this time.

11

for all SAFE holders. Moreover, this equilibrium can be computed in time
that is polynomial in the number of SAFE contracts that have been issued.3

It could therefore be recommended that the company should only issue
SAFE contracts of a uniform type. It is worth noting that this could in
fact be enforced on the blockchain by restricting the operations by which a
SAFE contract is issued to allow only SAFE contracts generated from a fixed
template to be added. This restricts the generality of the implementation,
however. Provided that the company takes care to check that the specific
set of contracts that it issues does guarantee that the desired solution of
the Liquidity game will always exist, the issue of a lack of solution does not
arise. Plainly, a software tool that performs this type of consistency check
would be desirable. However, we do not have, at present, a general algorithm
that is better than a brute force (exponential time) search for computing an
optimal Nash equilibrium under the “promise” that it exists.

A simpler alternative, followed in [Cou21], is to simply accept that the
situation is inherently game theoretic, and not attempt to use the blockchain
to compute and enforce a particular solution. Instead, the choice of move is
left to the SAFE holders to decide. This is certainly desirable from the point
of view of maintaining the human autonomy in this choice that is allowed
by the original contract. Again, as with Equity Financing events, one can
also conceive that investors may negotiate a distribution that varies from
the explicit terms of their contracts. To cover this case, there could be an
option in the smart contract to approve a specific proposed distribution.

6 Impediments to Formalization

Some of the clauses of a SAFE contract, such as that describing the conver-
sion formula in the case of an Equity Financing (see Section 3) appear to
be sufficiently technical that they can be readily translated to code, with a
high degree of confidence that the code correctly captures the meaning of
the source text.

Other clauses are more problematic, however, because of the limited
precision of natural language. Natural language legal text may be ambigu-
ous (having multiple meanings), vague (lacking sharp boundaries of appli-
cability even in known cases) or open textured (of uncertain applicability

3The algorithm does require sorting of certain parameters, so has asymptotically non-
linear running time, which is potentially a limitation for implementation on a blockchain
that charges for computation costs. However, the number of contracts will in practice
often be small, and the algorithm can be implemented in linear time with the sorting
operation performed off-chain, which makes it feasible even in such settings.

12

in unforeseen circumstances; some authors use this term also for vagueness)
[Wit53, Wai68, Har61, Har58].4 It has long been understood that such forms
of indefiniteness present challenges to the formal representation of legal text
in computational systems [McC80, BCS88].

The definition of an Equity Financing is one example of this difficulty in
the context of a SAFE contract. It states:

“Equity Financing” means a bona fide transaction or series of
transactions with the principal purpose of raising capital, pur-
suant to which the Company issues and sells Preferred Stock at
a fixed pre-money valuation.

This contains multiple terms subject to indefiniteness, in various forms.
As we have already noted above, in Section 4, although it might have

been expected to have precise meaning, in the presence of SAFE contracts,
the notion of Pre-Money Valuation is subject to different interpretations,
depending on whether we view a SAFE to be accounted for as a liability or
on the company’s cap table. Although we have described this as ambiguity,
it can also be considered to be an example of open texture, in Waismann’s
original sense of presenting difficulties of interpretation in unforeseen cir-
cumstances (a circularity in the problem of valuing the company, caused by
the presence of a SAFE.)

A related issue is that the contract is incomplete in not stating the
relationship between pre-money valuation and share price. Incompleteness
of contracts is a well recognized phenomenon, ascribed usually to the fact
that drafting contracts so that they cover all possible future circumstances
(some very unlikely to occur) may be complex, costly and delay contract
formation. The incompleteness here arises, instead, from the presumption,
falsified by SAFEs themselves, that this relationship is well understood to
be common knowledge background to the contract. This is an instance of
the contract not being self-contained, but drawing upon external legal and
business practice context for its interpretation. Another example occurs in
that the contract defines the notion of “change of control”, which acts as a
trigger for a Liquidity Event, by reference to legislation: the Securities Act.

Other terms of indefinite meaning in the clause are the vague terms
“bona fide”, and “principal purpose”. Even the technical notion of “Pre-
ferred Stock” might be considered to be open textured, given that the rules
adopted by a company concerning the rights associated to different classes

4Even the fact that authors disagree on the meaning of the terms in this classification
of indefiniteness illustrates this weakness of natural language.

13

of stock are open ended, potentially allowing for unusual definitions that
make it difficult to decide whether a particular class of stock should count
as Preferred.

Also problematic in this definition is the reference to a “transaction or
series of transactions”, which leaves it open to interpretation which trans-
actions are part of the single Equity Financing event. If a company sells
Preferred Stock, and one week later sells more Preferred Stock, should these
events be treated as part of the same Equity Financing events or not?

The open structure of the scenario of a company issuing shares also
presents challenges to formalization. There is an unlimited variety of po-
tential rules governing shares, governance rules relating to these shares, and
company constitutions.

7 Strategies for Dealing with the Impediments

We now discuss a number of strategies that can be applied in developing a
smart contract formalization of a SAFE contract in the face of the difficulties
of the previous section. When developing a formalization of a contract, a
wide spectrum of options remains open with respect to which aspects of the
contract to formalize, and how to do so.

One point to note is that specific formalization decisions could be part
of the contract negotiation process itself. Ultimately, the parties sign a
contract in order to decrease their uncertainty about the future, relying on
the legal system to ensure that future events will be constrained as described
in the contract. If a smart contract is one that the parties understand,
and they are willing to accept and abide by its precise interpretations of
natural language expressions, then it may be moot that the formalization
does not correspond exactly to the natural language meanings in a document
on which the formalization was based. A constraint on the workability
of such acceptance, however, is that the parties may be limited in their
ability to foresee potential future situations, and in their understanding of
the formalization, because of its technical complexity and language. Even
experienced programmers have limitations in their capacity to understand
the behavior of complex code in all possible scenarios, as evidenced by the
pervasiveness of software bugs and vulnerabilities.

One way to tame these complexities is by limitation of fact patterns. We
may note that smart contract development differs from the broader field
of legal knowledge formalization (e.g., for the purpose of developing expert
systems for provision of legal advice), in that the fact patterns in which the

14

applicability of a term to be formalized needs to be decided is not always
arbitrary, but can sometimes be restricted by the smart contract itself.

One example of this in SAFE contracts relates to the term “Preferred
Shares”. If the company is allowed to issue Preferred Shares at will (e.g.,
in lieu of payment to a contractor), the smart contract needs to determine
whether that issuance is (part of) an Equity Financing event, in order to
trigger conversion of the SAFE. This may be impossible to automate, par-
ticularly as questions of intent arise.

However, the smart contract can be designed so that once a SAFE has
been issued, the only way that Preferred Shares can be issued is by the com-
pany taking an action that declares that the issuance is part of an Equity
Financing. This eliminates the complexities of interpretation by restricting
the company’s scope of action. In effect, it adds to the contract agreement
the easily understood condition that the company will not issue Preferred
Shares except in an Equity Financing. An issuance not satisfying this con-
straint would in any event be unusual, as the company would generally prefer
to issue Common Stock, so the constraint is likely to be acceptable to the
Company. It will also be acceptable to the SAFE investor, since it gives
greater certainty about the performance of the contract.

A related limitation of fact patterns in the way we have implemented
our SAFE smart contract is by a simplistic treatment of share classification.
If we were to allow arbitrarily complex rules defining an unlimited number
of different classes of shares, we would potentially require a formalization of
the process of determining whether a particular share is a Preferred Share.
Instead, each share in our formal representation is, for purposes of the SAFE
smart contract, simply declared by the company, on issuance, to be of type
Common, SAFE Preferred, or Preferred.5

We have noted above the difficulty that determining the number of shares
to be issued to a SAFE investor may require solution of a set of simultane-
ous equations, and may also be subject to negotiated interpretation. Our
approach to this difficulty is to represent a SAFE not as a program that
automatically computes the number of shares to be issued in conversion of
the SAFE, but instead as a program that gives a true or false answer to the
question of whether an equity round proposed complies with the terms of

5We do think it is desirable to allow for flexible formal encoding of rules relating to
share classes, particularly after SAFEs have been discharged, but the work of doing so is
orthogonal to the work of encoding SAFEs. The strategy of relying on the company to
declare the categorization for the purpose of the SAFE can be combined with the use of a
richer representation, and reliance on the legal system to adjudicate the appropriateness
of the classification.

15

the SAFE. The proposal is comprised of information about the money paid
by each participant, the shares they are to be issued, and the class of those
shares, as well as the understood pre-money valuation of the round. The
round is allowed to proceed only if all the SAFE contracts issued by the
company indicate that the proposal complies with their terms, and the new
investors also assent by provision of payment. (See the next section for more
detail.) We apply here a well understood principle in computer science, that
it is generally easier to compute whether an answer to a problem is correct,
than it is to find such an answer. This approach also allows for ambiguity,
and negotiated agreements about a specific equity round can be handled by
first revising the SAFE smart contract so that it will accept the negotiated
proposal.

As a general remark, in developing a smart contract from a source natural
language document containing indefinite terms, such terms can be handled
in the smart contract either by full automation or can draw on input from
human decision makers. In each case, the choice has implications for the
powers of the parties to the contract. Where human decision makers provide
input, it is important to carefully consider which of the parties to the con-
tract (or external sources of information) should provide this information,
and the impact this has on the balance of power between the parties to the
contract.

For example, in our treatment, specific shares are simply labelled as
Preferred by the company in its equity round proposal, and there is no
automated analysis of the rules associated with these shares to determine
that this classification is appropriate. Prima facie, this might appear to give
the company control over this decision. However, the company’s proposal
is effectively an offer and it remains open to the new investors to reject
the offer and refuse to provide payment. Their acceptance of the offer can
therefore be understood as their agreement to the interpretation of the shares
as Preferred. The SAFE investors are apparently in a more vulnerable
position, particularly when the SAFE smart contract automatically approves
the Equity Round proposal, since they then do not have an opportunity
to assent to the classification. On the other hand, since code is able to
enforce the contract constraint that the SAFE Preferred shares are identical
to Preferred shares except with respect to the price paid, and the SAFE
contract does not explicitly grant the SAFE holder powers to negotiate the
construction of the equity round, it can be argued that the smart contract’s
treatment of the SAFE investor’s powers is not materially different from that
of the source legal contract. As we discuss below, in our ultimate solution,
the SAFE investor also has the protection of a legal challenge based on

16

natural language text in a smart legal contract, so has a second line of
defense.

8 Software Architecture

The overall architecture of our smart contract implementation is given in
Figure 1 and Figure 2. The architecture makes use of several types of object
implemented as smart contracts on the blockchain. A Company object rep-
resents the state of the company’s cap table and accounts. In order to deal
with the open-endedness of the company’s governance regime during differ-
ent stages of its development, we use a controller proxy pattern, in which
access to operations on the Company object is mediated by a Controller ob-
ject, which is able to impose various restrictions on operations that parties
(usually, company officers) attempt to perform on the Company object. A
bespoke controller object can be programmed so as to impose the desired
control regime.

In our solution, this controller object is also dynamic. While SAFE
contracts have been issued by the company, but before these have been
converted in an equity round, access to the Company object is controlled
by a Safe_Controller, which checks that a requested action is compliant
with the SAFE contracts that the company has issued. (For example, an
attempt to issue Preferred Shares, not in the context of an equity round,
would be rejected.) Safe objects represent the SAFE contracts themselves,
and respond to requests for authorization of actions on the Company object
with true/false answers.

The company’s proposed equity round is also sent to the Safe objects
for approval. If they all approve, an Equity_round_swap object is created,
which guarantees that the round completes if and only if all new investors
provide payment, and returns payments in case of failure of the round. After
the round, the Safe_Controller is replaced by a new controller that encodes
the company’s governance structure after the equity round, as illustrated in
Figure 2. For example, this controller might enforce rules relating to the
post-round board structure and voting powers, as well as constraints on the
transfer of shares and participation rights in future equity rounds.

A similar transformation of the architecture occurs during Liquidity
Events and Dissolution Events. Each of these types of events terminates
the SAFE contracts the company has issued, so they have no further con-
nection to the Company after they have occurred. (But their past existence
will be immutably recorded on the blockchain.)

17

Safe_controller

Company

A=

offer_safe
add_shareholding
payment

permit_A /B

true/false

A

view functions
deposit

equity_investor_consents
finalize_equity_round
abort_equity_round

Equity_round_swap
(create)

B = start_equity_round

B

SafeSafeSafe

{company action}

Figure 1: Architecture with Safe controller

Safe

Company

add_shares
convert

convert

view functions
deposit

(during equity round)

Equity_round_swap

Company

new_controller

(after equity round)

Figure 2: Architecture configuration during and after an equity round

18

9 A Limitation of the Smart Contract Implemen-
tation

As already mentioned, by reference to Atomic Swaps, some smart contract
applications are able to completely enforce the requirements of multiparty
agreements, obviating the need for legal contracts to protect the interests of
the parties. Inasmuch as the smart contract implementation sketched above
is able, in the event of an equity round, to enforce application of the formula
for the share issuance to the SAFE investor (or an alternate agreement later
negotiated and represented in the smart contract), it might appear that
the investor’s interests in this event are completely enforced by the smart
contract. In fact, there is a possible “attack” on the smart contract, that
leads to the conclusion that it does not provide equal protections to the
original natural language SAFE.

In this attack (described an analyzed in greater detail in [vdMM21b])
the company and equity round investor(s) collude against a SAFE holder in
order to deprive the SAFE holder of their rights. They do so by structuring
the new investor’s investment into two equity rounds rather than one. The
attack is applicable when the pre-money valuation of the company falls below
the Cap of the SAFE. In the first round, a small amount of the new investor’s
money is invested at a valuation equal to the Cap. This round discharges
the SAFE exactly according to the SAFE’s formula, and the SAFE investor
believes that they hold shares of value equal to their original investment,
so have suffered no loss. In the second round, the new investor purchases
shares with the remainder of their money, but at a much lower valuation.

The net effect is that the new investor pays an effective price corre-
sponding to their actual valuation, and receives an appropriate number of
shares, but the SAFE investor is left holding both a smaller proportion of
the company than they would have been entitled to in an honestly con-
structed round, and are deprived of the downside protection that the SAFE
is intended to provide. The other shareholders (typically, the founders) are
left holding a correspondingly larger share of the company. In effect, the
SAFE holder has been cheated of their rights under the contract.

The difficulty here is that smart contracts, when allowing certain events
to occur, act in way that we might call “nuncospective” (in the now). The
fraud may not be apparent at the time of the first round, only to be re-
vealed when the second round occurs. At this later time, the smart contract
has been terminated and can no longer provide protections. By contrast,
legal contracts can be applied retrospectively, when a court rules that events

19

that have occurred in the past were not compliant with the contract terms.
Retrospectivity is a powerful feature of a legal system, since it affords wait-
ing for evidence of contract violation to emerge. The cost (in terms of both
code design and computation) to provide smart contracts with similar power
would seem to be prohibitive. In contrast, with a legal SAFE, the SAFE
investor has the option of suing for compensation after the second round.
The legal SAFE provides multiple protections against this attack, by allow-
ing that the equity round may consist of a “sequence of events”, requiring
that it be “bona fide”, and have “the principal purpose of raising capital”.
It is the very indefiniteness of this language, combined with retrospectivity,
that allows the attack to be ruled to be a violation of the technical terms of
the SAFE.

Note, moreover, that the determination as to whether such an attack has
occurred cannot be programmed. It is possible that the reduced valuation
in the second round came about because of events such as a competitor
entering the company’s market, an earthquake, a pandemic, or any number
of other reasons. Only human judgement can determine the validity of such
a justification, based on consideration of a set of relevant facts that cannot
be programmed because they cannot be predetermined. Of course, we could
program a right to appeal to a human adjudicator into the smart contract.
However, it remains the case that the adjudicator will require a natural
language description of the intent of the contract on which to base their
determination. A natural language text, therefore, cannot be eliminated.

10 Supporting Legal Contract

Besides the attack of the previous sections, several other reasons also exist
that suggest that the smart contract code alone cannot satisfactorily cap-
ture all of the effects of the legal SAFE contract. We therefore propose that
a “smart legal contract” is required, in which the smart contract code is
accompanied by, or integrated with, a natural language contract. We have
taken no stance in our work on the precise form of such a smart legal con-
tract, since this and the precise language may be jurisdiction dependent.
We just indicate here some of the points that we believe should be covered,
and why.

Some relate to the legal standing of the smart contract representation
of the state of the company. The company itself will be a legal entity rec-
ognized in some jurisdiction. For a record of share or SAFE ownership on
the blockchain to represent rights within that jurisdiction, that record needs

20

to be accepted as a valid representation of these rights. The legal contract
should therefore contain such text as is necessary to garner such acceptance
(assuming that the jurisdiction accepts such representations at all).

To ensure correctness of the smart contract’s issuance of SAFE shares
in Equity Financing events, or payouts in Liquidity or Dissolution events,
it is also necessary that the on-chain record be a complete representation
of the relevant state of the company when those events occur. To prevent
the company issuing (legally recognized) shares off-chain, text is required
stating that the company will issue shares only on-chain, and conduct an
equity round on-chain only when the representation is complete.

There should also be an obligation on the company to conduct the first
equity round after a SAFE issuance using the smart contract, by submitting
an on-chain proposal that completely, correctly and honestly represents the
structure of that equity round. In particular, this obligation should be stated
in a way that protects against the attack of the previous section. Similar
obligations apply to Liquidity and Dissolution events. There may also be
obligations on the SAFE investor, for example, that they sign paperwork
(possibly via an on-chain digital signature) relating to the equity round.

Finally, protection against software errors and human error in use of the
smart contract should be provided using a statement concerning processes
and arbitration authorities and/or jurisdictions to be applied to arbitration
of disputes concerning the operation of the smart contract. An ability to
react to legal rulings and discovery of software errors may require that the
smart contracts be coded so as to be allow unpredictable changes and com-
pensating transactions to be made, subject to appropriate authorization.
However, even where such changes cannot be made, we note that since the
on-chain record of the state of the company has been imbued with legal
significance by means of an off-chain declaration of the company in the con-
text of a jurisdiction’s regulations, that validity can similarly be revoked by
off-chain events, and transferred to a new, corrected smart contract record
on-chain. (A proviso is that in the event that there are digital assets in the
original smart contract, there is process for their transfer to the new one.)
We refer to [vdMM21a] for a longer discussion of these issues.

11 Further Considerations

Our focus in this paper has been on issues of representation of the SAFE
contract itself. Other issues that need to be addressed in developing a
blockchain-based implementation of SAFEs are the user interface and the

21

blockchain platform on which the smart contracts are deployed. See [Cou21]
for work on these issues, in which a permissioned blockchain is used to man-
age data privacy concerns. We consider a permissioned chain setting to be
better suited to private company cap table management solutions since the
anonymity of investors common in open blockchain systems is inappropriate
to regulated settings where investor identity information may be required
for compliance purposes.

Our solution has not been deployed in a commercial blockchain applica-
tion for private equity management, so we do not have information about the
market response to our proposals. It is therefore unclear whether the market
will perceive the security benefits and efficiencies of a smart legal contract
solution for SAFEs a sufficient advantage over the protections provided by a
legal contract alone. In general, for assets that trade with a relatively high
frequency, there appears to be acceptance that blockchain representation
provides benefits and savings. The Australian Stock Exchange, for exam-
ple, is developing a blockchain-based clearance and settlement system for
public equities. The extent to which this acceptance will extend to private
equity markets is less clear, and SAFEs themselves are not subject to trad-
ing since non-transferability is amongst the contract terms. A number of
commercial projects are developing blockchain-based cap table management
solutions targeting also private equity markets [Bou, Kor, Ver], but again,
we are not aware of any independent studies concerning market traction for
such services.

In the course of our work, we have uncovered some weaknesses of the
SAFE contracts we analyzed. A well designed contract should satisfy criteria
such as the following.

• Where transitions in the state of the contract rely upon the existence of
a solution to a set of equations, there should provably exist a solution
in all cases for all scenarios that could arise.

• It is desirable that transitions either be defined so as to be independent
of choices made by holders of other contracts, or, where the contract
sets up a game theoretic scenario, for a well-defined game theoretic
equilibrium to provably exist. Ideally, this equilibrium should be well-
justified as striking an optimal balance amongst the interests of the
multiple parties.

SAFE contracts do not always satisfy such criteria. There are situations
where Post-Money SAFEs set up simultaneous equations that do not have
solutions [vdMM21b]. There are also situations where there may fail to exist

22

a discrete Nash equilibrium for the game associated to a Liquidity Event
[vdM21]. Our approach to dealing with this difficulty has been to allow for
compromise contract transitions to be made on the basis of explicit approval
from the contract holder.

When developing a smart contract representation for a particular con-
tract type, one could potentially redesign the contract terms, based on an
analysis of first principles requirements and the extent to which smart con-
tract technology offers opportunities to provide stronger security guarantees
than are available from current legal contract forms. (Atomic Swaps can
be understood as providing such an improvement over legal contracts.) We
have not attempted to develop such an improvement of SAFE contracts in
our work, and leave the exploration of this issue for future work.

We have argued that a natural language legal contract remains necessary
for SAFEs to be represented as smart contracts. To a computer scientist
with “Code is Law” ambitions for smart contract technology, the need for
a legal contract backing a smart contract might at first be unsatisfying and
a repudiation of their ambitions. However, the approach of smart legal
contracts can also be understood as fully concordant with the well accepted
computer security principle of Defense in Depth, with the legal contract
providing a second layer of defense when when the behaviour of the code
diverges from the intent of the agreement, whether by software bug or by
manipulation of the input to the smart contract.

One of the benefits of formalization of legal contracts as smart contracts
is that it forces a focus on issues of contract well-definedness and complete-
ness, and on whether the contract terms in fact provide the parties the
guarantees they desire in the face of ‘gaming’ of the rules by other parties.
Detailed analysis of such issues may require considerable effort. However, we
suggest that the effort is worthwhile for industry standard documents, where
costs can be amortised across multiple users. Certainly SAFE contracts are
intended to be a standard contract form, so we believe that ongoing work
to improve and better understand such contracts is worth pursuing.

More generally, our work on SAFEs points to the potential significance
of a discipline of “Smart Legal Contract Engineering” (a deliberate pun),
best carried out by interdisciplinary teams of lawyers, computer scientists
and domain experts (e.g., from Finance in the case of SAFE contracts). We,
the authors of this paper, are computer scientists, who have conducted this
project for purposes of understanding the scope of smart contract technology
and the requirements for computational support of smart legal contracts. We
encourage legal and finance experts to take up the issues in their domains
that have been exposed by our work on computational formalization of SAFE

23

contracts.

12 Conclusion

We have explored the capability of smart contracts to express legal con-
tracts, through a case study of Y-Combinators Simple Agreement for Future
Equity. We identified issues in this agreement that indicate that the sur-
face simplicity hides awkward complications around agreement termination.
Others have pointed to difficulties when the agreement does not terminate
[GC16]. Y-Combinator has addressed several issues in the new Post-Money
SAFEs, but the effects linger on in the many extant Pre-Money SAFEs and
the continuing use of these SAFEs outside Y-Combinator.

While the above issues are specific to SAFEs, the SAFE also exhibits
features that are well-known to create difficulties in formalizing legal docu-
ments, in general. We identified some strategies for smart contracts that can
limit their impact. However, we also identified protections of the legal SAFE
that require open texture and retrospectivity, which seem difficult, perhaps
impossible, to emulate in smart contracts. We draw the conclusion that
for this application, smart legal contracts, which combine both legal con-
tract and execution by smart contract, are preferable to stand-alone smart
contracts. We outlined some requirements for the legal contract to appro-
priately support our design of a smart contract for SAFEs. However, there
is a need for greater understanding of the needs of smart legal contracts,
which will require interdisciplinary study.

References

[AH22] Jason Grant Allen and Peter Hunn, editors. Smart Legal Con-
tracts: Computable Law in Theory and Practice. Oxford Uni-
versity Press, Oxford, 2022.

[BCS88] Trevor Bench-Capon and Marek Sergot. Towards a rule-based
representation of open texture in law. In Charles Walter, edi-
tor, Computer Power and Legal Language, page 3961. Quorum
Books, New York, 1988.

[Bou] Boulevard global. Online: https://www.boulevardglobal.

com, last accessed 24 Dec 2021.

24

[Col] Derek Colla. Calculating share price with outstand-
ing convertible notes. https://www.cooleygo.com/

calculating-share-price-outstanding-convertible-notes/.
[Online, Accessed Sep 2019].

[Cou21] William Coulter. Building Smart SAFEs. Honours thesis,
UNSW School of Computer Science and Engineering, Nov 2021.

[DCP19] Larry A. DiMatteo, Michel Cannarsa, and Cristina Poncib, edi-
tors. The Cambridge Handbook of Smart Contracts, Blockchain
Technology and Digital Platforms. Cambridge Law Handbooks.
Cambridge University Press, 2019.

[GC16] Joseph M. Green and John F. Coyle. Crowdfunding and the
not-so-safe safe. Virginia Law Review Online, 102:168 – 182,
2016.

[Gri04] Ian Grigg. The Ricardian contract. In Proceedings of the First
IEEE International Workshop on Electronic Contracting, pages
25–31. IEEE, 2004.

[Har58] Herbert L.A. Hart. Positivism and the separation of law and
morals. Harvard Law Review, 71(4):593–629, 1958.

[Har61] H.L.A. Hart. The Concept of Law. Clarendon Law Series.
Clarendon Law, 1961.

[Her18] M. Herlihy. Atomic cross-chain swaps. In Proc. ACM Symp. on
Distributed Computing, 2018. Version at arXiv:1801.09515.

[Kor] Koreconx. Online: https://www.koreconx.com, last accessed
24 Dec 2021.

[Lev18] Carolynn Levy. Safe financing documents 2018. Online
https://www.ycombinator.com/documents/#safe, Accessed
Sep 2019, Sep 2018.

[McC80] L. Thorne McCarty. Some requirements for a computer-based
legal consultant. In Robert Balzer, editor, Proc. of the 1st
Annual National Conference on Artificial Intelligence, Stan-
ford University, CA, USA, August 18-21, 1980, pages 298–300.
AAAI Press/MIT Press, 1980.

25

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash sys-
tem. Available at https://bitcoin.org/bitcoin.pdf, Nov
2008.

[Sza97] Nicholas Szabo. The idea of smart contracts. https://

nakamotoinstitute.org/the-idea-of-smart-contracts/,
1997.

[vdM19] Ron van der Meyden. On the specification and verification of
atomic swap smart contracts. Online: https://arxiv.org/

abs/1811.06099, 2019. Abstract appears in IEEE Interna-
tional Conference on Blockchain and Cryptocurrency, 2019, pp.
176–179.

[vdM21] R. van der Meyden. A game theoretic analysis of liquidity
events in convertible instruments. arXiv https://arxiv.org/

abs/2111.12237, Nov 2021.

[vdMM21a] R. van der Meyden and M. J. Maher. Can SAFE contracts be
smart? manuscript, 2021.

[vdMM21b] Ron van der Meyden and Michael J. Maher. Simple agreements
for future equity – not so simple? manuscript, http://www.
cse.unsw.edu.au/~meyden/research/SAFEnss.pdf, 2021.

[Ver] Vertalo. Online: https://www.vertalo.com, last accessed 24
Dec 2021.

[Wai68] Friedrich Waismann. Verifiability. In R. Harré., editor, How I
See Philosophy. Palgrave Macmillan, London, 1968.

[Wit53] Ludwig Wittgenstein. Philosophical Investigations. MacMillan
Publishing Co., first edition, 1953.

[Y C] Y Combinator. Startup Documents 2016.

[Y C16] Y Combinator. Safe: Cap, no Discount, https:

//web.archive.org/web/20180831020232/http://www.

ycombinator.com/docs/SAFE_Cap.rtf 2016.

[Y C18] Y Combinator. Post Money Safe User Guide, https:

//www.ycombinator.com/docs/Post\%20Money\%20Safe\

%20User\%20Guide.pdf 2018.

26

