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Abstract

The notion of distributed knowledge is used to express what a group of agents
would know if they were to combine their information. The paper considers the
application of this notion to systems in which there are constraints on how an
agent’s actions may cause changes to another agent’s observations. Intuitively, in
such a setting, one would like that anything an agent knows about other agents
must be distributed knowledge to the agents that can causally affect it. In prior
work, we have argued that the definition of intransitive noninterference — a notion
of causality used in the literature on computer security — is flawed because it
fails to satisfy this property, and have proposed alternate definitions of causality
that we have shown to be better behaved with respect to the theory of intransitive
noninterference. In this paper we refine this understanding, and show that in order
for the converse of the property to hold, one also needs a novel notion of distributed
knowledge, as well as a new notion of what it means for a proposition to be “about”
other agents.

1 Introduction
It is a commonly held intuition that information flows along causal lines: where there
is no causal relationship, there will be no flow of information. In this paper, we at-
tempt to give a precise characterization of this intuition using notions drawn from the
literature on computer security (where lack of causality is called noninterference, and
is considered in dealing with information flow security) and the literature on epistemic
logic.

In particular, we start with the following idea. Suppose that a system is structured
so that the only way that an agent u may be causally affected by the outside world is
through the activity of a set of “interfering” agents Iu. Then any information that u has
about the outside world, it must have obtained by somehow combining the information

∗This is an extended version of a paper in Proc. KR 2008: Eleventh International Conference on Princi-
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that it received from agents Iu. The notion of distributed knowledge is used in the epis-
temic logic literature to capture what could be deduced if we were to combine all the
information available to a group of agents. Thus, we may express our intuition by say-
ing that anything that u knows about the outside world must be distributed knowledge
to Iu.

In previous work [vdM07], we have used this formulation of the intuition to ar-
gue that intransitive noninterference, a notion of causality from the computer security
literature, is flawed, and have proposed a number of other definitions of causality in
response to this failure. We justifed these new definitions in that work primarily by
showing that they lead to a more satisfactory account of the classical proof theory and
applications for intransitive noninterference.

In this paper, we show that these new notions in fact satisfy the intuition much
more generally than in the single example considered in [vdM07], and give a refined
statement of how this is the case. In doing so, we argue that distributed knowledge, as it
has been defined in the epistemic logic literature, is not the only useful way to formalise
the intuitive notion of what a group of agents would know if they were to combine
their information. We develop several new distributed-knowledge like modalities for
our application.

However, we also attempt to do more than show that the new notions of dis-
tributed knowledge satisfy the intuition concerning an agent’s knowledge and the dis-
tributed knowledge of its interferers. We also consider the converse relationship be-
tween knowledge and causality. That is, we ask whether it is the case that when the
expected relationship between the knowledge of an agent “about other agents” and the
distributed knowledge of its interferers holds, we can conclude that the system has the
expected causal structure.

We show that this converse relationship does in fact hold, provided one uses appro-
priate formulations of distributed knowledge and what it means for an agent to know
something “about” other agents. Some of the details are subtle, and give fresh insight
into how information flows in the class of systems we consider.

2 Intransitive Noninterference
We begin by recalling some notions of causality used in the computer security litera-
ture.

The definitions are cast in terms of a formal semantic model for multi-agent sys-
tems. Several different models have been used in the literature; we follow the state-
observed machine formulation of [Rus92]. This model consists of deterministic ma-
chines of the form 〈S, s0, A, step, obs, dom〉, where S is a set of states, s0 ∈ S is the
initial state, A is a set of actions, dom : A → D associates each action to an element
of the set D of agents, step : S × A → S is a deterministic transition function, and
obs : S ×D → O maps states to an observation in some set O, for each agent.

The nomenclature D and dom for agents arises from the fact that, in the security
literature, D is thought of as the set of security domains. For example, in a multi-level
secure system, a security domain is a pair consisting of a security level (e.g. Low,
High, Secret) together with a set of classes (e.g. Nuclear, NATO, FBI) used to restrict
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information access on a need-to-know basis. Several agents might be assigned to such
a security domain in this interpretation. For our purposes in this paper, we will think of
each element of D as a single agent, since this better fits the perspective that we apply
from the logic of knowledge.

We write s · α for the state reached by performing the sequence of actions α ∈ A∗
from state s, defined inductively by s · ε = s, and s · αa = step(s · α, a) for α ∈ A∗
and a ∈ A. Here ε denotes the empty sequence.

Permitted causal relationships are expressed in the security literature using nonin-
terference policies, which are relations �⊆ D ×D, with u � v intuitively meaning
that “actions of agent u are permitted to interfere with agent v”, or “information is
permitted to flow from agent u to agent v”. Since, intuitively, an agent should be al-
lowed to interfere with, or have information about, itself, this relation is assumed to be
reflexive.1

Noninterference was given a formal semantics for transitive noninterference poli-
cies (which arise naturally from partially ordered security levels) by Goguen and Meseguer
[GM82], using a definition based on a “purge” function. Given a set E ⊆ D of agents
and a sequence α ∈ A∗, we write α � E for the subsequence of all actions a in α with
dom(a) ∈ E. Given a policy �, we define the function purge : A∗ ×D → A∗ by

purge(α, u) = α � {v ∈ D | v � u}.

(For clarity, we may use subscripting of agent arguments of functions, writing e.g.,
purge(α, u) as purgeu(α).)

Definition 1: A system M is P-secure with respect to a policy � if for all agents
u and for all sequences α, α′ ∈ A∗ such that purgeu(α) = purgeu(α′), we have
obsu(s0 · α) = obsu(s0 · α′). �

This can be understood as saying that agent u’s observation depends only on the
sequence of interfering actions that have been performed.

This definition is appropriate when the noninterference policy is transitive, but
it has been considered to be inappropriate for the intransitive case. An example of
this is systems consisting of a High security agent H , a low security agent L, and
a downgrader agent D, whose role is to make declassification decisions that release
High security information to L. Here the policy is H � D � L.2 P-security
says that L can learn about D actions, but will never know anything about H ac-
tions. Thus, in a P-secure system, L will not know about H activity even if D has
chosen to downgrade it. For example, if h, d are actions of H,D, respectively, then
purgeL(hdh) = d = purgeL(d). Thus, according this definition, L cannot distin-
guish the sequences hdh and d, so D is unable to downgrade the fact that action h has
occurred.

1We follow the terminology historically used in the area even though it is peculiar: note that the relation
� specifies permitted interferences rather than required noninterferences, and when we speak of “intransi-
tive noninterference”, we mean that noninterference policies � are not assumed to be transitive (rather than
assumed to be not transitive).

2When presenting policies we list only the nonreflexive relations; the policy should be taken to be the
reflexive closure of the facts given.
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To avoid this problem, Haigh and Young [HY87] generalised the definition of the
purge function to intransitive policies as follows. Intuitively, the intransitive purge of
a sequence of actions with respect to a domain u is the largest subsequence of actions
that could form part of a causal chain of effects (permitted by the policy) ending with
an effect on domain u. More formally, the definition makes use of a function sources :
A∗ ×D ⇒ P(D) defined inductively by sources(ε, u) = {u} and

sources(aα, u)
= sources(α, u)∪
{dom(a) | ∃v ∈ sources(α, u)(dom(a) � v)}

for a ∈ A and α ∈ A∗. Intuitively, sources(α, u) is the set of domains v such that
there exists a sequence of permitted interferences from v to uwithin α. The intransitive
purge function ipurge : A∗×D → A∗ is then defined inductively by ipurge(ε, u) =
ε and

ipurge(aα, u)

=
{
a · ipurge(α, u) if dom(a) ∈ sources(aα, u)
ipurge(α, u) otherwise

for a ∈ A and α ∈ A∗. The intransitive purge function is then used in place of the
purge function in Haigh and Young’s definition:

Definition 2: M is IP-secure with respect to a policy � if for all u ∈ D and all
sequences α, α′ ∈ A∗ with ipurgeu(α) = ipurgeu(α′), we have obsu(s0 · α) =
obsu(s0 · α′). �

It can be seen that ipurgeu(α) = purgeu(α) when � is transitive, so IP-security
is in fact a generalisation of the definition of security for transitive policies.

This definition solves the problem noted above, since now we have ipurgeL(hdh) =
hd. Here we see that L can now learn of the first occurrence of h. (The second h re-
mains invisible to L. This is in accordance with the intent of the definition - L should
only know of H events that have been explicitly downgraded. )

3 Knowledge and Distributed Knowledge
We have recently presented an argument against the definition of intransitive nonin-
terference [vdM07], in which we exploit intuitions from the literature on the logic of
knowledge [FHMV95]. In this section, we recall the relevant background from the
latter area.

Let Prop be a set of atomic propositions. We define a propositional modal logic
based on a set Op of monadic modal operators (to be introduced below), with formulas
defined as follows: if p ∈ Prop then p is formula, and if φ and ψ are formulas and
X ∈ Op is a modal operator, then ¬φ, φ ∨ ψ and Xφ are formulas. We use standard
boolean abbreviations such as φ⇒ ψ for ¬φ∨ψ. If u ∈ D is an agent and G ⊆ D is a
nonempty set of agents, the setOpwill contain the operators Ku and DG. Intuitively, the
formula Kuφ expresses that agent u knows φ, and DGφ expresses that φ is distributed
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knowledge to the group G, which means that the group G, collectively, knows φ. (We
introduce additional operators below.)

We take the atomic propositions to be interpreted over sequences of actions of a
system M with actions A, by means of an interpretation function π : Prop → P(A∗).
Formulas φ are then interpreted as being satisfied at a sequence of actions3 α ∈ A∗ by
means of a relation M,π, α |= φ. For atomic propositions p ∈ Prop, this relation is
defined by M,π, α |= p if α ∈ π(p).

The semantics of the operators for knowledge is defined using the following notion
of view. The definition uses an absorbtive concatenation function ◦, defined over a set
X by, for s ∈ X∗ and x ∈ X , by s ◦ x = s if x is equal to the final element of s (if
any), and s ◦ x = s · x (ordinary concatenation) otherwise. The view of agent u with
respect to a sequence α ∈ A∗ is captured using the function viewu : A∗ → (A ∪ O)∗

(where O is the set of observations in the system), defined by

viewu(ε) = obsu(s0), and
viewu(αa) = (viewu(α) · b) ◦ obsu(s0 · α),

where b = a if dom(a) = u and b = ε otherwise. That is, viewu(α) is the sequence
of all observations and actions of domain u in the run generated by α, compressed by
the elimination of stuttering observations. Intuitively, viewu(α) is the complete record
of information available to agent u in the run generated by the sequence of actions
α. The reason we apply the absorbtive concatenation is to capture that the system is
asynchronous, with agents not having access to a global clock. Thus, two periods of
different length during which a particular observation obtains are not distinguishable
to the agent.

Using the notion of view, we may define for each agent u an equivalence relation
∼u on sequences of actions by α ∼u α

′ if viewu(α) = viewu(α′). The semantics for
the knowledge operators may then be given by

M,π, α |= Kuφ if M,π, α′ |= φ for all sequences α′ such that α ∼u α
′.

This is essentially the definition of knowledge used in the literature on reasoning about
knowledge [FHMV95] for an agent with asynchronous perfect recall .

The notion of distributed knowledge is defined in the literature as follows. First,
define the relations ∼G on sequences of actions by α ∼G α′ if α ∼u α

′ for all u ∈ G.
The operators DG are then given semantics by the clause

M,π, α |= DGφ if M,π, α′ |= φ for all sequences α′ such that α ∼G α′.

Intuitively, this definition says that a fact is distributed knowledge to the set of agentsG
if it could be deduced after combining all the information that these agents have. Note
that combination of the agents’ information is here being modelled as the intersection
of their “information sets” — we will argue below that there are alternatives to this
definition that are both reasonable and useful.

3The reader may have expected to see propositions interpreted more generally at sequences alternating
states and actions. We remark that there is in fact no loss of generality, because the assumption that actions
are deterministic means that the sequence of states in a run is uniquely determined by the sequence of actions.
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4 The Key Intuition
Suppose that a system is secure with respect to a noninterference policy �. Given
an agent u, let Iu = {v ∈ D | v � u, v 6= u} be the set of all other agents that
are permitted to interfere with u. Let p be a proposition that expresses a fact about
some agent other than u, and suppose u knows p. Intuitively, if the system respects
the noninterference policy, then since p is not “local information”, the only way that
u should be able to learn that p holds is by receiving information from the agents Iu.
However, u may have deduced p by combining facts received from several sources.
Since we have assumed agents have perfect recall, those sources should also know
those facts. Hence, if we combine the information known to agents in Iu, then we
should also be able to deduce p. Thus, we expect that if the system M satisfies the
policy � and p is interpreted by π as being about agents other than u, then

M,π, α |= Kup⇒ DIu
p (1)

for all α ∈ A∗.
In [vdM07], we presented an argument against IP-security on the grounds that this

intuition can be false when we interpret “the system M satisfies the policy �” as say-
ing that M is IP-secure with respect to �. The essential reason for this is that the
intransitive purge ipurgeL(α) preserves not just certain actions from the sequence α,
but also their order. This allows L to “know” this order in situations where an intuitive
reading of the policy would suggest that it ought not to know this order. The follow-
ing reproduces the example that we used in [vdM07] to show that IP-security does
not satisfy the intuition concerning the relationship between causality and distributed
knowledge.

Example 1: Consider the intransitive policy � given by H1 � D1, H2 � D2,
D1 � L andD2 � L. Intuitively, H1, H2 are two High security domains, D1, D2 are
two downgraders, and L is an aggregator of downgraded information. For this policy,
we have IL = {D1, D2} so (1) requires that

M,π, α |= KLp⇒ D{D1,D2}p (2)

for all α ∈ A∗. We show that if security is interpreted as IP-security, then this can be
false.

Define the system M with actions A = {h1, h2, d1, d2, l} with domains H1, H2,
D1, D2, and L, respectively. The set of states of M is the set of all strings in A∗. The
transition function is defined by concatenation, i.e. for a state α ∈ A∗ and an action
a ∈ A, step(α, a) = αa. The observation functions are defined using the ipurge
function associated to the above policy: obsu(α) = [ipurge(α, u)]. (Here we put
brackets around the sequence of actions when it is interpreted as an observation, to
distinguish such occurrences from the actions themselves as they occur in a view.)

It is plain thatM is IP-secure. For, if ipurge(α, u) = ipurge(α′, u) then obsu(s0·
α) = [ipurge(α, u)] = [ipurge(α′, u)] = obsu(s0 · α′). We show that it does not
satisfy condition (2).

Consider the sequences of actions α1 = h1h2d1d2 and α2 = h2h1d1d2. Note that
these differ in the order of the events h1, h2. Let the atomic proposition p be interpreted
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by π as asserting that there is an occurrence of h1 before an occurrence of h2. That is,
π(p) = {αh1βh2γ | α, β, γ ∈ A∗}.

Then we have obsL(α1) = [ipurge(α1, L)] = [h1h2d1d2]. Hence, for any se-
quence α′ with α1 ∼L α′, we have ipurgeL(α′) = h1h2d1d2, so α′ ∈ π(p). Thus
M,π, α1 |= KLp, i.e., in α1 agent L knows the ordering of the events h1, h2. We
demonstrate that α2 is a witness showing that it is not the case that M,π, α1 |=
D{D1,D2}p, i.e., we have α1 ∼{D1,D2} α2 and α2 6∈ π(p). The latter is trivial. For
the former, note

viewD1(α1)
= [ε] ◦ [h1] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]
= [ε] ◦ [ε] ◦ [h1] ◦ d1 ◦ [h1d1] ◦ [h1d1]
= viewD1(α2)

i.e., α1 ∼D1 α2. By symmetry, we also have α1 ∼D2 α2, hence α1 ∼{D1,D2} α2. This
means that D1 and D2 do not have distributed knowledge of the ordering of the events
h1, h2, even with respect to the asynchronous perfect recall intepretation of knowledge,
in which they reason based on everything that they learn in the run.

Thus, L has acquired information that cannot have come from the two sources D1

andD2 that are supposed to be, according to the policy, its only sources of information.�

5 Alternate Definitions of Causality
In response to the example of the previous section, we have defined in [vdM07] sev-
eral alternative notions of causality/security that are not only better behaved than IP-
security with respect to the example, but also prove to be a much better fit to proof
techniques and applications that had been developed for intransitive noninterference.
We will not go into the latter here, but confine ourselves to stating the definitions of our
alternative notions of causality.

All the alternatives are based on a concrete model of the maximal amount of in-
formation that an agent may have after some sequence of actions has been performed,
and state that an agent’s observation may not give it more than this maximal amount
of information. The definitions differ in the modelling of the maximal information, but
all take the view that an agent increases its information either by performing an action
or by receiving information transmitted by another agent.

In the first model of the maximal information, what is transmitted when an agent
performs an action is information about the actions performed by other agents. The
following definition expresses this in a weaker way than the ipurge function.

Given sets X and A, let the set T (X,A) be the smallest set containing X and such
that if x, y ∈ T and z ∈ A then (x, y, z) ∈ T . Intuitively, the elements of T (X,A) are
binary trees with leaves labelled from X and interior nodes labelled from A.

Given a policy �, define, for each agent u ∈ D, the function tau : A∗ →
T ({ε}, A) inductively by tau(ε) = ε, and, for α ∈ A∗ and a ∈ A,

1. if dom(a) 6� u, then tau(αa) = tau(α),
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2. if dom(a) � u, then tau(αa) = (tau(α), tadom(a)(α), a).

Intuitively, tau(α) captures the maximal information that agent u may, consistently
with the policy �, have about the past actions of other agents. (The nomenclature is
intended to be suggestive of transmission of information about actions.) Initially, an
agent has no information about what actions have been performed. The recursive clause
describes how the maximal information tau(α) permitted to u after the performance of
α changes when the next action a is performed. If amay not interfere with u, then there
is no change, otherwise, u’s maximal permitted information is increased by adding the
maximal information permitted to dom(a) at the time a is performed (represented by
tadom(a)(α)), as well the fact that a has been performed. Thus, this definition captures
the intuition that an agent may only transmit information that it is permitted to have,
and then only to agents with which it is permitted to interfere.

Definition 3: A system M is TA-secure with respect to a policy � if for all
agents u and all α, α′ ∈ A∗ such that tau(α) = tau(α′), we have obsu(s0 · α) =
obsu(s0 · α′). �

Intuitively, this says that each agent’s observations provide the agent with no more
than the maximal amount of information that may have been transmitted to it, as ex-
pressed by the functions ta.

Like IP-security, the definition of TA-security views it as permissible for an agent
to cause the transmission of information that it is permitted to have, but has not itself
observed. For example, an agent may forward an email attachment without inspecting
it. For at least some applications (e.g., the downgrading example mentioned above) this
is undesirable. To prohibit such behaviour, a second alternative definition of causality
from [vdM07] restricts the transmitted information to that which has been observed.
This alternative is defined as follows. Given a policy �, for each domain u ∈ D,
define the function tou : A∗ → T (O(A ∪O)∗, A) by tou(ε) = obsu(s0) and

tou(αa) =
{

tou(α) if dom(a) 6� u,
(tou(α), viewdom(a)(α), a) otherwise.

Intuitively, this definition takes the model of the maximal information that an action
a may transmit after the sequence α to be the fact that a has occurred, together with
the information that dom(a) actually has, as represented by its view viewdom(a)(α).
By contrast, TA-security uses in place of this the maximal information that dom(a)
may have. (The nomenclature ‘to’ is intended to be suggestive of transmission of
information about observations.)

We may now base the definition of security on either the function to or ito rather
than ta.

Definition 4: The systemM is TO-secure with respect to � if for all domains u ∈
D and all α, α′ ∈ A∗ with tou(α) = tou(α′), we have obsu(s0 · α) = obsu(s0 · α′).
�

The following result shows how these definitions are related:
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Theorem 1 [vdM07] For state-observed systems, with respect to a given policy �,
P-security implies TO-security implies TA-security implies IP-security.

Examples showing that all these notions are distinct are presented in [vdM07].
This completes the background for the contributions of the present paper. In what

follows, we show that these new definitions of security can in fact be shown to be
closely related to our intuitions about distributed knowledge in such settings, provided
we also develop some new notions of distributed knowledge. In order to capture com-
mon structure in our results, it is useful to take a more abstract perspective on the above
definitions.

Define a local-state assignment in a system M to be a function Y : A∗ ×D → L,
where L is some set. As usual, we write Yu(α) for Y (α, u). The functions view, ta
and to are all examples of local-state assignments.

Let X and Y be local-state assignments. We say that X is a full-information local-
state assignment based on Y and � if the following holds: Xu(ε) = ε and for all
agents u ∈ D, sequences α ∈ A∗ and a ∈ A, we have

Xu(αa) =
{
Xu(α) if dom(a) 6� u
(Xu(α), Ydom(a)(α), a) otherwise.

That is, according to the local state assignment X , the effect of an action a after a
sequence α is to transmit to all domains u with dom(a) � u the information that the
action a has been performed, as well as all the information in the local state Ydom(a)(α).
Such domains u add this new information to the information Xu(α) already collected.
The action has no effect on domains with which it is not permitted to interfere.

We can now identify some common structure in the above definitions by noting that
to is a full-information local-state assignment with respect to view and �, and ta is
a full-information local-state assignment with respect to ta and �.

6 The Example Revisited - A First Concern
We have presented Example 1 in terms of the notion of distributed knowledge as it is
usually defined in the literature. We now note that it is reasonable to object to the use
of this notion in the present context. Note that whereas L is, intuitively, permitted by
the policy to observe the ordering of actions in the domains D1, D2 (and actually does
observe this order in the example), the way that the definition of distributed knowledge
combines the information available toD1 andD2 does not take into account the relative
ordering of the actions in these domains. Indeed, the following example illustrates that
to ask that information known to L be distributed knowledge to D1 and D2 may be too
strong.

Example 2: Let the (transitive) policy � be defined by L1 � H and L2 � H .
Consider a system with actionsA = {l1, l2, h} of domains L1, L2, H , respectively, and
let the states and transitions ofM be given by S = A∗ and next(α, a) = α ·a as in Ex-
ample 1, but define the observations by obsLi(α) = purgeLi

(α) and obsH(α) = α.
This system is intuitively secure, and is easily seen to be P-secure (hence secure for all
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the other definitions) but, taking p to mean “there is an occurrence of l1 before l2”, we
have M,π, l1l2 |= KHp but not M,π, l1l2 |= D{L1,L2}p, since l1l2 ∼{L1,L2} l2l1. �

The appropriate diagnosis here seems to be that distributed knowledge is too strong
a notion for our present purposes. We are therefore motivated to define a variant, that
takes into account H’s observational powers in this example. Define the equivalence
relation ∼p

G on A∗ by α ∼p
G α′ if α ∼G α′ and α � G = α′ � G. Intuitively, this

relation combines the information in views of the agents G, not just by intersecting the
information sets, but also taking into account the ordering of the actions in these views
in the actual run. Extend the modal language by adding an operator Dp

G, with semantics
given by

M,π, α |= Dp
Gφ if M,π, α′ |= φ for all α′ ∈ A∗ with α ∼p

G α′.

Note that DGφ⇒ Dp
Gφ, so this is a weaker notion of distributed knowledge.

Example 3: Reconsidering Example 2, we see that l1l2 ∼p
{L1,L2} α iff α ∈

{h}∗ · l1 · {h}∗ · l2 · {h}∗, hence M,π, l1l2 |= Dp
{L1,L2}p. Thus, with this new in-

terpretation of distributed knowledge, we recover the desired intuition in this example.
�

Using this variant notion of distributed knowledge, the problem identified in the
example from [vdM07] can be shown to persist.

Example 4: Let the system M , the interpretation π of the proposition p and
the sequences α1 and α2 be as in Example 1. Since α1 � {D1, D2} = d1d2 =
α2 � {D1, D2}, we have α1 ∼p

{D1,D2} α2, so M,π, α1 |= KLp but not M,π, α1 |=
Dp
{D1,D2}p. �

We therefore conclude that although the concern raised above is valid, the problem we
have identified with the definition of IP-security is real. Nevertheless, we would like to
have a better understanding concerning the intuition than can be obtained from a single
example. We pursue this in the following sections.

7 From Causality to Distributed Knowledge
Based on a problem identified in Example 1, we have constructed some alternative
definitions for security with respect to intransitive policies, reflecting intuitions about
the transmission of information in a concrete setting. These definitions were justified
in [vdM07] on the grounds that they lead to a better account of the classical proof
theory and applications for intransitive noninterference. We now consider what these
new definitions say about our motivating example. Indeed, we show that they support
our intuition not just in this example, but more generally.

As discussed above, our key intuition is that if the system is secure, then any infor-
mation that u has about other agents must be deducible from the information passed to
it by the agents Iu, so should be distributed knowledge, in some sense, to Iu. We now
check how each of our definitions fares with respect to this intuition. One qualification
will be required: note that if u is able to have an effect on the agents Iu, then it may
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combine its knowledge of these effects with the distributed knowledge of Iu to deduce
facts that are not distributed knowledge to Iu alone. We therefore require that u not
be permitted to interfere, directly or indirectly, with Iu. This may be captured by the
requirement that u not be part of any nontrivial cycle in �.

To formalise the intuitive notion of “information about other agents”, we use the
following notion. For F ⊆ D a set of agents, say that a property Π ⊆ A∗ depends
only on F if for all α, α′ ∈ A∗ with α � F = α′ � F we have α ∈ Π iff α′ ∈ Π.
Similarly, say that an atomic proposition p is interpreted by π as depending only on F
if π(p) depends only on F . This expresses more precisely the fact that the proposition
p is “about the agents F ”.

As already noted in the previous section, the appropriate notion of distributed
knowledge to capture our intuition in the current semantic setting is one that takes
into account the interleaving of the actions of the group. As different definitions of
causality require different notions of distributed knowledge to capture the intuition, we
generalize the operator Dp as follows. Suppose that Y is a local-state assignment in
M and G is a set of agents. Define the relation ∼Y

G on sequences of actions in M by
α ∼Y

G α′ if α � G = α′ � G and Yv(α) = Yv(α′) for all v ∈ G, Then we define the
new modal operator DY

G with semantics

M,π, α |= DY
Gφ if for all α′ ∈ A∗ such that α ∼Y

G α′ we have M,π, α′ |=
φ.

Intuitively, this is just the notion of distributed knowledge Dp
G, except that instead of

combining the information in the local states viewv(α) for v ∈ G relative to the in-
terleaving of G actions in α, we combine the information in the local states Yv(α).
Indeed, it is easily seen that Dp

Gφ is equivalent to DviewG φ.
We may now express the key intuition abstractly using the following definition.

Definition 5: A system M is confined with respect to a local-state assignment Y
and noninterference policy � if for all sequences of actions α ∈ A∗ and all agents
u, if π interprets p as depending only on D \ u, then M,π, α |= Kup ⇒ DY

Iu
p, where

Iu = {v ∈ D | u 6= v, v � u}. �

We would like to have that if a system is secure for a given notion of security, then
it is confined with respect to an appropriate local-state assignment. In order to identify
these local state assignments, note that, given the way that information is transmitted in
the definitions of ta and to, an agent v ∈ Iu may have acquired new information after
it last transmitted information to u. Whereas u is not expected to have this information,
the distributed knowledge of Iu takes this into account. Thus, in some sense, the rela-
tion ∼Iu takes more information from Iu into account than is required. We therefore
develop a construct that helps to identify the latest point at which an agent may have
transmitted information to other agents.

For each domain u define the mapping mu : A∗ → A∗ so that mu(α) is the
prefix of α up to but excluding the rightmost action of agent u. More precisely, the
definition is given inductively by mu(ε) = ε and mu(αa) = mu(α) if dom(a) 6= u
and mu(αa) = α otherwise. Intuitively, mu(α) expresses the history of system at the
point that the latest action of u occurs in α. If Y is a local-state assignment, we write
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Y ◦m for the local-state assignment defined by (Y ◦m)u(α) = Yu(mu(α)).
Consider now the relation ∼TO

G and the operator DTO
G , defined to be ∼Y

G and DY
Gφ,

respectively, where Y = view ◦m. Intuitively, DTO
G φ says that φ is deducible by an

agent that has all the information that was available to agents in G — at the time that
they performed their latest action — together with the ordering of all the actions that
have been performed by these agents. It is easily seen that this is a stronger notion of
distributed knowledge than Dp

G, in the sense that the formula DTO
G φ ⇒ Dp

Gφ is valid.
This notion supports our key intuition:

Theorem 2 Suppose that � is acyclic. If M is TO-secure with respect to � then M
is confined with respect to the local-state assignment view ◦m and �.

In order to obtain a similar result for TA-security, we need to take into account
that TA-security is consistent with the transmission of information that is not contained
in the sender’s view. Thus, the best that we can expect in this case is that informa-
tion known to u must be permitted to be distributed knowledge to the agents that may
transmit information to u. As with the notion DTO

G , we also restrict the distributed
knowledge to information that may have been transmitted, rather than that information
currently held. Thus, we consider the notion of distributed knowledge DTA

G , defined as
DY

G where Y = ta ◦m. Using this, we can again support the key intuition:

Theorem 3 Suppose that � is acyclic. If M is TA-secure with respect to � then M
is confined with respect to ta ◦m and �.

Theorems 2 and 3 show that for both TO-security and TA-security, we are able to
support the intuitive relationship between causal structure and distributed knowledge.

8 From Distributed Knowledge to Causality
In the preceeding, we have shown that the causal structure of a system implies a re-
lationship between an agent’s knowledge and the distributed knowledge of agents that
may interfere with it. We now consider the converse direction. Suppose that security
of a system implies that it is confined with respect to a local-state assignment Y and
�. Is it also the case that if a system is confined with respect to Y and � then it is
secure? The following example shows that it does not.

Example 5: We show that it is possible for a system to be confined with respect to
view ◦m, yet still be TO-insecure. Thus, the converse to Theorem 2 does not hold. (A
similar example may be constructed for ta ◦ m and TA-security, we leave this as an
exercise for the reader.)

Consider a system with agents H,D,L, each of which has a single action h, d, l,
respectively. Thus D = {H,D,L} and A = {h, d, l}. We take the set of states to be
A∗, the initial state to be ε and state transitions to be defined by concatenation: α · a =
αa. Let the observations for agent H be given by obsH(α) = 0, the observations for
agent D be given by obsD(α) = α � {H,D}, and those for L be given by

1. obsL(α) = 0 if α does not contain a d action,
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2. obsL(α) = 1 if α contains a d action and the first action of α is not l,

3. obsL(α) = 2, otherwise.

Let the policy � be given byH � D � L. Then, if we take α1 = hld and α2 = lhd,
we have that

toL(α1) = (toL(hl), viewD(hl), d)
= ((toL(h), viewL(h), l), [ε] ◦ [h] ◦ [h], d)
= (toL(ε), 0 ◦ 0, l), [ε][h], d)
= ((ε, 0, l), [ε][h], d)

and
toL(α2) = (toL(lh), viewD(lh), d)

= (toL(l), [ε] ◦ [ε] ◦ [h], d)
= ((toL(ε), viewL(ε), l), [ε] ◦ [ε] ◦ [h], d)
= ((ε, 0, l), [ε][h], d),

where we include sequences in square braces for clarity. Thus, toL(α1) = toL(α2).
On the other hand, we have that obsL(s0 · α1) = obsL(α1) = 1 but obsL(s0 · α2) =
obsL(α2) = 2. Thus, this system is not TO-secure.

We now show that, on the other hand, this system is confined with respect to the
local state assignment view ◦m. For this, we show that for each agent v, if M,π, α |=
Kvp and π interprets p as depending only on D \ {v} then M,π, α |= DTO

Iv
p. For this,

we show that if α ∼TO
Iv

β then there exists a sequence β′ such that (1) viewv(α) =
viewv(β′) and (2) β′ � D \ {v} = β � D \ {v}. It then follows using the fact that
M,π, α |= Kvp and (1) thatM,π, β′ |= p, hence using (2) and the fact that π interprets
p as depending only on D \ {v} that M,π, β |= p. We consider several cases for v,
with subcases for α:

Case 1: v = L. Here we have that π interprets p as depending only on
{H,D}, IL = {D}, and α ∼TO

IL
β implies α � D = β � D.

1. Suppose vL(α) = 0(l0)k. Then there is no occurrence of d in α, and conse-
quently, no such occurrence in β. Here we take β′ = (β � H)lk which can
easily be seen to satisfy (1) and (2).

2. Suppose vL(α) = 0(l0)k1(l1)j . Then we can write α = α0dα1 where the
occurrence of d is the first in α, α0 � L = lk and the first action in α0 is not l,
and α1 � L = lj . Since α � D = β � D, there is also an occurrence of d in β
and we may write β = β0dβ1, where β0 contains at least one h action. Define

β′ = (β0 � H)lkd(β1 � {H,D})lj .

This can be seen to satisfy (1) and (2).

3. Suppose vL(α) = 0(l0)k2(l2)j . Then we can write α = α0dα1 where the
occurrence of d is the first in α, α0 � L = lk and the first action in α0 is l,
and α1 � L = lj . Since α � D = β � D, there is also an occurrence of
d in β and we may write β = β0dβ1, where β0 does not contain d. Define
β′ = l(β0 � H)lk−1d(β1 � {H,D})lj . This can be seen to satisfy (1) and (2).
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Case 2: v = D. Here we have that π interprets p as depending only on
{H,L}, ID = {H}, and α ∼TO

ID
β implies α � H = β � H . Here viewH(α) has

the form 0(h0)k. Using the fact that α � H = β � H , we can construct β′ such that
α � {H,D} = β′ � {H,D} and α � {H,L} = β � {H,L}. This yields (1) and (2).

Case 3: v = H. Here we have that π interprets p as depending only on
{D,L}, IH = ∅, and α ∼TO

IH
β is trivially true for all β. We take β′ = (β �

{D,L})(α � H), which can be seen to satisfy (1) and (2). �

The appropriate diagnosis for this example appears to be that security of a system
talks not just about what an agent knows about the actions of other agents, but also
about how the agent’s own actions are interleaved with those of other agents. Because
we have formulated the notion of a proposition that “depends only on other agents” in a
way that is not sensitive to such interleavings, we we are not able to express security of
the system using our present formulation of the intuition. We now set about developing
a variant formulation that does take such interleavings into account. We will show
that this can be done in such as way as to completely characterize security in terms
of the relationship between an agent’s knowledge and the distributed knowledge of its
interferers.

First, we relativize the notion of dependency to an agent. Let F ⊆ D be a set
of agents and let u ∈ D be an agent. For a sequence α ∈ A∗, define α �u F to be
the sequence in A∗ ∪ {⊥u} otained from α by deleting occurences of action a with
dom(a) 6∈ F , and replacing each occurrence of an action a with dom(a) = u by ⊥u.
We then say that a proposition Π ⊆ A∗ is about F relative to u if for all α, α′ ∈ A∗, if
α �u F = α′ �u F then α ∈ Π iff α′ ∈ Π.

We will similarly relativize the notions of distributed knowledge defined above.
Suppose that Y is a local-state assignment in M and u is an agent. Then we define the
new modal operator DY

G,u with semantics

M,π, α |= DY
G,uφ if for all α′ ∈ A∗ such that α �u G = α′ �u G and

Yv(α) = Yv(α′) for all v ∈ G, we have M,π, α′ |= φ.

Intuitively, this definition expresses that the group G is able to deduce φ from the
information in the local states Y , given information about the actions of the group G
and how they were interleaved, and the points in that interleaving at which agent u
performed an action (but not the details of u’s actions). In particular, we define the
operators DTO

G,u and DTA
G,u by taking Y to be view ◦ m and ta ◦ m in this definition,

respectively.
It is easily seen from the definitions and the fact that α �u G = α′ �u G implies

α � G = α′ � G that DY
Gφ ⇒ DY

G,uφ is valid. Thus DY
G,u is a weaker notion of

distributed knowledge than DY
G .

Using these new notions of dependence and distributed knowledge, we consider the
following formulation of our intuition concerning the relationship between the knowl-
edge of an agent u and the distributed knowledge of its interferers Iu:

Definition 6: A system M is relatively confined with respect to a local-state as-
signment Y and a noninterference policy � if for all sequences of actions α ∈ A∗, for
all agents u and all π that interpret p as depending only on D \ u relative to u, we have
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M,π, α |= Kup⇒ DY
Iu,up, where Iu = {v ∈ D | u 6= v, v � u}. �

In many cases of interest, this is a stronger statement than our previous formulation
of the intuition using DY

G. This is not obvious, since while it is plain that if Π depends
only onD\u then Π depends only onD\u relative to u, in order to obtain our previous
formulation we would also need to have DY

G,uφ ⇒ DY
Gφ which is the converse of the

fact that DY
Gφ ⇒ DY

G,uφ noted above. However, the desired implication in fact often
holds, because of the following.

Let � be a noninterference relation. If G is a set of agents, we write G ↓ for the
set {v | v �∗ u ∈ G}, and write u ↓ for {u} ↓. Say that a local-state assignment Y
respects � in M if for all agents u, if α � (u ↓) = β � (u ↓) then Yu(α) = Yu(β).
Several of the local-state assignments we have introduced respect �.

Lemma 1 1. If α � u ↓= β � u ↓ then mu(α) � u ↓= mu(β) � u ↓.

2. The local-state assignments ta and ta ◦m respect �.

3. IfM is TO-secure then the local-state assignments to, to◦m, view and view◦m
respect �.

Proof: For part (1), we proceed by induction on the combined length of α and β.
The base case is trivial. Consider sequences αa and β, where a ∈ A and αa � u ↓=
β � u ↓.

1. If dom(a) 6∈ u ↓, then we have α � u ↓= αa � u ↓= β � u ↓, so by the induction
hypothesis, mu(α) � u ↓= mu(β) � u ↓. But mu(αa) = mu(α), so it follows
that mu(αa) � u ↓= mu(β) � u ↓.

2. If dom(a) ∈ u ↓, then αa � u ↓= (α � u ↓)a, so it follows that a occurs in β.
If the last action in β is not a, then we may apply the previous case, so we may
assume without loss of generality that β = β′a for some sequence β′. It follows
that α � u ↓= β′ � u ↓. There are now two cases:

(a) If dom(a) = u then we have mu(αa) � u ↓= α � u ↓= β′ � u ↓=
mu(β′a) � u ↓.

(b) If dom(a) 6= u then mu(αa) = mu(α) and mu(β′a) = mu(β′). Since, by
the induction hypothesis, we have mu(α) � u ↓= mu(β′) � u ↓, it follows
that mu(αa) � u ↓= mu(β′a) � u ↓.

For parts (2) and (3), the proofs for ta and to are similar; we present the argument
for to, which proceeds by induction on the combined length of α and β. The base case
is trivial. Consider sequences αa and β, where a ∈ A and αa � u ↓= β � u ↓. We
consider two cases:

1. If dom(a) 6∈ u ↓, then we have α � u ↓= αa � u ↓= β � u ↓, so by the induction
hypothesis, tou(α) = tou(β). Since we also have dom(a) 6� u in this case,
tou(αa) = tou(α). It follows that tou(αa) = tou(β).
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2. If dom(a) ∈ u ↓, then we may assume, without loss of generality, that β =
β′a and α � u ↓= β′ � u ↓, else the last action in β is not in u ↓ and we
may apply the previous case. By the induction hypothesis, it follows that (a)
tou(α) = tou(β′). From dom(a) ∈ u ↓ it follows that dom(a) ↓⊆ u ↓, so
α � dom(a) ↓= (α � u ↓) � dom(a) ↓= (β � u ↓) � dom(a) ↓= β � dom(a) ↓.
By the induction hypothesis, it follows that todom(a)(α) = todom(a)(β′). By
TO-security, it follows from this that (b) viewdom(a)(α) = viewdom(a)(β′) (see
[vdM07] or Lemma 5 below.) We now obtain from (a) and (b) (in both the case
that dom(a) � u and dom(a) 6� u) that tou(αa) = tou(β′a).

The cases involving mu now follow from the above. For example, if α � u ↓= β �
u ↓, then mu(α) � u ↓= mu(β) � u ↓. By TO-security and the result for to, we ob-
tain that tou(mu(α)) = tou(mu(β)). By TO-security, this implies viewu(mu(α)) =
viewu(mu(β)). �

Subject to the condition that the local-state assignment Y respects �, we obtain
from the following that DY

G,u and DY
G are equivalent on the set of propositions of interest

for confinement.

Lemma 2 Suppose that Y respects � in M and let u 6∈ G ↓. Then if π interprets p as
depending only on D \ u, we have M,π |= DY

G,up⇒ DY
Gp.

Proof: Assume thatM,π, α |= DY
G,up. We show thatM,π, α |= DY

Gp. Let α′ ∈ A∗
be a sequence such that α � G = α′ � G and Yv(α) = Yv(α′) for all v ∈ G. We need
to show that M,π, α′ |= p. Define β to be a sequence obtained from α′ by first delet-
ing actions a with dom(a) = u and then inserting such actions in such a way that
β �u G = α �u G. (This is possible because α � G = α′ � G.) Since Y respects �
and G ↓⊆ D \ u, it follows from this that also Yv(α) = Yv(β) for all v ∈ G. Thus, by
the assumption that M,π, α |= DY

G,up, we have M,π, β |= p. Since we also have that
β � D \ u = α′ � D \ u, we obtain using that fact that π interprets p as depending only
on D \ u that M,π, α′ |= p, as required. �

From Lemma 2 we obtain the following.

Corollary 1 If M is relatively confined with respect to Y and �, and Y respects �
in M , then M is confined with respect to Y and �.

Combining this result with with and Lemma 1, we obtain:

Corollary 2 If M is relatively confined with respect to �, then M is confined with
respect to ta◦m and �. IfM is TO-secure and relatively confined with respect to �,
then M is confined with respect to view ◦m and �.

Thus, the notion of relative confinement is stronger than the notion of confinement
in the cases we considered above. We now establish that this stronger notion actually
holds in these cases. We obtain this as a consequence of a more general result, for
which we first need some technical definitions and results.

Say that a local-state assignment Y is locally cumulative if it satisfies the following
conditions, for all agents u ∈ D, actions a, b ∈ A and sequences of actions α, β ∈ A∗:
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[LC1.] If Yu(αa) = Yu(ε) then dom(a) 6= u and Yu(α) = Yu(ε).

[LC2.] If dom(a) 6= u and dom(b) 6= u and Yu(αa) = Yu(βb) then either
Yu(α) = Yu(βb) or Yu(αa) = Yu(β) or Yu(α) = Yu(β).

[LC3.] If dom(a) 6= u and dom(b) = u and Yu(αa) = Yu(βb) then Yu(α) =
Yu(βb).

[LC4.] If dom(a) = u and dom(b) = u and Yu(αa) = Yu(βb) then Yu(α) =
Yu(β).

Some of the local-state assignments of interest to us have this property.

Lemma 3 The local-state assignments view and ta are locally cumulative.

Proof: For view, we argue as follows:

1. LC1. If viewu(αa) = viewu(ε) = obsu(s0) then there is no occurrence of an
action of domain u in αa, and all observations obtained during this sequence are
equal to obsu(s0). In particular dom(a) 6= u and viewu(α) = viewu(αa) =
viewu(ε).

2. LC2. if dom(a) 6= u and dom(b) 6= u then viewu(αa) = viewu(α) ◦ obsu(s0 ·
αa) and viewu(βb) = viewu(β) ◦ obsu(s0 · βb). Thus, if viewu(αa) =
viewu(βb) but neither viewu(αa) = viewu(α) nor viewu(βb) = viewu(β),
then we have viewu(α) = viewu(β). On the other hand, if viewu(αa) =
viewu(βb) and either viewu(αa) = viewu(α) or viewu(βb) = viewu(β),
then we have viewu(α) = viewu(βb) or viewu(βb) = viewu(α).

3. LC3. Suppose viewu(αa) = viewu(βb) and dom(a) 6= u and dom(b) = u. Then
viewu(αa) = viewu(α)◦obsu(s0 ·αa) and viewu(βb) = viewu(β) b obsu(s0 ·
βb). It follows that obsu(s0·α) = obsu(s0·αa) = obsu(s0·βb), so viewu(αa) =
viewu(α).

4. LC4. If dom(a) = u and dom(b) = u then viewu(αa) = viewu(βb) is equiva-
lent to viewu(α) a obsu(s0 · αa) = viewu(β) b obsu(s0 · βb). It is immediate
that viewu(α) = viewu(β).

For ta, we argue as follows:

1. LC1. If tau(αa) = tau(ε) = ε then we cannot have dom(a) � u, so also
dom(a) 6= u and tau(αa) = tau(α).

2. LC2. If dom(a) 6= u and dom(b) 6= u and tau(αa) = tau(βb), then we have
several possibilities. If either dom(a) 6� u or dom(b) 6� u then we have
tau(α) = tau(αa) = tau(βb) or tau(αa) = tau(βb) = tau(β), respec-
tively. Otherwise, if both dom(a) � u and dom(b) � u, then it follows that
tau(α) = tau(β).

3. LC3. If dom(a) 6= u and dom(b) = u and tau(αa) = tau(βb), then we cannot
have dom(a) � u, since then it would follow that a = b, yielding a contradic-
tion. Hence tau(α) = tau(αa) = tau(βb).
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4. LC4. If dom(a) = dom(b) = u then dom(a) � u and dom(b) � u, so this is
immediate from the definition of ta.

�

The following results gives some technical properties that will be of use to us below.

Lemma 4 If Y is locally cumulative, then for all sequences α, β ∈ A∗ and agents u,
Yu(α) = Yu(β) implies Yu(mu(α)) = Yu(mu(β)).

Proof: We proceed by induction on the combined length of α and β. The base case
of α = β = ε is trivial. Consider the sequences αa and β, where a ∈ A and α, β ∈ A∗
satisfy Yu(αa) = Yu(β). We consider a number of cases: several of these lead to the
consideration of a situation where dom(a) 6= u and Yu(α) = Yu(β). Note that in this
case we have Yu(mu(α)) = Yu(mu(β)), by the induction hypothesis. Moreover, since
dom(a) 6= u we have mu(αa) = mu(α). It follows that Yu(mu(αa)) = Yu(mu(β)).

The cases are as follows:

1. If β = ε, then by LC1 we have that dom(a) 6= u and Yu(α) = Yu(ε), so the
above argument applies. In all other cases, β = β′b for some β′ ∈ A∗ and
b ∈ A.

2. If dom(a) 6= u and dom(b) 6= u, then by LC2 we have two possibilities Yu(α) =
Yu(βb) and Yu(αa) = Yu(β) where the above argument applies. In the remain-
ing case, we have Yu(α) = Yu(β). By the induction hypothesis, Yu(mu(α)) =
Yu(mu(β)). The desired conclusion now follows because mu(αa) = mu(α)
and mu(βb) = mu(β).

3. If dom(a) 6= u and dom(b) = u, then by LC3 we have Yu(α) = Yu(βb) and the
argument above applies.

4. If dom(a) = u and dom(b) 6= u, then we again apply LC3 and the argument
above, but with the roles of αa and βb reversed.

5. If dom(a) = dom(b) = u, thenmu(αa) = α andmu(β′b) = β′, so Yu(mu(αa)) =
Yu(mu(β′b)) follows from Yu(αa) = Yu(β′b) using LC4.

�

Lemma 5 Let X be a full-information local-state assignment based on Y and �.
Then we have the following.

1. If M is X-secure with respect to � then for all α, β ∈ A∗ and agents u, if
Xu(α) = Xu(β) then viewu(α) = viewu(β).

2. If Xu(α) = Xu(β) and v � u, then Yv(mv(α)) = Yv(mv(β)).

3. Suppose Y is locally cumulative. If α � Iu ∪ {u} = β � Iu ∪ {u} and
Yv(mv(α)) = Yv(mv(β)) for all v ∈ Iu, then Xu(α) = Xu(β).
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Proof: For part (1), we proceed by induction on the combined length of α and
β. The base case of α = β = ε is trivial. Consider sequences αa and β such that
Xu(αa) = Xu(β) where α, β ∈ A∗ and a ∈ A and the claim is assumed to hold for
shorter sequences. We consider two cases, depending on whether dom(a) � u.

Case 1: not dom(a) � u. Then Xu(α) = Xu(αa) = Xu(β). By the induction
hypothesis, viewu(α) = viewu(β). In particular, we have obsu(s0 ·α) = obsu(s0 ·β).
By X-security, we also obtain from Xu(αa) = Xu(β) that obsu(s0 ·αa) = obsu(s0 ·
β). It follows that obsu(s0 · αa) = obsu(s0 · α). Thus viewu(αa) = viewu(α) ◦
obsu(s0 · αa) = viewu(α) = viewu(β).

Case 2: dom(a) � u. Then it follows from Xu(αa) = Xu(β) that β = β′aγ
for some γ ∈ A∗ that does not contain an action b with dom(b) � u. Without
loss of generality, we may assume that γ = ε, else we may switch the roles of αa
and β and apply the previous case. Thus, we have β = β′a and it follows that
Xu(α) = Xu(β′) and Ydom(a)(α) = Ydom(a)(β′). By the induction hypothesis, we
get that viewu(α) = viewu(β′), and by X-security we obtain that obsu(s0 · αa) =
obsu(s0 · β′a). Thus, if dom(a) = u we have viewu(αa) = viewu(α) a obsu(s0 ·
αa) = viewu(β′) a obsu(s0 · β′a) = viewu(β). Similarly if if dom(a) 6= u we have
viewu(αa) = viewu(α) ◦ obsu(s0 · αa) = viewu(β′) ◦ obsu(s0 · β′a) = viewu(β).

For part (2), we proceed by induction on the combined length of α and β. The base
case of α = β = ε is trivial. Consider sequences αa and β where α, β ∈ A∗ and a ∈ A
and the claim is assumed to hold for shorter sequences. Let v � u. We consider two
cases, depending on whether dom(a) � u. If dom(a) 6� u, then Xu(α) = Xu(αa) =
Xu(β) so, by the induction hypothesis, we have Yv(mv(α)) = Yv(mv(β)). In this
case dom(a) 6= u, so mv(αa) = mv(α). It follows that Yv(mv(αa)) = Yv(mv(β)).

Alternately, suppose dom(a) � u. Then Xu(αa) = Xu(β) implies that β is not
ε, so we may write β = β′b. If dom(b) 6� u then we may switch the roles of αa and
β′b and apply the previous case. Assume, therefore, that dom(b) � u. Then it follows
from Xu(αa) = Xu(β′b) that a = b, Xu(α) = Xu(β′) and Ydom(a)(α) = Ydom(a)(β′).
We consider two cases, depending on whether v = dom(a).

1. If v = dom(a), thenmv(αa) = α andmv(β′a) = β′. Thus, we get Yv(mv(αa)) =
Yv(mv(β′a)) directly from the fact that Ydom(a)(α) = Ydom(a)(β′).

2. If v 6= dom(a), then mv(αa) = mv(α) and mv(β′a) = mv(β′). By the induc-
tion hypothesis, we get from Xu(α) = Xu(β′) that Yv(mv(α)) = Yv(mv(β′)),
and it follows that Yv(mv(αa)) = Yv(mv(β′a)).

For part (3), we proceed by induction on the combined length of α and β. The
base case of α = β = ε is trivial. Consider sequences αa and β where α, β ∈ A∗

and a ∈ A and the claim is assumed to hold for shorter sequences. We suppose αa �
Iu ∪ {u} = β � Iu ∪ {u} and Yv(mv(αa)) = Yv(mv(β)) for all v ∈ Iu. We have to
show Xu(αa) = Xu(β). We consider two cases, depending on whether dom(a) � u.

Case 1: not dom(a) � u. Then dom(a) 6∈ Iu ∪ {u}. Hence α � Iu ∪ {u} =
αa � Iu ∪ {u} = β � Iu ∪ {u}. Moreover, for v ∈ Iu we have mv(αa) = mv(α),
so Yv(mv(αa)) = Yv(mv(α)) = Yv(mv(β)). Thus, by the induction hypothesis, we
conclude that Xu(α) = Xu(β). Since X is a full-information local-state assignment
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based on Y and �, and dom(a) 6� u, we have that Xu(αa) = Xu(α), and it follows
that Xu(αa) = Xu(β).

Case 2: dom(a) � u. Then dom(a) ∈ Iu ∪ {u} and from αa � Iu ∪ {u} = β �
Iu ∪ {u} it follows that β = β′aγ for some sequences β′, γ ∈ A∗ such that γ contains
no actions b whose domain is in Iu∪{u}, i.e., for which dom(b) � u. We may assume
without loss of generality that γ = ε, since otherwise we may switch the roles of αa
and β, and apply the previous case. Thus, we get that α � Iu ∪ {u} = β′ � Iu ∪ {u}.

We now show that Yv(mv(α)) = Yv(mv(β′)) for all v ∈ Iu. For this, we consider
two cases, depending on whether dom(a) = v.

1. Suppose dom(a) 6= v. Then mv(αa) = mv(α), and similarly mv(β′a) =
mv(β′). Since Yv(mv(αa)) = Yv(mv(β)), we conclude that Yv(mv(α)) =
Yv(mv(β′)).

2. Suppose dom(a) = v. Thenmv(αa) = α, and similarly,mv(β′a) = β′. Since Y
is locally cumulative, we obtain using Lemma 4 that Yv(mv(α)) = Yv(mv(β′)).

By the induction hypothesis, we conclude that Xu(α) = Xu(β′). Note that we also
showed in the second case above that Ydom(a)(α) = Ydom(a)(β′). Thus, since X is a
full-information local-state assignment based on Y and �, we have that Xu(αa) =
(Xu(α), Ydom(a)(α), a) = (Xu(β′), Ydom(a)(β′), a) = Xu(β′a). �

Lemma 6 Suppose that Y respects � inM and � is acyclic. Then for all α, β ∈ A∗,
if α �u D \ u = β �u D \ u then for all v ∈ Iu, we have Yv(mv(α)) = Yv(mv(β)).

Proof: An easy induction shows that if α �u D \ u = β �u D \ u and v ∈
Iu, then mv(α) �u D \ u = mv(β) �u D \ u. By acyclicity, this, in turn, im-
plies mv(α) � (v ↓) = mv(β) � (v ↓). Since Y respects � in M , we conclude
Yv(mv(α)) = Yv(mv(β)). �

We can now state a result that generalizes Theorem 2 and Theorem 3.

Theorem 4 Let � be acyclic, and let X be a full information local state assignment
based on Y and �. Suppose that Y respects � in M and is locally cumulative. Then
if M is X-secure then M is relatively confined with respect to Y ◦m and �.

Proof: Suppose π interprets p as depending only onD \u relative to u. We need to
show that for all α ∈ A∗ we have M,π, α |= Kup ⇒ DY ◦m

Iu,u p. We assume M,π, α |=
¬DY ◦m

Iu,u p, and show that M,π, α |= ¬Kup.
Since M,π, α |= ¬DY ◦m

Iu,u p, there exists a sequence β ∈ A∗ such that α �u Iu =
β �u Iu and Yv(mv(α)) = Yv(mv(β)) for all v ∈ Iu and M,π, β |= ¬p. Since
α �u Iu = β �u Iu, the sequences α and β have the same number k of occurrences
of actions of agent u, and α � Iu = β � Iu. Let γ be the sequence constructed
from β by replacing the i-th occurrence of an action of agent u by the i-th action of
agent u in α, for i = 1 . . . k. Then we have that β �u D \ u = γ �u D \ u and
α � Iu ∪ {u} = γ � Iu ∪ {u}.
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By Lemma 6, since β �u D \ u = γ �u D \ u, we have that Yv(mv(β)) =
Yv(mv(γ)) for all v ∈ Iu. It follows that Yv(mv(α)) = Yv(mv(γ)) for all v ∈ Iu.
Since also α � Iu ∪ {u} = γ � Iu ∪ {u} and Y is locally cumulative, we obtain using
Lemma 5(3) thatXu(α) = Xu(γ). ByX-security ofM and Lemma 5(1), we conclude
that viewu(α) = viewu(γ). However, since M,π, β |= ¬p, β �u D \ u = γ �u D \ u
and π interprets p as depending only onD\u relative to u, we have thatM,π, γ |= ¬p.
Thus M,π, α |= ¬Kup. �

Using Lemma 3 and Lemma 1 , we obtain the following result, which can be seen
to strengthen Theorem 2 and Theorem 3 by Corollary 2.

Corollary 3 If M is TA-secure with respect to � then M is relatively confined with
respect to ta ◦m and �. If M is TO-secure with respect to � then M is relatively
confined with respect to view ◦m and �.

Admittedly, the added complexity of the operator DY
G,u used in the definition of lo-

cal confinement makes this result somewhat less intuitive. However, the benefit that we
obtain from this complexity is the ability to state the following converse to Theorem 4:

Theorem 5 Let � be acyclic, and let X be a full-information local-state assignment
based on Y and �. If M is relatively confined with respect to Y ◦m and � then M
is X-secure.

Proof: We need to show that for all sequences α, α′ and agents u, if Xu(α) =
Xu(α′) then obsu(s0 · α) = obsu(s0 · α′). We proceed by induction on the combined
length of α and α′. The base case of α = α′ = ε is trivial, so we consider the case of
sequences αa, α′, with Xu(αa) = Xu(α′), where a ∈ A.

Case 1: dom(a) 6� u. Then Xu(α) = Xu(αa) = Xu(α′), so by the induction
hypothesis, we have obsu(s0 ·α) = obsu(s0 ·α′). We would like to show that obsu(s0 ·
αa) = obsu(s0 ·α′a). We suppose not, and obtain a contradiction. Note that it follows
from the assumption and the conclusion above that obsu(s0 · αa) 6= obsu(s0 · α).
Define the interpretation π on p by M,π, γ |= p iff γ �u D \ u 6= αa �u D \ u. Then
plainly π interprets p as depending only on D \ u relative to u.

We show thatM,π, α |= Kup. Suppose that viewu(α) = viewu(γ) andM,π, γ |=
¬p. From viewu(α) = viewu(γ) it follows that α � u = γ � u, and from M,π, γ |=
¬p we have γ �u D \ u = αa �u D \ u. It follows that γ = αa. However, since
obsu(s0 · αa) 6= obsu(s0 · α), we have viewu(γ) = viewu(αa) 6= viewu(α), a
contradiction. Thus, viewu(α) = viewu(γ) implies M,π, γ |= p. This shows that
M,π, α |= Kup.

Since π interprets p as depending only on D \ u relative to u and M is relatively
confined with respect to Y ◦ m and �, it follows that M,π |= DY ◦m

Iu,u p. However,
since dom(a) 6� u, we have dom(a) 6∈ Iu ∪ {u}, so αa �u Iu = α �u Iu. Moreover,
for v ∈ Iu, we have mv(αa) = mv(α), so Yv(mv(αa)) = Yv(mv(α)). Plainly
M,π, αa |= ¬p. Thus, we have M,π |= ¬DY ◦m

Iu,u p This is a contradiction.
Case 2: dom(a) � u. ThenXu(αa) = (Xu(α), Ydom(a)(α), a). SinceXu(αa) =

Xu(α′), we cannot have α′ = ε, so write α′ = βb. If dom(b) 6� u, then we can switch
the roles of αa and βb and apply the previous case. Thus, without loss of generality
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dom(b) � u, and we have Xu(βb) = (Xu(β), Ydom(a)(β), b). It follows that a = b,
Xu(α) = Xu(β) and Ydom(a)(α) = Ydom(a)(β).

Suppose that obsu(s0 · αa) 6= obsu(s0 · βa). By the induction hypothesis, we
obtain from Xu(α) = Xu(β) that obsu(s0 · α) = obsu(s0 · β). Define π on p by
M,π, γ |= p iff γ �u D \ u 6= βa �u D \ u.

We show thatM,π, αa |= Kup. Suppose that viewu(γ) = viewu(αa) andM,π, γ |=
¬p. Then γ � u = αa � u and γ �u D \ u = βa �u D \ u. Now from Xu(α) = Xu(β)
and the fact that X is a full-information local-state assignment, we obtain that α � u =
β � u. Hence γ � u = αa � u = βa � u. Combining this with γ �u D\u = βa �u D\u
we obtain γ = βa. This implies that viewu(γ) 6= viewu(αa), a contradiction, since
obsu(s0 · αa) 6= obsu(s0 · βa). This shows that M,π, αa |= Kup. It is obvious that
π interprets p as depending only on D \ u relative to u, so by the assumption, we have
M,π, αa |= DY ◦m

Iu,u p.
By an induction on the definition of Xu, we can see that Xu(αa) = Xu(βa) im-

plies αa �u Iu ∪{u} = βa �u Iu ∪{u}. By Lemma 5(2) we also have Yv(mv(αa)) =
Yv(mv(βa)) for all agents v with v ∈ Iu. Since M,π, βa |= ¬p, it follows that
M,π, αa |= ¬DY ◦m

Iu,u p, a contradiction. �

In particular, combining this result with Corollary 3 we obtain the following.

Corollary 4 M is relatively confined with respect to ta ◦m iff M is TA-secure. M is
relatively confined with respect to view ◦m iff M is TO-secure.

That is, we are able to give a complete characterization of the causal notions of
TO-security and TA-security that is stated entirely in epistemic terms. The equivalence
gives us a reduction of causal notions to epistemic notions.

9 Other Notions of Distributed Knowledge
We remark that the notions of distributed knowledge we have discussed are by no
means the only sensible ways to combine the information of a group of agents. Indeed,
the need for variants of distributed knowledge has previously been argued by Moses
and Bloom [MB94], who show that distributed knowledge it is too weak for applica-
tions to reasoning about clock synchronisation protocols. They propose an alternate
notion IG called inherent knowledge.

The semantics for this operator is given in the framework of interpreted systems
[FHMV95], which are pairs (R, π), consisting of a set of runs R and a function π :
Prop × G → {0 , 1} that assigns truth values to propositions Prop at global states G.
If there are n agents, a global state is a tuple in G = L0 × L1 × . . .× Ln, where L0 is
a set of states of the environment and each Li, for i = 1 . . . n, is a set of local states of
agent i. A run is a mapping N → G that assigns a global state to each time m ∈ N,
and a point is a pair (r,m) where r is a run and m ∈ N. If r(m) = (s0, s1, . . . , sn),
then we write ri(n) for si.

Formulas are interpreted at pairs I, (r,m) consisting of an interpreted system I
and a point (r,m) of I, with the satisfaction relation |= defined for the distributed
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knowledge operator DG by I, (r,m) |= DGφ if I, (r′,m′) |= φ for all points (r′,m′)
of I such that ri(m) = r′i(m

′) for all i ∈ G. The semantics of the inherent knowledge
operator IG is defined by I, (r,m) |= IGφ if I, (r′,m′) |= φ for all points (r′,m′)
such that there exists for each i ∈ G a time mi ∈ N with ri(m) = r′i(mi) and
mi ≤ m′. Intuitively, this says that when the members of group G combine their
information, they do so on the basis of knowing that each of their local states at (r,m)
has occurred at some time in the past, rather than on the basis of knowing that their local
states are now occurring simultaneously, as in the semantics for distributed knowledge.
This better captures situations where distributed knowledge becomes knowledge to a
single agent by being communicated by asynchronous message passing.

It is straightforward to see that IGφ⇒ DGφ is valid. (Indeed, the stronger formula
IGφ ⇒ DG�φ is valid, where � is the linear temporal operator “now and at all times
in the future”.) Thus, inherent knowledge is a strengthening of distributed knowledge,
whereas we have proposed weakenings. The context for this definition is rather differ-
ent from ours: systems in which communication is by asynchronous message passing,
rather than the asynchronously operating systems with a synchronous communication
mechanism, as in our definition of systems.

One other definition of distributed knowledge also has some plausibility: the (per-
fect recall) knowledge of a group when that group is considered as a single agent.
Reverting to the semantic framework of the present paper, this can be defined by first
defining the observation obsG(s) of a group G at a state s to be the function with do-
main G that maps u ∈ G to obsu(s). Based on this, we define a notion of view for the
group, inductively, by viewG(ε) = obsG(s0) and

viewG(αa) =
{

viewG(α) a obsG(s0 · αa) when a ∈ G
viewG(α) ◦ obsG(s0 · αa) otherwise.

That is, the definition is just like that of the view of an individual agent, except that it
is based on the group observation rather than the observation of an individual agent.

Using this notion of view, we could then define a notion of group knowledge KGφ,
byM,π, α |= KGφ ifM,π, α′ |= φ for all α′ ∈ A∗ such that viewG(α) = viewG(α′).
This is a weaker notion than distributed knowledge, indeed, it is easy to see that Dp

Gφ⇒
KGφ is valid; recall that DGφ ⇒ Dp

Gφ. (The converse KGφ ⇒ Dp
Gφ is not valid:

consider a system where an agent u has as its observation a variable x, another agent
v has as its observation a variable y, and a third agent w has two actions inc(x) and
inc(y) that increment the values of x and y, respectively. Then with G = {u, v} and
α = inc(x) inc(y) and α′ = inc(y)inc(x), we have α ∼p

G α′, but not viewG(α) =
viewG(α′).) While plausible, we leave it open to further work whether this notion has
any useful applications.

10 Conclusion
We believe that the perspective from the logic of knowledge provides fresh insight into
definitions of causality from the literature on computer security. We have shown that
it is possible to express these definitions precisely in epistemic terms. Conversely, this

23



analysis has lead us to a fresh perspective on the notion of distributed knowledge used
from the literature on reasoning about knowledge in multi-agent systems.

While the notion of distributed knowledge has been studied since the 1980’s, rela-
tively little concrete use has been made of it. Notably, one of the few relates distributed
knowledge to the notion of of Lamport causality, which is appropriate in asynchronous
message passing systems (see [FHMV95] Proposition 4.4.3). (Another application
in a synchronous setting occurs in the notion of ‘waste’ in the context of byzantine
agreement protocols – see [FHMV95] Ch. 6 for discussion and references.) Our work
provides a study of a slightly different nature, dealing with distributed knowledge and
information flow in causally constrained asynchronous systems. Specifically, we have
clarified the intuition that the causal structure of a system constrains agents to acquire
only external knowledge that is distributed knowledge to the agents that may causally
affect it.

In doing so, we have argued that the classical definition of distributed knowledge
needs to be adapted in order to capture the intuition. We have shown that, besides inter-
section of information sets, there are other ways that a group of agents might combine
their information. In particular, we have argued that such combination needs to be rel-
ativized to an agent to which the group is communicating its information in order to
fully capture our intuitions concerning information flow and causal structure. We be-
lieve our new notions of distributed knowledge are intuitive and may find application
in other contexts.

There are several directions that could be explored in future research. We note
that our definitions are suited to deterministic systems in which actions are interleaved
and have immediate effects: different formulations may be required to capture similar
intuitions in asynchronous message passing systems, or systems with simultaneous
actions, such as the model used in [FHMV95]. It would also be of interest to consider
nondeterministic systems, and systems in which actions have probabilistic effects. Our
semantic model and notions of causality originate in the computer security literature
and have a richer temporal structure than is generally considered in KR work in the
area [Pea00, HP01], but it would be interesting to investigate the relationships. We
remark also that we have confined our attention to acyclic noninterference policies.
It remains to formulate generalizations of these results that encompass systems with
causal cycles.
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